

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

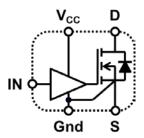
Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Preliminary Datasheet

FEATURES:

- Integrated Gate Driver
 - Low Propagation Delay
 - Up to 7 MHz Operation
 - Operates from 5 V Supply
- 200 V, 40-mΩ eGaN FET
- Low Inductance 2.9 mm x 1.1 mm BGA


EPC2112 devices are supplied only in passivated die form with solder balls

Die Size: 2.9 mm x 1.1 mm

APPLICATIONS:

- Wireless Power (Highly Resonant and Inductive)
- High Frequency DC-DC Conversion

Schematic Diagram

DESCRIPTION

The EPC2112 enhancement-mode gallium-nitride (eGaN®) integrated driver and FET consists of a 40-m Ω , 200 V eGaN power transistor and an optimized gate driver in a low inductance 2.9 mm by 1.1 mm surface-mount BGA.

The EPC2112 monolithic IC enables designers to improve efficiency, save space, and lower costs compared to silicon-based solutions. The ultra-low capacitance and zero reverse recovery of the eGaN FET enables efficient operation in many topologies. The integrated driver is specifically matched to the GaN device to yield optimal performance under various operating conditions. Performance further enhanced due to the small, low inductance footprint. Monolithic integration eliminates interconnect inductances for higher efficiency at high frequency. This is especially important for high frequency applications such as resonant wireless power.

ABSOLUTE MAXIMUM RATINGS

Maximum Ratings				
V _{DS}	Drain-to-Source Voltage (Continuous)	200	V	
I _D	Continuous (T _A = 25°C, R _{0JA} = 18 °C/W)	10	А	
	Pulsed (25°C, T _{PULSE} 300 μs)	40	^	
V_{IN}	Input Signal Voltage	6	V	
Tı	Operating Temperature	-40 to 150	o 150	
T_{STG}	Storage Temperature	-40 to 150		
V _{cc}	Supply Voltage	6	V	

RECOMMENDED OPERATING CONDITIONS

Recommended Operating Conditions					
PARAMETER	Description	MIN	TYP	MAX	UNIT
V_{DS}	Drain-Source voltage			160	V
V _{CC}	Driver Supply voltage	4.5	5	5.5	V
I _{cc}	External driver supply current ¹			50	mA
$V_{IN,Off}$	Input signal for turn-off			0.5	V
V _{IN,On}	Input signal for turn-on	4.5			V
$V_{IN,slew}$	Input signal slew rate	0.25			V/ns
Tı	Operating Temperature	-40		150	°C

¹ For up to maximum operating frequency

THERMAL INFORMATION

	Thermal Characteristics					
		TYP	Unit			
$R_{\theta JC}$	Thermal Resistance, Junction to Case	1.7	°C/W			
R _{θJB}	Thermal Resistance, Junction to Board	20	°C/W			
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient ²	66	°C/W			

² R_{BJA} is determined with the device mounted on one square inch of copper pad, single layer 2 oz copper on FR4 board. Thermal models for EPC devices available at http://epc-co.com/epc/DesignSupport/DeviceModels.aspx

ELECTRICAL CHARACTERSTICS

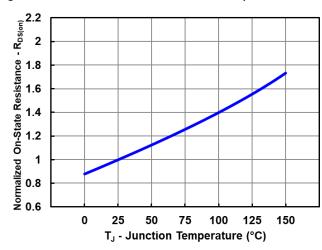
PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	Unit
eGaN PO	WER TRANSISTOR					
BV_{DSS}	Drain-to-Source Voltage	V_{CC} = 0 V, V_{IN} = 0 V, I_D = 125 μA	200			٧
I _{DSS}	Drain -Source Leakage	V _{DS} = 160 V, T _J = 25 °C		20	100	μΑ
R _{DS(ON)}	Drain-Source On-Resistance	$V_{CC} = 5 \text{ V}, T_J = 25 \text{ °C}$		32	40	mΩ
V_{SD}	Source-Drain Forward Voltage	$V_{CC} = 5 \text{ V}, V_{IN} = 0 \text{ V}, I_{SD} = 0.5 \text{ A}$		2		٧
C_{oss}	Output Capacitance	$V_{IN} = 0 \text{ V}, V_{CC} = 5 \text{ V}, V_{DS} = 100 \text{ V}, f = 1 \text{ MHz}$		150		
C _{OSS(ER)}	Energy Output Capacitance, Energy Related ³			175		pF
$C_{OSS(TR)}$	Energy Output Capacitance, Energy Related ⁴	$V_{IN} = 0 \text{ V}, V_{CC} = 5 \text{ V}, V_{DS} = 0 \text{ to } 100 \text{ V}$		233		
Qoss	Output Charge	$V_{IN} = 0 \text{ V}, V_{CC} = 5 \text{ V}, V_{DS} = 100 \text{ V}, V_{GS} = 0 \text{ V}$		24		nC
Q_{RR}	Source-Drain Recovery Charge			0		
Coss(ER) is a fixed capacitance that gives the same stored energy as Coss while VDs is rising from 0 to 50% BVDSS						

 $^{^4\}text{C}_{OSS(TR)}$ is a fixed capacitance that gives the same charging time as C_{OSS} while V_{DS} is rising from 0 to 50% BV_{DSS}

ELECTRICAL CHARACTERSITCS

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	Unit
DRIVER S	UPPLY					
I _{VCC, ON}	Quiescent current (average)	$V_{IN} = 5 \text{ V}, V_{CC} = 5 \text{ V}, V_{DS} = 0 \text{ V}$		4		
I _{VCC, OFF}	Quiescent current (average)	$V_{IN} = 0 \text{ V}, V_{CC} = 5 \text{ V}, V_{DS} = 0 \text{ V}$		4		mA
I _{VCC, OP}	Operating Current	50% duty cycle, V_{CC} = 5 V, f_{SW} = 1 MHz		6.5		
V_{IH}	Turn-on Input pin, logic high	V _{CC} = 5 V	4.0			V
V _{IL}	Turn-off Input pin, logic low	V _{cc} = 5 V			0.7	

SWITCHING CHARACTERISTICS


	Switching Characteristics					
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
DRIVER ⁵						
t _{pd,on}	Propagation delay, turn on			2.7		ns
t _{rise}	Rise Time			2.7		ns
t _{on}	Total turn-on time	V - F V V - 100 V I - 4 A		8.5		ns
t _{pd,off}	Propagation delay, turn off	$V_{CC} = 5 \text{ V}, V_{DS} = 160 \text{ V}, I_L = 4 \text{ A}$		16.9		ns
t _{fall}	Fall Time			5.5		ns
t _{off}	Total turn-off time			26.5		ns
t _{MIN}	Minimum on-time	$V_{CC} = 5 \text{ V}, V_{BUS} = 160 \text{ V}$		9.2		ns
t _{MAX}	Maximum on-time	$V_{CC} = 5 \text{ V}, I_{DS} = 0.5 \text{ A}$		40		ms

⁵See application circuit, Figure 4 & 5

TYPICAL CHARACTERSITCS

Figure 1: Normalized On-State Resistance vs Temperature

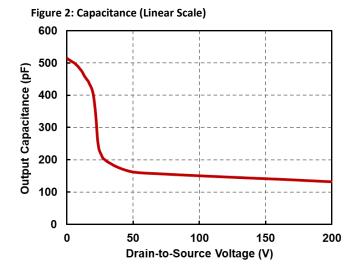


Figure 3: Output Charge and Coss Stored Energy

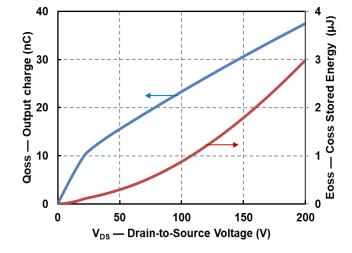


Figure 4: Double pulse Test Definitions

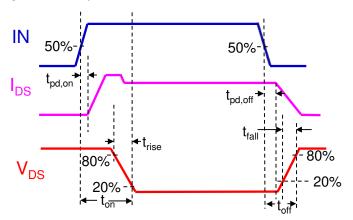


Figure 5: Double pulse Test Circuit

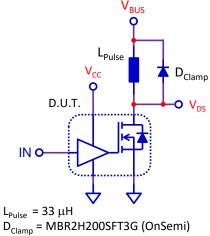


Figure 6: Driver quiescent current as function of frequency

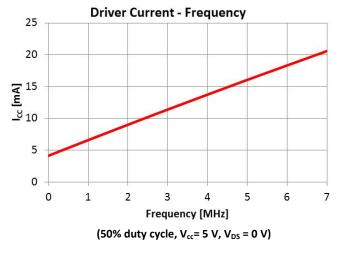
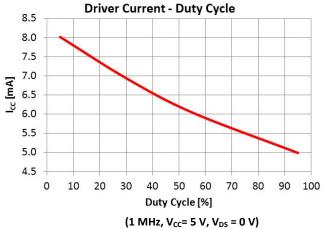
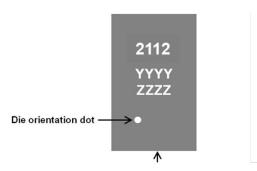
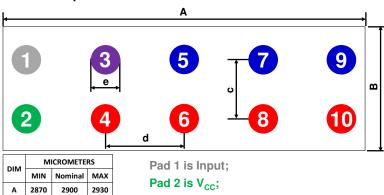




Figure 7: Driver quiescent current as function of duty cycle

DIE MARKINGS

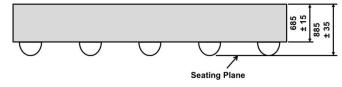


	Laser Marking		
Part Number	Part # Marking	Lot Date Code	Lot Date Code
	Line 1	Marking Line 2	Marking Line 3
EPC2112ENGRT	2112	YYYY	ZZZZ

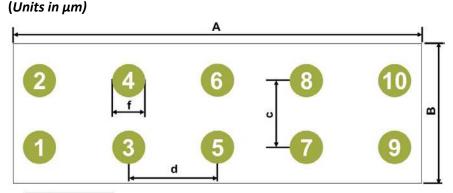
Pin 1 bump is along this edge of die

DIE OUTLINE

Solder Bump View


ым	IVI	ICKOIVIE I E	K3
Dilvi	MIN	Nominal	MAX
Α	2870	2900	2930
В	1070	1100	1130
С		600	
d		600	
е	238	264	290

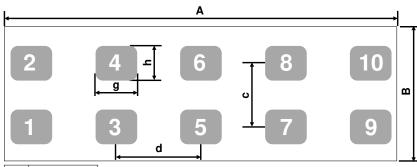
Pad 3 is Gnd;


Pads 4, 6, 8, 10 are Drain;

Pads 5, 7, 9 are Source

Side View

RECOMMENDED LAND PATTERN


1	MIC	MICROMETERS
	Α	2900
	В	1100
	c	600
	d	600
Г	f	230

The land pattern is solder mask defined. Copper is larger than the solder mask opening.

RECOMMENDED STENCIL DESIGN

(Units in µm)

Back Side View (Bump on Bottom)

DIM	MICROMETERS		
Α	2900		
В	1100		
С	600		
d	600		
g	300		
h	250		

Intended for use with SAC305 Type 4 solder, reference 88.5% metals content.

Recommended stencil should be 4mil (100µm) thick, laser cut. The corner has a radius of R60.

Additional assembly resources available at http://epc-co.com/epc/DesignSupport/AssemblyBasics.aspx

Efficient Power Conversion Corporation (EPC) reserves the right to make changes without further notice to any products herein. Preliminary specification sheet contains information regarding a product EPC is considering for production release. EPC does not assume any liability arising out of the application or use of any product or circuit described herin; neither does it convey any license under its patent rights, nor the rights of other.

 $\label{eq:GaN} \textbf{eGaN}^{*} \ \text{is a registered trademark of Efficient Power Conversion Corporation}.$

EPC Patents: http://epc-co.com/epc/AboutEPC/Patents.aspx

March, 2018