imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

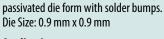
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

EPC2203 – Automotive 80 V (D-S) **Enhancement Mode Power Transistor**

 V_{DS} , 80 V $R_{DS(on)}$, 80 m Ω I_D, 1.7 A AEC-Q101

Gallium Nitride's exceptionally high electron mobility and low temperature coefficient allows very low R_{DS(on)}, while its lateral device structure and majority carrier diode provide exceptionally low Q_G and zero QRR. The end result is a device that can handle tasks where very high switching frequency, and low on-time are beneficial as well as those where on-state losses dominate.


Maximum Ratings				
	PARAMETER	VALUE	UNIT	
V _{DS}	Drain-to-Source Voltage (Continuous)	80	V	
	Continuous ($T_A = 25^{\circ}C$, $R_{\theta JA} = 314^{\circ}C/W$)	1.7	٨	
I _D	Pulsed (25°C, T _{PULSE} = 300 μs)	17	A	
V	Gate-to-Source Voltage	5.75	V	
V _{GS}	Gate-to-Source Voltage	-4	V	
٦	Operating Temperature	–40 to 150	°C	
T _{STG}	Storage Temperature	-40 to 150	Ľ	

Thermal Characteristics				
	PARAMETER	ТҮР	UNIT	
Røjc	Thermal Resistance, Junction to Case	6.5		
Røjb	Thermal Resistance, Junction to Board	65	°C/W	
Røja	Thermal Resistance, Junction to Ambient (Note 1)	100		

Note 1: RUA is determined with the device mounted on one square inch of copper pad, single layer 2 oz copper on FR4 board. See http://epc-co.com/epc/documents/product-training/Appnote_Thermal_Performance_of_eGaN_FETs.pdf for details.

	Static Characteristics ($T_j = 25^{\circ}$ C unless otherwise stated)					
	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
BV _{DSS}	Drain-to-Source Voltage	$V_{GS} = 0 \text{ V}, \text{ I}_{D} = 300 \mu\text{A}$	80			V
I _{DSS}	Drain-Source Leakage	$V_{DS} = 64 V, V_{GS} = 0 V$		5	250	μA
	Gate-to-Source Forward Leakage	$V_{GS} = 5 V$		0.01	0.9	mA
I _{GSS}	Gate-to-Source Reverse Leakage	$V_{GS} = -4 V$		2	250	μA
$V_{GS(TH)}$	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 0.6 \text{ mA}$	0.8	1.5	2.5	V
R _{DS(on)}	Drain-Source On Resistance	$V_{GS} = 5 V, I_D = 1 A$		53	80	mΩ
V_{SD}	Source-Drain Forward Voltage	$I_{S} = 0.35 \text{ A}, V_{GS} = 0 \text{ V}$		2.2		V

All measurements were done with substrate shorted to source.

EPC2203 eGaN® FETs are supplied only in

EPC2203

(HAL) Halogen-Free

Applications

RoHS (Pa)

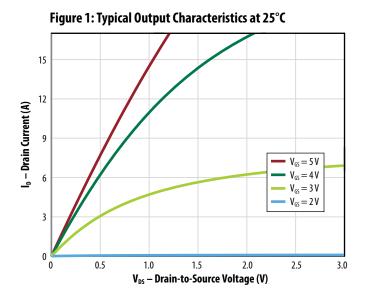
• LiDAR/Pulsed Power Applications

EFFICIENT POWER CONVERSION

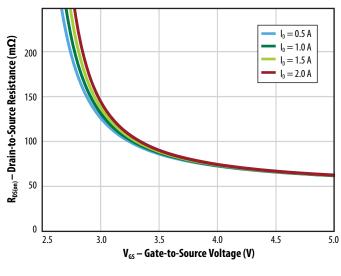
- High Power Density DC-DC Converters
- Wireless Power
- Class-D Audio

Benefits

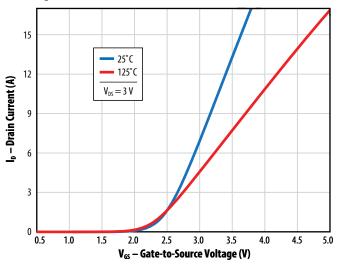
- Ultra High Efficiency
- Ultra Low RDS(on)
- Ultra Low Q_G
- Ultra Small Footprint

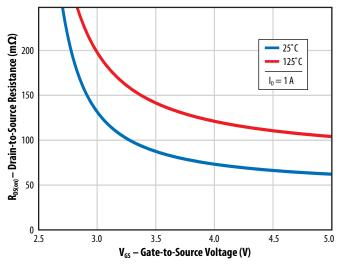

www.epc-co.com/epc/Products/eGaNFETs/EPC2203.aspx

EPC – EFFICIENT POWER CONVERSION CORPORATION WWW.EPC-CO.COM COPYRIGHT 2018


1

Dynamic Characteristics (T _J = 25°C unless otherwise stated)						
	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
C _{ISS}	Input Capacitance			73	88	
C _{RSS}	Reverse Transfer Capacitance	$V_{DS} = 50 V, V_{GS} = 0 V$		0.5		pF
C _{OSS}	Output Capacitance			47	71	
C _{OSS(ER)}	Effective Output Capacitance, Energy Related (Note 2)			57		
C _{OSS(TR)}	Effective Output Capacitance, Time Related (Note 3)	$V_{DS} = 0$ to 50 V, $V_{GS} = 0$ V		72		
R_{G}	Gate Resistance			0.6		Ω
Q_{G}	Total Gate Charge	$V_{DS} = 50 \text{ V}, V_{GS} = 5 \text{ V}, I_D = 1 \text{ A}$		670	830	
Q_{GS}	Gate-to-Source Charge			220		
Q_{GD}	Gate-to-Drain Charge	$V_{DS} = 50 \text{ V}, I_D = 1 \text{ A}$		120		
Q _{G(TH)}	Gate Charge at Threshold			154		pC
Q _{OSS}	Output Charge	$V_{DS} = 50 \text{ V}, V_{GS} = 0 \text{ V}$		3600	5400	
Q _{RR}	Source-Drain Recovery Charge			0		


Note 2: $C_{OSS(ER)}$ is a fixed capacitance that gives the same stored energy as C_{OSS} while V_{DS} is rising from 0 to 62.5% BVDSS. Note 3: $C_{OSS(TR)}$ is a fixed capacitance that gives the same charging time as C_{OSS} while V_{DS} is rising from 0 to 62.5% BVDSS.



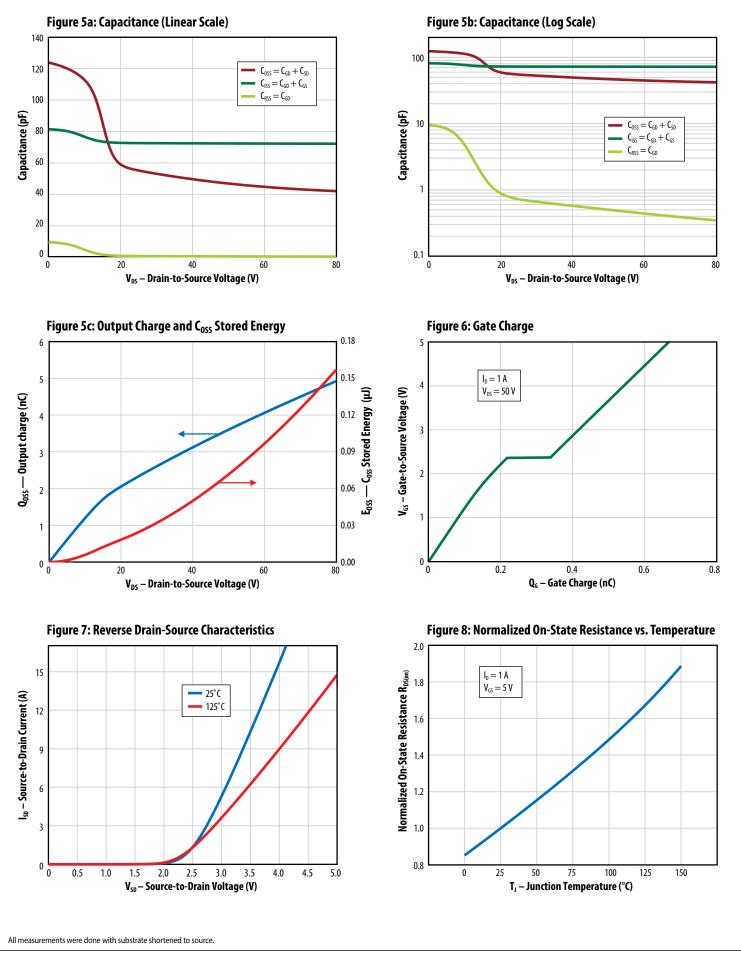
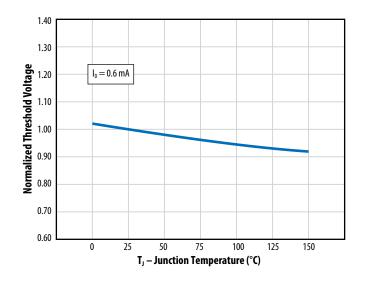
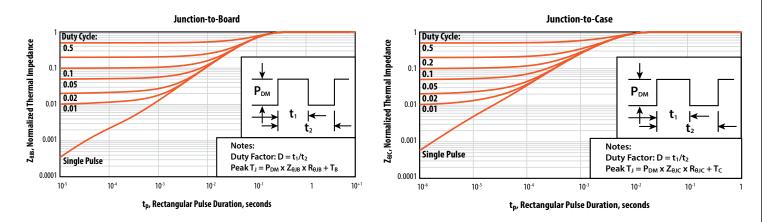
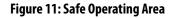


Figure 2: Transfer Characteristics







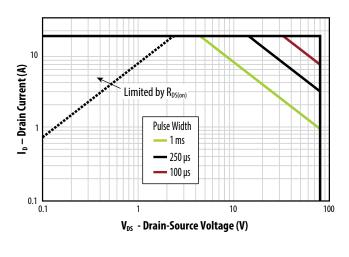
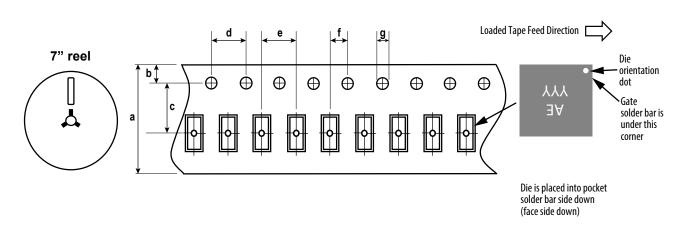
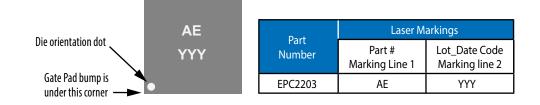

Figure 9: Normalized Threshold Voltage vs. Temperature

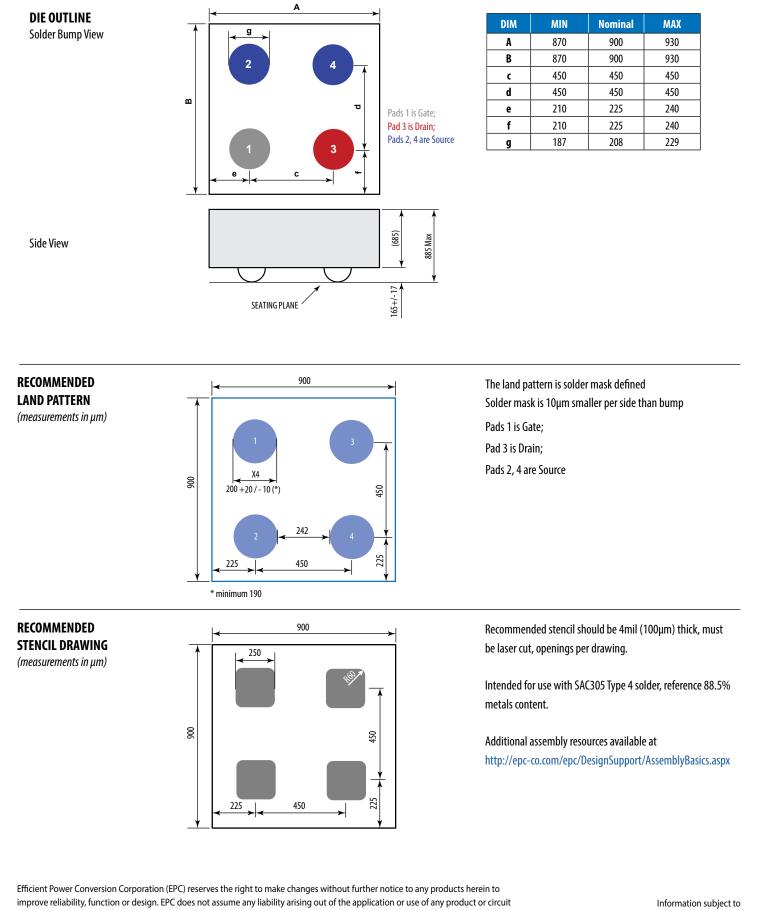
Figure 10: Transient Thermal Response Curves



4

TAPE AND REEL CONFIGURATION


4mm pitch, 8mm wide tape on 7" reel


	EPC2203 (note 1)			
Dimension (mm)	target	min	max	
а	8.00	7.90	8.30	
b	1.75	1.65	1.85	
c (see note)	3.50	3.45	3.55	
d	4.00	3.90	4.10	
е	4.00	3.90	4.10	
f (see note)	2.00	1.95	2.05	
g	1.5	1.5	1.6	

Note 1: MSL 1 (moisture sensitivity level 1) classified according to IPC/JEDEC industry standard. Note 2: Pocket position is relative to the sprocket hole measured as true position of the pocket, not the pocket hole.

DIE MARKINGS

EPC2203

described herein; neither does it convey any license under its patent rights, nor the rights of others.

eGaN[®] is a registered trademark of Efficient Power Conversion Corporation. EPC Patent Listing: epc-co.com/epc/AboutEPC/Patents.aspx Information subject to change without notice. Revised April, 2018