

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

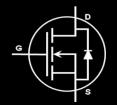
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

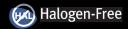
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

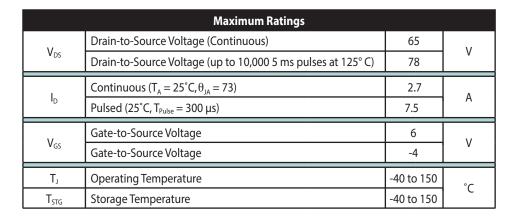
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



EPC8009 – Enhancement Mode Power Transistor


 \overline{V}_{DS} , 65 \overline{V} $R_{DS(ON)}$, 130 $m\Omega$ I_D , 2.7 A

New Produc



Gallium Nitride is grown on Silicon Wafers and processed using standard CMOS equipment leveraging the infrastructure that has been developed over the last 55 years. GaN's exceptionally high electron mobility and low temperature coefficient allows very low $R_{\text{DS(ON)}}$, while its lateral device structure and majority carrier diode provide exceptionally low Q_{G} and zero Q_{RR} . The end result is a device that can handle tasks where very high switching frequency, and low on-time are beneficial as well as those where on-state losses dominate.

EPC8009 eGaN FETs are supplied only in passivated die form with solder bars

Applications

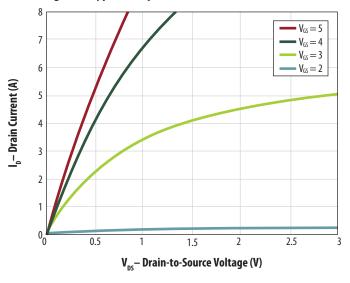
- Ultra High Speed DC-DC Conversion
- RF Envelope Tracking
- Wireless Power Transfer
- Game Console and Industrial Movement Sensing (LiDAR)

Benefits

- Ultra High Efficiency
- Ultra Low R_{DS(on)}
- Ultra Low Q_{G}
- Ultra Small Footprint

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT	
Static Character	Static Characteristics (T _J = 25°C unless otherwise stated)						
BV _{DSS}	Drain-to-Source Voltage	$V_{GS} = 0 \text{ V, } I_D = 125 \mu\text{A}$	65			V	
I _{DSS}	Drain Source Leakage	$V_{GS} = 0 \text{ V}, V_{DS} = 52 \text{ V}, T = 25^{\circ}\text{C}$		50	100	μΑ	
	Gate-Source Forward Leakage	$V_{GS} = 5 V$		100	500	μΑ	
I _{GSS}	Gate-Source Reverse Leakage	$V_{GS} = -4 V$		50	100		
$V_{GS(TH)}$	Gate Threshold Voltage	$V_{GS} = V_{GS}$, $I_D = 0.25 \text{ mA}$	0.8	1.4	2.5	V	
R _{DS(ON)}	Drain-Source On Resistance	$V_{GS} = 5 \text{ V, } I_D = 0.5 \text{ A}$		90	130	mΩ	
V_{SD}	Source-Drain Forward Voltage	$I_S = 0.5 \text{ A, } V_{GS} = 0 \text{ V}$		2.2		V	

Specifications are with substrate shorted to source where applicable. \\


Thermal Characteristics				
		TYP	UNIT	
$R_{ heta JC}$	Thermal Resistance, Junction to Case	8.2	°C/W	
$R_{\scriptscriptstyle heta JB}$	Thermal Resistance, Junction to Board	16	°C/W	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient (Note 1)	82	°C/W	

Note 1: R_{uA} is determined with the device mounted on one square inch of copper pad, single layer 2 oz copper on FR4 board. See http://epc-co.com/epc/documents/product-training/Appnote_Thermal_Performance_of_eGaN_FETs.pdf for details.

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT	
Dynamic Charac	Dynamic Characteristics (T _j = 25°C unless otherwise stated)						
C _{ISS}	Input Capacitance			45	52		
C _{oss}	Output Capacitance	$V_{GS} = 0 \text{ V}, V_{DS} = 32.5 \text{ V}$		19	28	pF	
C _{RSS}	Reverse Transfer Capacitance			0.5	0.8		
R_{G}	Gate Resistance			0.3		Ω	
Q_{G}	Total Gate Charge			370	450		
Q_{GS}	Gate to Source Charge	V 22.5VI 1.A		120			
Q_{GD}	Gate to Drain Charge	$V_{DS} = 32.5 \text{ V}, I_{D} = 1 \text{ A}$		55	94	рС	
$Q_{G(TH)}$	Gate Charge at Threshold			96			
Q _{oss}	Output Charge	$V_{GS} = 0 \text{ V}, V_{DS} = 32.5 \text{ V}$		940	1400		
Q_{RR}	Source-Drain Recovery Charge			0			

Specifications are with substrate shorted to source where applicable.

Figure 1: Typical Output Characteristics at 25°C

Figure 2: Transfer Characteristics

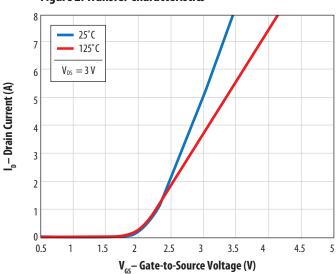


Figure 3: R $_{\mbox{\scriptsize DS(ON)}}$ vs $\mbox{\scriptsize V}_{\mbox{\scriptsize GS}}$ for Various Drain Currents

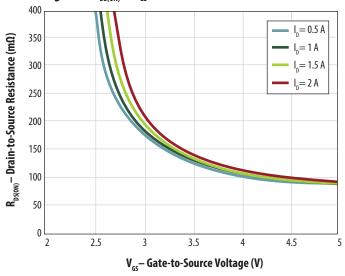
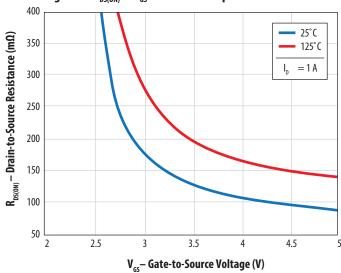



Figure 4: R $_{\text{DS(ON)}}$ vs V_{GS} for Various Temperatures

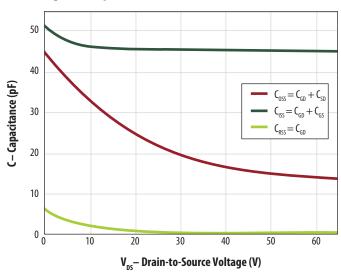


Figure 5A: Capacitance (Log Scale)

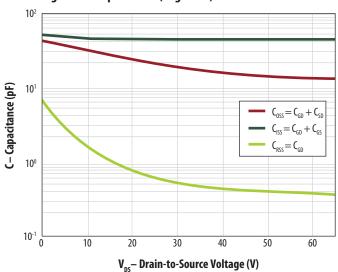


Figure 6: Gate Charge

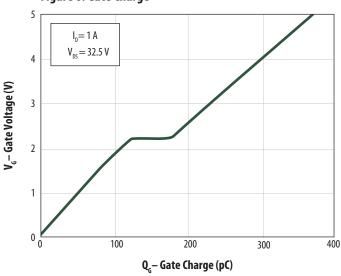


Figure 7: Reverse Drain-Source Characteristics



Figure 8: Normalized R_{DS(ON)}

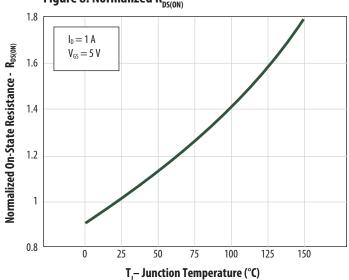


Figure 9: Normalized Threshold Voltage vs Temperature

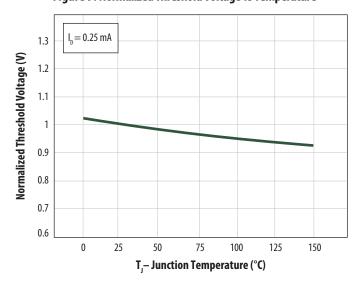
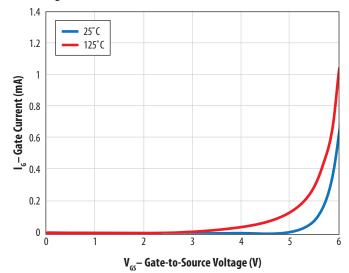
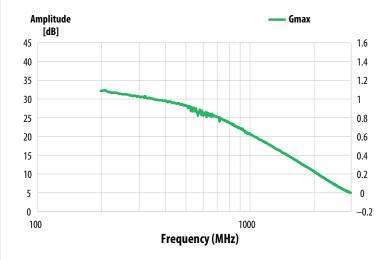
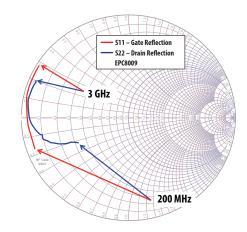




Figure 10: Gate Current

All measurements were done with substrate shortened to source.

Figure 12: Gain Chart



Frequency	Gate (Z _{GS})	Drain (Z _{DS})
[MHz]	[Ω]	[Ω]
200	1.98 – j8.58	16.83 – j11.29
500	1.87 – j2.15	10.69 – j9.69
1000	1.39 + j2.14	5.22 – j5.45
1200	1.21 + j3.56	3.53 – j3.42
1500	1.01 + j4.96	2.35 – j0.81
2000	0.83 + j7.83	1.57 + j3.52
2400	0.73 + j10.14	1.54 + j6.19
3000	0.58 + j14.27	1.84 + j10.20

S-Parameter Table - Download S-parameter files at www.epc-co.com

Figure 11: Smith Chart

S-Parameter Characteristics $V_{\text{GSQ}}=2.36\text{ V, }V_{\text{DSQ}}=30\text{ V, }I_{\text{DQ}}=0.50\text{ A}$ Pulsed Measurement, Heat-Sink Installed, $Z_0=50\,\Omega$

Figure 13: Device Reflection

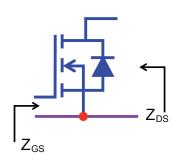
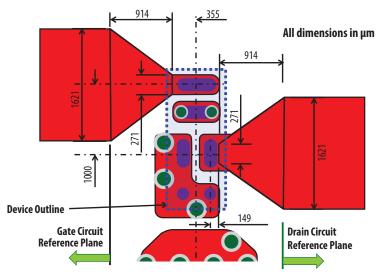
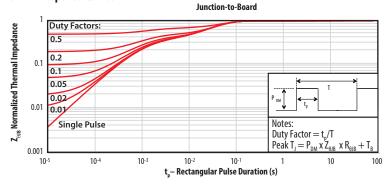




Figure 14: Taper and Reference Plane details – Device Connection

Micro-Strip design: 2-layer ½ oz (17.5 μm) thick copper 30 mil thick RO4350 substrate

Figure 15: Transient Thermal Response Curves

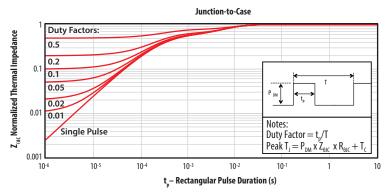
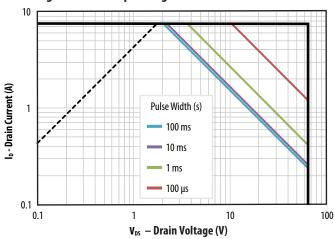
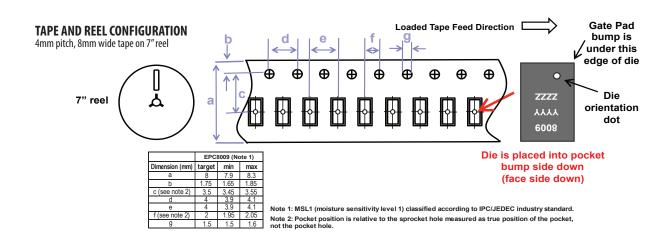
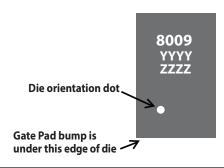
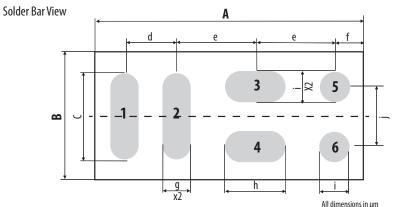





Figure 16: Safe Operating Area

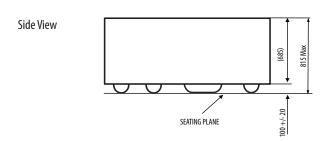


DIE MARKINGS

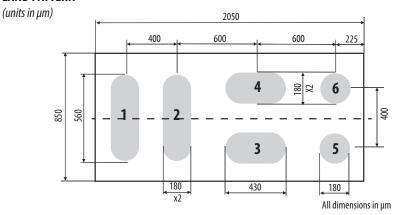
Part Number		Laser Markings	
	Part # Marking Line 1	Lot_Date Code Marking line 2	Lot_Date Code Marking Line 3
EPC8009	8009	YYYY	ZZZZ

DIE OUTLINE

Dim	Micrometers				
	Min	Nominal	Max		
Α	2020	2050	2080		
В	820	850	880		
С	555	580	605		
D	400	400	400		
E	600	600	600		
F	200	225	250		
G	175	200	225		
Н	425	450	475		
I	175	200	225		
J	400	400	400		


Pad no. 1 is Gate

Pad no. 2 is Source Return for Gate Driver


Pad no. 3 and 5 are Source

Pad no. 4 is Drain

Pad no. 6 is Substrate

RECOMMENDED LAND PATTERN

Pad no. 1 is Gate

Pad no. 2 is Source Return for Gate Driver

Pad no. 3 and 5 are Source

Pad no. 4 is Drain

Pad no. 6 is Substrate

The land pattern is solder mask defined. Solder mask opening is 10 µm smaller per side than bump.

Additional assembly resources available at:

http://epc-co.com/epc/DesignSupport/AssemblyBasics.aspx

Efficient Power Conversion Corporation (EPC) reserves the right to make changes without further notice to any products herein to improve reliability, function or design. EPC does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

 $eGaN^{\circ}$ is a registered trademark of Efficient Power Conversion Corporation.

U.S. Patents 8,350,294; 8,404,508; 8,431,960; 8,436,398; 8,785,974; 8,890,168; 8,969,918; 8,853,749; 8,823,012

Information subject to change without notice.

Revised June, 2015