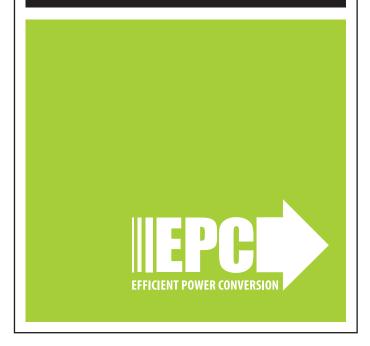
imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!


Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Development Board EPC9017 Quick Start Guide

100 V Half-Bridge with Gate Drive, Using EPC2001

DESCRIPTION

The EPC9017 development board features the 100 V EPC2001 enhancement mode (*eGaN*[®]) field effect transistor (FET) operating up to a 20 A maximum output current in a half bridge configuration with onboard gate drives. The purpose of this development board is to simplify the evaluation process of the EPC2001 *eGaN FET* by including all the critical components on a single board that can be easily connected into any existing converter.

The EPC9017 development board is 2" x 1.5" and features three EPC2001 eGaN FETs in a half bridge configuration using the Texas Instruments LM5113 gate driver. The half bridge configuration

contains a single top side device and two parallel bottom devices and is recommended for high current, **lower duty cycle** applications. The board contains all critical components and the printed circuit board (PCB) layout is designed for optimal switching performance. There are also various probe points to facilitate simple waveform measurement and evaluate *eGaN FET* efficiency. A complete block diagram of the circuit is given in Figure 1.

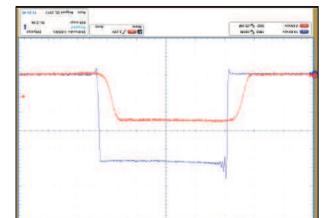
For more information on the EPC2001s *eGaN FET* please refer to the datasheet available from EPC at www.epc-co.com. The datasheet should be read in conjunction with this quick start guide.

Table 1: Performance Summary (TA = 25°C)							
SYMBOL	PARAMETER	CONDITIONS	MIN	MAX	UNITS		
V_{DD}	Gate Drive Input Supply Range		7	12	V		
V _{IN}	Bus Input Voltage Range			70*	V		
V _{OUT}	Switch Node Output Voltage			100	V		
I _{OUT}	Switch Node Output Current			20*	A		
V _{PWM}	PWM Logic Input Voltage Threshold	Input 'High'	3.5	6	V		
		Input'Low'	0	1.5	V		
	Minimum 'High' State Input Pulse Width	V _{PWM} rise and fall time < 10ns	60		ns		
	Minimum 'Low' State Input Pulse Width	V _{PWM} rise and fall time < 10ns	200 #		ns		

* Assumes lower duty cycle inductive load, maximum current depends on die temperature – actual maximum current with be subject to switching frequency, bus voltage and thermals. # Limited by time needed to 'refresh' high side bootstrap supply voltage.

Quick Start Procedure

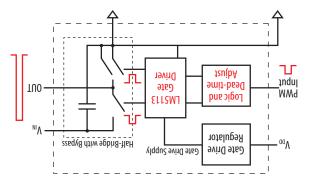
Development board EPC9017 is easy to set up to evaluate the performance of the EPC2001 eGaN FET. Refer to Figure 2 for proper connect and measurement setup and follow the procedure below:

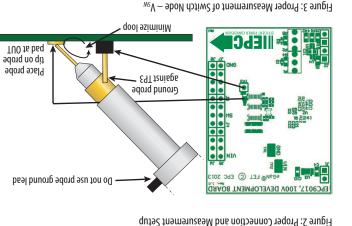

- 1. With power off, connect the input power supply bus to $+V_{IN}$ (J5, J6) and ground / return to $-V_{IN}$ (J7, J8).
- 2. With power off, connect the switch node of the half bridge OUT (J3, J4) to your circuit as required.
- 3. With power off, connect the gate drive input to $+V_{DD}$ (11, Pin-1) and ground return to $-V_{DD}$ (11, Pin-2).
- 4. With power off, connect the input PWM control signal to PWM (J2, Pin-1) and ground return to any of the remaining J2 pins.
- 5. Turn on the gate drive supply make sure the supply is between 7 V and 12 V range.
- 6. Turn on the bus voltage to the required value (do not exceed the absolute maximum voltage of 100 V on V_{00T}).
- 7. Turn on the controller / MWA input source and probe switching node to see switching operation.
- Once operational, adjust the bus voltage and load PWM control within the operating range and observe the output switching behavior, efficiency and other parameters.
- 9. For shutdown, please follow steps in reverse.

DOTE. When measuring the high frequency content switch node (OUT), care must be taken to avoid long ground leads. Measure the Switch node (OUT) by placing the oscilloscope probe tip through the large via on the switch node (designed for this purpose) and grounding the probe directly across the GND terminals provided. See Figure 3 for proper scope probe technique.

ZHERMAL CONSIDERATIONS

The EPC9017 development board showcases the EPC2001 eGaN FET. Although the electrical performance surpasses that for traditional silicon devices, their relatively smaller size does magnify the thermal management requirements. The EPC9017 is intended for bench evaluation with low ambient temperature and convection cooling. The addition of heat-sinking and forced air cooling can significantly increase the current rating of these devices, but care must be taken to not exceed the absolute maximum die temperature of 125°C.


NOTE. The EPC9017 development board does not have any current or thermal protection on board.



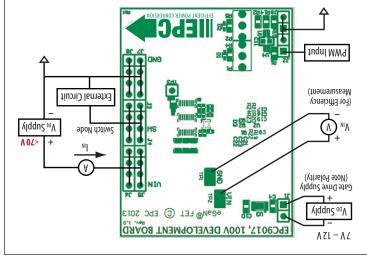

(MMAV) spetiov tudni MWA :CH2 - (WeV) spetiov shord dotive : CH2.

Figure 4: Typical Waveforms for $V_{\rm M} = 48$ V to 5 V/34 A (500 kHz) Buck converter

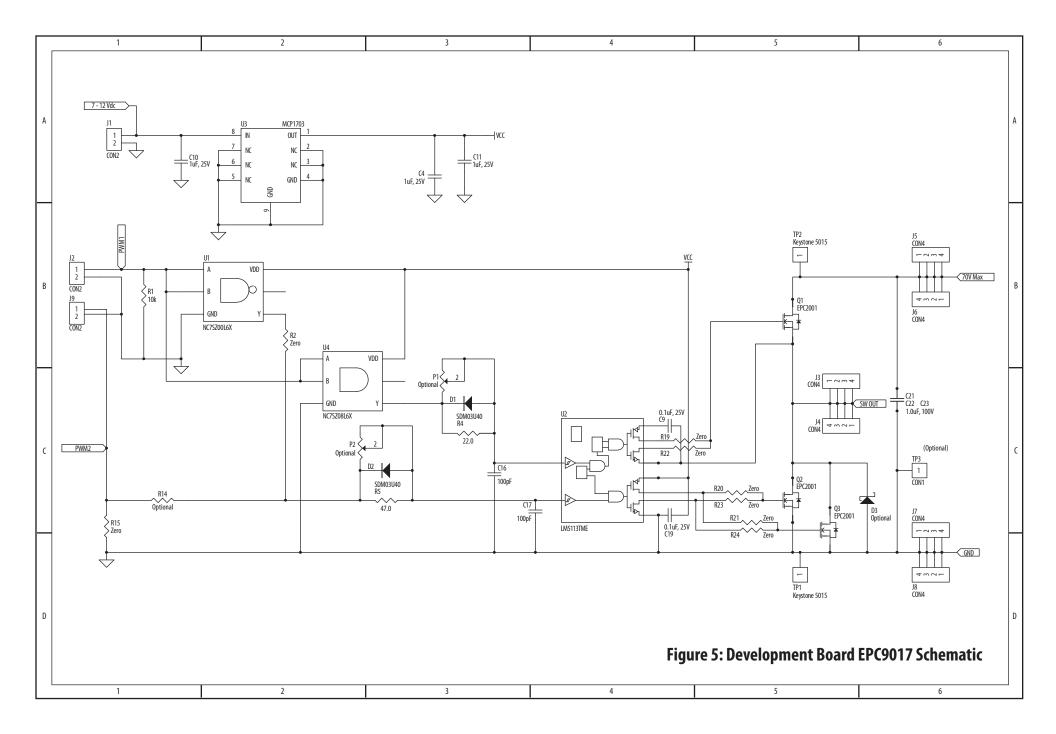

Figure 1: Block Diagram of EPC9017 Development Board

Table 2 : Bill of Material						
ltem	Qty	Reference	Part Description	Manufacturer / Part #		
1	3	C4, C10, C11,	Capacitor, 1uF, 10%, 25V, X5R	Murata, GRM188R61E105KA12D		
2	2	C16, C17	Capacitor, 100pF, 5%, 50V, NP0	Kemet, C0402C101K5GACTU		
3	2	C9, C19	Capacitor, 0.1uF, 10%, 25V, X5R	TDK, C1005X5R1E104K		
4	3	C21, C22, C23	Capacitor, 1uF, 10%, 100V, X7R	TDK, CGA4J3X7S2A105K125AE		
5	2	D1, D2	Schottky Diode, 30V	Diodes Inc., SDM03U40-7		
6	3	J1, J2, J9	Connector	2pins of Tyco, 4-103185-0		
7	1	J3, J4, J5, J6, J7, J8	Connector	FCI, 68602-224HLF		
8	3	Q1, Q2, Q3	eGaN [®] FET	EPC, EPC2001		
9	1	R1	Resistor, 10.0K, 5%, 1/8W	Stackpole, RMCF0603FT10K0		
10	2	R2, R15	Resistor, 0 Ohm, 1/8W	Stackpole, RMCF0603ZT0R00		
11	1	R4	Resistor, 22 Ohm, 1%, 1/8W	Stackpole, RMCF0603FT22R0		
12	1	R5	Resistor, 47 Ohm, 1%, 1/8W	Stackpole, RMCF0603FT47R0		
13	6	R19, R20, R21, R22, R23, R24	Resistor, 0 Ohm, 1/16W	Stackpole, RMCF0402ZT0R00		
14	2	TP1, TP2	Test Point	Keystone Elect, 5015		
15	1	TP3	Connector	1/40th of Tyco, 4-103185-0		
16	1	U1	I.C., Logic	Fairchild, NC7SZ00L6X		
17	1	U2	I.C., Gate driver	Texas Instruments, LM5113TME		
18	1	U3	I.C., Regulator	Microchip, MCP1703T-5002E/MC		
19	1	U4	I.C., Logic	Fairchild, NC7SZ08L6X		
20	0	R14	Optional Resistor			
21	0	D3	Optional Diode			
22	0	P1, P2	Optional Potentiometer			

Contact us:

www.epc-co.com

Renee Yawger WW Marketing Office: +1.908.475.5702 Mobile: +1.908.619.9678 renee.yawger@epc-co.com

Stephen Tsang Sales, Asia Mobile: +852.9408.8351 stephen.tsang@epc-co.com Bhasy Nair Global FAE Support Office: +1.972.805.8585 Mobile: +1.469.879.2424 bhasy.nair@epc-co.com

Peter Cheng FAE Support, Asia Mobile: +886.938.009.706 peter.cheng@epc-co.com

EPC Products are distributed exclusively through Digi-Key. www.digikey.com

Development Board / Demonstration Board Notification

The EPC9017 board is intended for product evaluation purposes only and is not intended for commercial use. As an evaluation tool, it is not designed for compliance with the European Union directive on electromagnetic compatibility or any other such directives or regulations.

As board builds are at times subject to product availability, it is possible that boards may contain components or assembly materials that are not RoHS compliant. Efficient Power Conversion Corporation (EPC) makes no guarantee that the purchased board is 100% RoHS compliant.

No Licenses are implied or granted under any patent right or other intellectual property whatsoever. EPC assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or any other intellectual property rights of any kind.

EPC reserves the right at any time, without notice, to change said circuitry and specifications.