imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Demonstration Board EPC9101 Quick Start Guide

EPC2014 + EPC2015 1 MHz Buck Converter

еннствите ромен соиленствии соиленствии сонствии сон

The EPC9101 demonstration board is 3" square and contains a fully closed loop buck converter. The power stage is a single sided design and is contained within 20mm x 11mm area and includes driver, eGaN FETs, bus capacitors and output inductor.

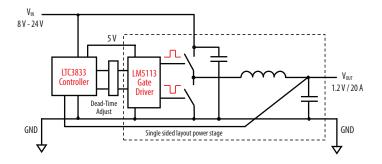
There are also various probe points to facilitate simple waveform measurement and efficiency calculation. A complete block diagram of the circuit is given in Figure 1. For more information on the EPC2014/5 eGaN FETs or LM5113 driver, please refer to the datasheet available from EPC at www.epc-co.com and www.Tl.com. These datasheets, as well that of the LT3833 controller should be read in conjunction with this quick start guide.

The EPC9101 demonstration board is a 1.2 V output, 1 MHz buck converter with an 20 A maximum output current and 8 V to 24 V input voltage range. The demonstration board features the EPC2014 and EPC2015 enhancement mode (eGaN®) field effect transistors (FETs), as well as the first eGaN FET specific integrated circuit driver – the Texas Instruments LMS113. The EPC9101 board is not intended as a reference design, but to showcase the performance that can be achieved using the eGaN FETs and eGaN driver together.

T elde1 : Performance Summary (Σ°2C)							
STINU	XAM	ЧүТ	NIW	SNOILIONO	яатамаяа 9	SYMBOL	
٨	54		8		900 hot Voltage Range	۸ ^۱	
٨		۲.۱			901 Suitch Node Output Voltage	Λ_{out}	
Α	50*				Switch Node Output Current	Ιουτ	
zНЯ		0001			γoneupan gridoticy	۴	
%		5.68		TUOI A OI = TOV IV IV IV	Peak Efficiency		
%		4.98		$12 V_{IN} = 20 A I_{OUT}$	Full Load Efficiency		
%		8.58		$24 V_{IN} = 20 \text{ A } I_{OUT}$	Full Load Efficiency الاست		

Quick Start Procedure

Demonstration board EPC9101 is easy to set up to evaluate the performance of the EPC2014 and EPC2015 *eGaN* FETs and LM5113 driver. Refer to Figure 2 for proper connect and measurement setup and follow the procedure below:


- 1. With power off, connect the input power supply bus between V_{IN} and GND banana jacks as shown.
- 2. With power off, connect the active (constant current) load as desired between V_{OUT} and GND banana jacks as shown.
- 3. Turn on the supply voltage to the required value (do not exceed the absolute maximum voltage of 24 V on V_{IN}).
- 4. Measure the output voltage to make sure the board is fully functional and operating no-load.
- 5. Turn on active load to the desired load current while staying below the maximum current (20 A)
- 6. Once operational, adjust the bus voltage and load current within the allowed operating range and observe the output switching behavior, efficiency and other parameters.
- 7. For shutdown, please follow steps in reverse.

NOTE. When measuring the high frequency content switch node of gate voltage, care must be taken to avoid long ground leads. Measure these by placing the oscilloscope probe tip on the top pad of D3 and grounding the probe directly across D3 on the bottom pad provided for switch node and using the bottom pad of R20 and the GND pad below it for gate voltage. See Figure 3 for proper scope probe technique. Measuring the switch node with a high bandwidth (\geq 500MHz) probe and high bandwidth scope (\geq 1GHz) is recommended.

NOTE. The dead-times for both the leading and trailing edges have been set for optimum full load efficiency. Adjustment is not recommended, but can be done at own risk by replacing R21 and R22 with potentiometers P1 and P2. This should be done while monitoring both the input current and switch-node voltage to determine the effect of these adjustments. Under no circumstance should the input pins to the LM5113 be probed during operation as the added probe capacitance will change the device timing.

CIRCUIT PERFORMANCE

The EPC9101 demonstration circuit was designed to showcase the size and performance that can readily be achieved at 1 MHz operation using *eGaN* FETs for supply voltages up to 24V or more. Since a closed loop controller is included on board, the associated losses must also be lumped into any efficiency measurement that is performed. It is possible to supply a separate regulated 5V supply to the EXTVCC pin to further improve efficiency. In that case, the controller and gate drive losses are still included, but the associated conversion loss from the input supply (LDO loss) is removed.

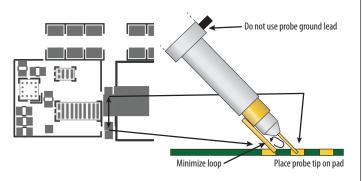


Figure 1: Block Diagram of EPC9101 Demonstration Board

Figure 3: Proper Measurement of Switch Node or Gate Voltage

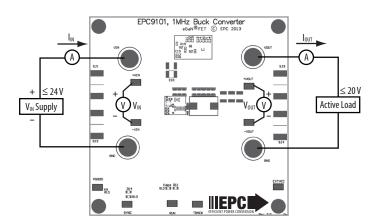


Figure 2: Proper Connection and Measurement Setup

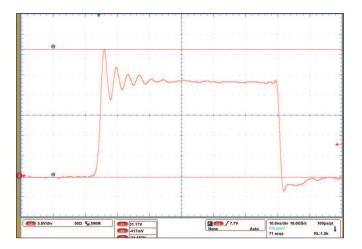


Figure 4: Typical Switch node voltage for a 24 V to 1.2 V/20 A (1 MHz) Buck converter

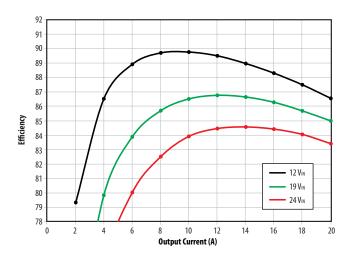
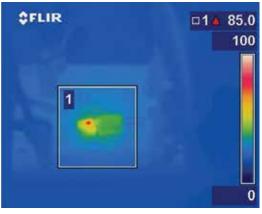


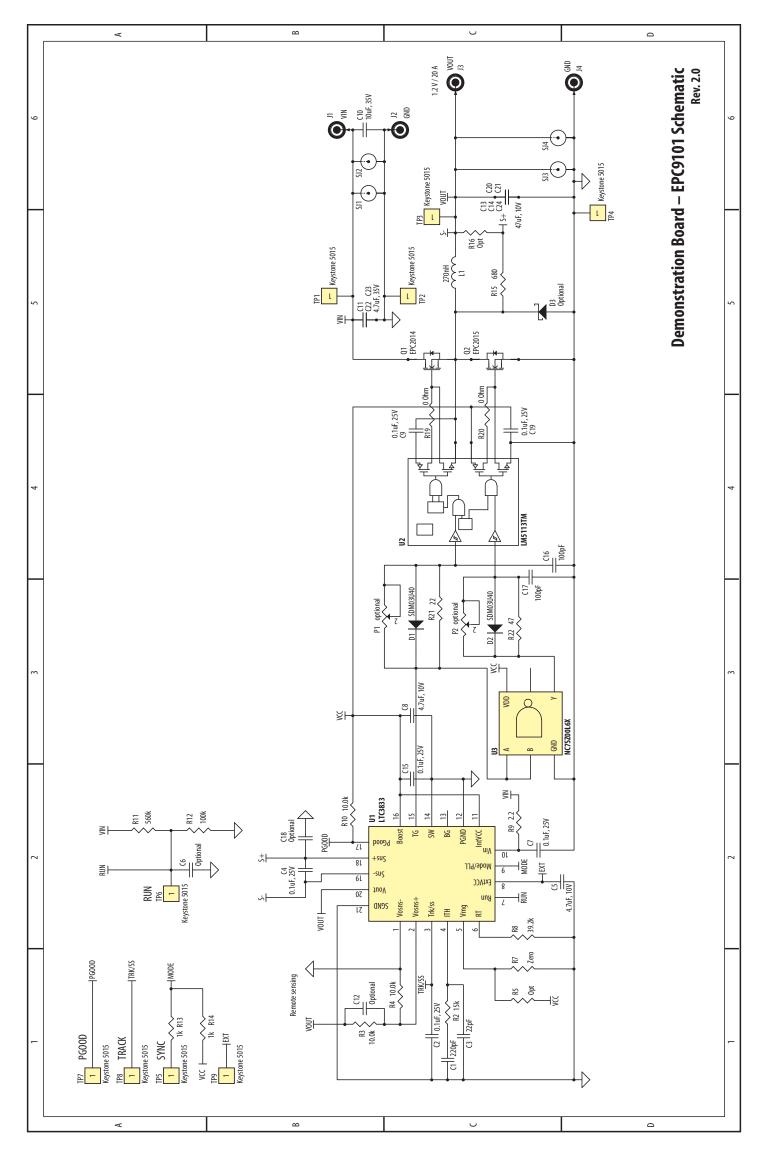

Figure 5: Typical efficiency curves for 24 V, 19 V and 12 V input including controller and LDO losses


THERMAL CONSIDERATIONS

The EPC9101 demonstration board thermal images for steady state full load operation are shown in Figure 6. The EPC9101 is intended for bench evaluation with low ambient temperature and forced air cooling for higher currents. Care must be taken to not exceed the absolute maximum die temperature of 125°C and stay within the constraints of the other components within the circuit.

NOTE. The EPC9101 demonstration board does not have any current or thermal protection on board.

12 VIN, 20 AOUT, 200LFM



24 VIN, 20 AOUT, 200LFM

Figure 6: Thermal images of EPC9101 under full load conditions

Table 2 : Bill of Material

ltem	Qty	Reference	Part Description	Manufacturer / Part #
1	1	C1	Capacitor, 220pF, 5%, 50V, NP0	Murata, GRM1885C1H221JA01D
2	1	C3	Capacitor, 22pF, 5%, 50V, NP0	Murata, GRM1885C1H220JA01D
3	6	C2, C4, C7, C9, C15, C19	Capacitor, 0.1uF, 10%, 25V, X5R	TDK, C1005X5R1E104K
4	2	C5, C8	Capacitor, 4.7uF, 10%, 10V, X5R	TDK, C1608X5R1A475K
5	1	C10	Capacitor, 10uF, 20%, 35V, X5R	Taiyo Yuden, GMK325BJ106KN
6	2	C11, C22, C23	Capacitor, 4.7uF, 10%, 35V, X7R	TDK, C2012X6S1V475K125AB
7	5	C13, C14, C20, C21, C24	Capacitor, 47uF, 20%, 10V, X5R	TDK, C2012X5R1A476M
8	2	C16, C17	Capacitor, 100pF, 5%, 50V, NP0	Kemet, C0402C101K5GACTU
9	3	D1, D2, D4	Schottky Diode, 30V	Diodes Inc., SDM03U40-7
10	4	J1, J2, J3, J4	Banana Jack	Keystone, 575-4
11	1	L1	Inductor, 270nH	Coilcraft, SLC1175-271ME
12	1	Q1	eGaN® FET	EPC, EPC2014
13	1	Q2	eGaN® FET	EPC, EPC2015
14	1	R2	Resistor, 15.0K, 1%, 1/8W	Stackpole, RMCF0603FT15K0
15	3	R3, R4, R10	Resistor, 10.0K, 1%, 1/10W	Stackpole, RMCF0603FT10K0
16	3	R7, R19, R20	Resistor, 0 Ohm, 1/16W	Stackpole, RMCF0402ZT0R00
17	1	R8	Resistor, 39.2K, 1%, 1/8W	Stackpole, RMCF0603FT39K2
18	1	R9	Resistor, 2.2 Ohm, 5%, 1/16W	Yageo, RC0402FR-072R2L
19	1	R11	Resistor, 560K, 1%, 1/8W	Stackpole, RMCF0603FT560K
20	1	R12	Resistor, 100K, 1%, 1/8W	Stackpole, RMCF0603FT100K
21	2	R13, R14	Resistor, 1.00K, 5%, 1/10W	Rohm, MCR03EZPJ102
22	1	R15	Resistor, 680 Ohm, 5%, 1/8W	Stackpole, RMCF0603FT680R
23	1	R21	Resistor, 22 Ohm, 5%, 1/8W	Stackpole, RMCF0603JT22R0
24	1	R22	Resistor, 47 Ohm, 5%, 1/8W	Stackpole, RMCF0603JT47R0
25	9	TP1, TP2, TP3, TP4, TP5, TP6, TP7, TP8, TP9	Measurement Point	Keystone Elect, 5015
26	1	U1	I.C., Buck Regulator	Linear Technology, LTC3833EUDC#PBF
27	1	U2	I.C., Gate driver	Texas Instruments, LM5113
28	1	U3	I.C., Logic	Fairchild, NC7SZ00L6X
29	4		Nylon Stand-offs	Keystone, 8834
30	0	R5, R16	Optional Resistors	
31	0	C6, C12, C18	Optional Capacitors	
32	0	D3	Optional Diode	
33	0	P1, P2	Potentiometer, 500 Ohm, 0.25W	Murata, PV37Y501C01B00
34	0	SJ1, SJ2, SJ3, SJ4	Optional SMA Connectors	

:su totatuo)

moo.oo-oq9.www

Renee Yawger WW Marketing Office: +1,908.619.5702 Mobile: +1,908.619.9678 renee.yawger@epc-co.com

Jtephen Tsang Sales, Asia Sales, Asia Sessong@epc-co.com Sessong@epcero.com

EFFICIENT POWER CONVERSION

peter.cheng@epc-co.com

moɔ.oɔ-ɔq<u>@</u>mien.yzend

4242.978.934.1+:9lidoM

2828.208.279.1+ :90ff0

Troqqu2 3A7 Isdol

FAE Support, Asia

Peter Cheng

Bhasy Nair

007.000.850.388+ :9lidoM

EPC Products are distributed exclusively through Digi-Key. **www.digikey.com**

Demonstration Board Notification

The PCPOID table this indicated by product values appropriate product of product and the son of table of transforms on boy it is not indicated by compare values of transforms and the product value product values of transforms of the product value product values of the product values of

EPC reserves the right at any time, without notice, to change said circuitry and specifications.