mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

C51014-5.1

Datasheet

This datasheet describes serial configuration (EPCS) devices.

Supported Devices

Table 1 lists the supported Altera[®] EPCS devices.

Device	Memory Size (bits)	On-Chip Decompression Support	ISP Support	Cascading Support	Reprogrammable	Recommended Operating Voltage (V)
EPCS1	1,048,576	No	Yes	No	Yes	3.3
EPCS4	4,194,304	No	Yes	No	Yes	3.3
EPCS16	16,777,216	No	Yes	No	Yes	3.3
EPCS64	67,108,864	No	Yes	No	Yes	3.3
EPCS128	134,217,728	No	Yes	No	Yes	3.3

Table 1. Altera EPCS Devices

•••

• For more information about programming EPCS devices using the Altera Programming Unit (APU) or Master Programming Unit (MPU), refer to the *Altera Programming Hardware Datasheet*.

The EPCS device can be re-programmed in system with ByteBlaster[™] II download cable or an external microprocessor using SRunner. For more information, refer to *AN418: SRunner: An Embedded Solution for Serial Configuration Device Programming.*

Features

EPCS devices offer the following features:

- Supports active serial (AS) x1 configuration scheme
- Easy-to-use four-pin interface
- Low cost, low pin count, and non-volatile memory
- Low current during configuration and near-zero standby mode current
- 2.7-V to 3.6-V operation
- EPCS1, EPCS4, and EPCS16 devices available in 8-pin small-outline integrated circuit (SOIC) package
- EPCS64 and EPCS128 devices available in 16-pin SOIC package

© 2014 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

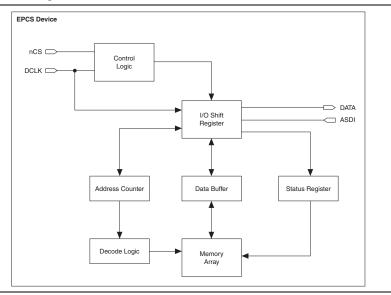
- Enables the Nios[®] processor to access unused flash memory through AS memory interface
- Reprogrammable memory with more than 100,000 erase or program cycles
- Write protection support for memory sectors using status register bits
- In-system programming (ISP) support with SRunner software driver
- ISP support with USB-Blaster[™], EthernetBlaster, or ByteBlaster II download cables
- Additional programming support with the APU and programming hardware from BP Microsystems, System General, and other vendors
- By default, the memory array is erased and the bits are set to 1

Functional Description

To configure a system using an SRAM-based device, each time you power on the device, you must load the configuration data. The EPCS device is a flash memory device that can store configuration data that you use for FPGA configuration purpose after power on. You can use the EPCS device on all FPGA that support AS x1 configuration scheme.

For an 8-pin SOIC package, you can migrate vertically from the EPCS1 device to the EPCS4 or EPCS16 device. For a 16-pin SOIC package, you can migrate vertically from the EPCS64 device to the EPCS128 device.

With the new data decompression feature supported, you can determine using which EPCS device to store the configuration data for configuring your FPGA.


Example 1 shows how you can calculate the compression ratio to determine which EPCS device is suitable for the FPGA.

Example 1. Compression Ratio Calculation

```
EP4SGX530 = 189,000,000 bits
EPCS128 = 134,217,728 bits
Preliminary data indicates that compression typically reduces the
configuration bitstream size by 35% to 55%. Assume worst case that is 35%
decompression.
189,000,000 bits x 0.65 = 122,850,000 bits
The EPCS128 device is suitable.
```

• For more information about the FPGA decompression feature, refer to the configuration chapter in the appropriate device handbook.

Figure 1. EPCS Device Block Diagram

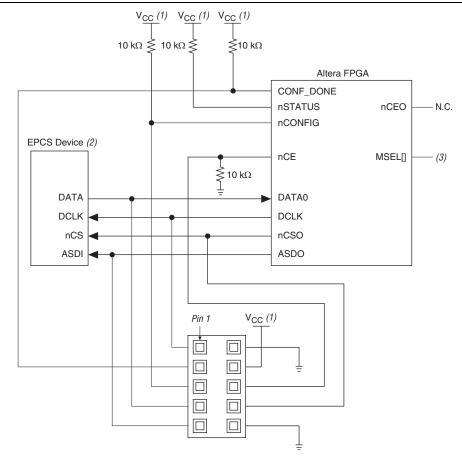
Accessing Memory in EPCS Devices

You can access the unused memory locations of the EPCS device to store or retrieve data through the Nios processor and SOPC Builder. SOPC Builder is an Altera tool for creating bus-based (especially microprocessor-based) systems in Altera devices. SOPC Builder assembles library components such as processors and memories into custom microprocessor systems.

SOPC Builder includes the EPCS device controller core, which is an interface core designed specifically to work with the EPCS device. With this core, you can create a system with a Nios embedded processor that allows software access to any memory location within the EPCS device.

Active Serial FPGA Configuration

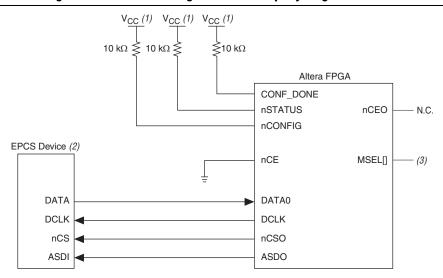
The following Altera FPGAs support the AS configuration scheme with EPCS devices:


- Arria[®] series
- Cyclone[®] series
- All device families in the Stratix[®] series except the Stratix device family

There are four signals on the EPCS device that interface directly with the FPGA's control signals. The EPCS device signals are DATA, DCLK, ASDI, and nCS interface with the DATA0, DCLK, ASDO, and nCSO control signals on the FPGA, respectively.

For more information about the EPCS device pin description, refer to Table 23 on page 36.

Figure 2 shows the configuration of an FPGA device in the AS configuration scheme with an EPCS device using a download cable.



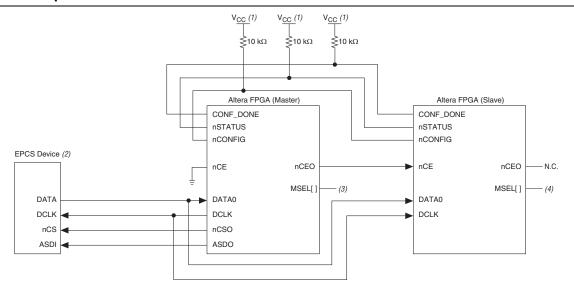
Notes to Figure 2:

- (1) For more information about the V_{CC} value, refer to the configuration chapter in the appropriate device handbook.
- (2) EPCS devices cannot be cascaded.
- (3) Connect the MSEL [] input pins to select the AS configuration mode. For more information, refer to the configuration chapter in the appropriate device handbook.
- (4) For more information about configuration pin I/O requirements in an AS configuration scheme for an Altera FPGA, refer to the configuration chapter in the appropriate device handbook.

Notes to Figure 3:

- (1) For more information about the V_{CC} value, refer to the configuration chapter in the appropriate device handbook.
- (2) EPCS devices cannot be cascaded.
- (3) Connect the MSEL[] input pins to select the AS configuration mode. For more information, refer to the configuration chapter in the appropriate device handbook.
- (4) For more information about configuration pin I/O requirements in an AS configuration scheme for an Altera FPGA, refer to the configuration chapter in the appropriate device handbook.

In an AS configuration, the FPGA acts as the configuration master in the configuration flow and provides the clock to the EPCS device. The FPGA enables the EPCS device by pulling the nCS signal low using the nCSO signal as shown in Figure 2 and Figure 3. Then, the FPGA sends the instructions and addresses to the EPCS device using the ASDO signal. The EPCS device responds to the instructions by sending the configuration data to the FPGA's DATAO pin on the falling edge of DCLK. The data is latched into the FPGA on the next DCLK signal's falling edge.


Before the FPGA enters configuration mode, ensure that V_{CC} of the EPCS device is ready. If V_{CC} is not ready, you must hold nCONFIG low until all power rails of EPCS device are ready.

The FPGA controls the nSTATUS and CONF_DONE pins during configuration in the AS mode. If the CONF_DONE signal does not go high at the end of configuration, or if the signal goes high too early, the FPGA pulses its nSTATUS pin low to start a reconfiguration. If the configuration is successful, the FPGA releases the CONF_DONE pin, allowing the external 10-k Ω resistor to pull the CONF_DONE signal high. The FPGA initialization begins after the CONF_DONE pin goes high. After the initialization, the FPGA enters user mode.

For more information about configuring the FPGAs in AS configuration mode or other configuration modes, refer to the configuration chapter in the appropriate device handbook. You can configure multiple devices with a single EPCS device. However, you cannot cascade EPCS devices. To ensure that the programming file size of the cascaded FPGAs does not exceed the capacity of an EPCS device, refer to Table 1 on page 1.

Figure 4 shows the AS configuration scheme with multiple FPGAs in the chain. The first FPGA is the configuration master and its MSEL[] pins are set to AS mode. The following FPGAs are configuration slave devices and their MSEL[] pins are set to PS mode.

Figure 4. Multiple Devices in AS Mode (1), (5)

Notes to Figure 4:

- (1) For more information about the V_{CC} value, refer to the configuration chapter in the appropriate device handbook.
- (2) EPCS devices cannot be cascaded.
- (3) Connect the MSEL[] input pins to select the AS configuration mode. For more information, refer to the configuration chapter in the appropriate device handbook.
- (4) Connect the MSEL[] input pins to select the PS configuration mode. For more information, refer to the configuration chapter in the appropriate device handbook.
- (5) For more information about configuration pin I/O requirements in an AS configuration scheme for an Altera FPGA, refer to the configuration chapter in the appropriate device handbook.

EPCS Device Memory Access

This section describes the memory array organization and operation codes of the EPCS device. For the timing specifications, refer to "Timing Information" on page 29.

Memory Array Organization

Table 2 lists the memory array organization details in EPCS128, EPCS64, EPCS16, EPCS4, and EPCS1 devices.

		I CO DOTIDOS			
Details	EPCS128	EPCS64	EPCS16	EPCS4	EPCS1
Bytes	16,777,216 bytes (128 Mb)	8,388,608 bytes (64 Mb)	2,097,152 bytes (16 Mb)	524,288 bytes (4 Mb)	131,072 bytes (1 Mb)
Number of sectors	64	128	32	8	4
Bytes per sector	262,144 bytes (2 Mb)	65,536 bytes (512 Kb)	65,536 bytes (512 Kb)	65,536 bytes (512 Kb)	32,768 bytes (256 Kb)
Pages per sector	1,024	256	256	256	128
Total number of pages	65,536	32,768	8,192	2,048	512
Bytes per page	256 bytes	256 bytes	256 bytes	256 bytes	256 bytes

Table 2. Memory Array Organization in EPCS Devices

Table 3 through Table 7 on page 12 list the address range for each sector in EPCS1, EPCS4, EPCS16, EPCS64, and EPCS128 devices.

Table 3. Address Range for Sectors in EPCS1 Devices

Sector	Address Range (byte Addresses in HEX)		
360101	Start	End	
3	H'18000	H'1FFFF	
2	H'10000	H'17FFF	
1	H'08000	H'OFFFF	
0	H'00000	H'07FFF	

Table 4. Address Range for Sectors in EPCS4 Devices

Castar	Address Range (Byte Addresses in HEX)			
Sector	Start	End		
7	H'70000	H'7FFFF		
6	H'60000	H'6FFFF		
5	Н'50000	H'5FFFF		
4	H'40000	H'4FFFF		
3	Н'30000	H'3FFFF		
2	Н'20000	H'2FFFF		
1	H'10000	H'1FFFF		
0	Н'00000	H'OFFFF		

Page 8	3
--------	---

Ocator	Address Range (Byte Addresses in HEX)		
Sector	Start	End	
31	H'1F0000	H'1FFFFF	
30	H'1E0000	H'1EFFFF	
29	H'1D0000	H'1DFFFF	
28	H'1C0000	H'1CFFFF	
27	H'1B0000	H'1BFFFF	
26	H'1A0000	H'1AFFFF	
25	H'190000	H'19FFFF	
24	H'180000	H'18FFFF	
23	H'170000	H'17FFFF	
22	H'160000	H'16FFFF	
21	H'150000	H'15FFFF	
20	H'140000	H'14FFFF	
19	H'130000	H'13FFFF	
18	H'120000	H'12FFFF	
17	H'110000	H'11FFFF	
16	H'100000	H'10FFFF	
15	H'0F0000	H'OFFFFF	
14	H'0E0000	H'OEFFFF	
13	H'0D0000	H'ODFFFF	
12	H'0C0000	H'OCFFFF	
11	H'0B0000	H'OBFFFF	
10	H'0A0000	H'OAFFFF	
9	H'090000	H'09FFFF	
8	H'080000	H'08FFFF	
7	H'070000	H'07FFFF	
6	H'060000	H'06FFFF	
5	H'050000	H'05FFFF	
4	H'040000	H'04FFFF	
3	H'030000	H'03FFFF	
2	H'020000	H'02FFFF	
1	H'010000	H'01FFFF	
0	H'000000	H'OOFFFF	

Table 5. Address Range for Sectors in EPCS16 Devices

Contor	Address Range (Byte Addresses in HEX)		
Sector	Start	End	
127	H'7F0000	H'7FFFF	
126	H'7E0000	H'7EFFF	
125	H'7D0000	H'7DFFFF	
124	Н'7С0000	H'7CFFFF	
123	H'7B0000	H'7BFFFF	
122	H'7A0000	H'7AFFFF	
121	H'790000	H'79FFFF	
120	H'780000	H'78FFFF	
119	H'770000	H'77FFFF	
118	H'760000	H'76FFFF	
117	H'750000	H'75FFFF	
116	H'740000	H'74FFFF	
115	H'730000	H'73FFFF	
114	H'720000	H'72FFFF	
113	H'710000	H'71FFFF	
112	H'700000	H'70FFFF	
111	H'6F0000	H'6FFFF	
110	H'6E0000	H'6EFFFF	
109	H'6D0000	H'6DFFFF	
108	Н'6С0000	H'6CFFFF	
107	H'6B0000	H'6BFFFF	
106	H'6A0000	H'6AFFFF	
105	H'690000	H'69FFFF	
104	H'680000	H'68FFFF	
103	H'670000	H'67FFFF	
102	H'660000	H'66FFFF	
101	H'650000	H'65FFFF	
100	H'640000	H'64FFFF	
99	H'630000	H'63FFFF	
98	H'620000	H'62FFFF	
97	H'610000	H'61FFFF	
96	H'600000	H'60FFFF	
95	H'5F0000	H'5FFFF	
94	H'5E0000	H'5EFFFF	
93	H'5D0000	H'5DFFFF	
92	H'5C0000	H'5CFFFF	
91	H'5B0000	H'5BFFFF	
90	H'5A0000	H'5AFFFF	

Table 6. Address Range for Sectors in EPCS64 Devices (Part 1 of 4)

Castar	Address Range (Byte Addresses in HEX)		
Sector	Start	End	
89	H'590000	H'59FFFF	
88	H'580000	H'58FFFF	
87	H'570000	H'57FFFF	
86	H'560000	H'56FFFF	
85	H'550000	H'55FFFF	
84	H'540000	H'54FFFF	
83	H'530000	H'53FFFF	
82	H'520000	H'52FFFF	
81	H'510000	H'51FFFF	
80	H'500000	H'50FFFF	
79	H'4F0000	H'4FFFF	
78	H'4E0000	H'4EFFFF	
77	H'4D0000	H'4DFFFF	
76	H'4C0000	H'4CFFFF	
75	H'4B0000	H'4BFFFF	
74	H'4A0000	H'4AFFFF	
73	H'490000	H'49FFFF	
72	H'480000	H'48FFFF	
71	H'470000	H'47FFFF	
70	H'460000	H'46FFFF	
69	H'450000	H'45FFFF	
68	H'440000	H'44FFFF	
67	H'430000	H'43FFFF	
66	H'420000	H'42FFFF	
65	H'410000	H'41FFFF	
64	H'400000	H'40FFFF	
63	H'3F0000	H'3FFFFF	
62	H'3E0000	H'3EFFFF	
61	H'3D0000	H'3DFFFF	
60	H'3C0000	H'3CFFFF	
59	H'3B0000	H'3BFFFF	
58	H'3A0000	H'3AFFFF	
57	Н'390000	H'39FFFF	
56	H'380000	H'38FFFF	
55	H'370000	H'37FFFF	
54	Н'360000	H'36FFFF	
53	Н'350000	H'35FFFF	
52	H'340000	H'34FFFF	

Table 6. Address Range for Sectors in EPCS64 Devices (Part 2 of 4)

Saatar	Address Range (Byte Addresses in HEX)		
Sector	Start	End	
51	Н'330000	H'33FFFF	
50	H'320000	H'32FFFF	
49	H'310000	H'31FFFF	
48	H'300000	H'30FFFF	
47	H'2F0000	H'2FFFF	
46	H'2E0000	H'2EFFFF	
45	H'2D0000	H'2DFFFF	
44	H'2C0000	H'2CFFFF	
43	H'2B0000	H'2BFFFF	
42	H'2A0000	H'2AFFFF	
41	H'290000	H'29FFFF	
40	H'280000	H'28FFFF	
39	H'270000	H'27FFFF	
38	H'260000	H'26FFFF	
37	H'250000	H'25FFFF	
36	H'240000	H'24FFFF	
35	H'230000	H'23FFFF	
34	H'220000	H'22FFFF	
33	H'210000	H'21FFFF	
32	H'200000	H'20FFFF	
31	H'1F0000	H'1FFFF	
30	H'1E0000	H'1EFFFF	
29	H'1D0000	H'1DFFFF	
28	H'1C0000	H'1CFFFF	
27	H'1B0000	H'1BFFFF	
26	H'1A0000	H'1AFFFF	
25	H'190000	H'19FFFF	
24	H'180000	H'18FFFF	
23	H'170000	H'17FFFF	
22	H'160000	H'16FFFF	
21	H'150000	H'15FFFF	
20	H'140000	H'14FFFF	
19	H'130000	H'13FFFF	
18	H'120000	H'12FFFF	
17	H'110000	H'11FFFF	
16	H'100000	H'10FFFF	
15	H'0F0000	H'OFFFF	
14	H'0E0000	H'OEFFFF	

Table 6. Address Range for Sectors in EPCS64 Devices (Part 3 of 4)

0- star	Address Range (Byte Addresses in HEX)		
Sector	Start	End	
13	H'0D0000	H'ODFFFF	
12	H'0C0000	H'OCFFFF	
11	H'0B0000	H'OBFFFF	
10	H'0A0000	H'OAFFFF	
9	H'090000	H'09FFFF	
8	H'080000	H'08FFFF	
7	H'070000	H'07FFFF	
6	H'060000	H'06FFFF	
5	H'050000	H'05FFFF	
4	H'040000	H'04FFFF	
3	H'030000	H'03FFFF	
2	H'020000	H'02FFFF	
1	H'010000	H'01FFFF	
0	H'000000	H'OOFFFF	

Table 6. Address Range for Sectors in EPCS64 Devices (Part 4 of 4)

Table 7. Address Range for Sectors in EPCS128 Devices (Part 1 of 3)

	Address Range (Byte Addresses in HEX)			
Sector	Start	End		
63	H'FC0000	H'FFFFFF		
62	H'F80000	H'FBFFFF		
61	H'F40000	H'F7FFFF		
60	H'F00000	H'F3FFFF		
59	H'EC0000	H'EFFFFF		
58	H'E80000	H'EBFFFF		
57	H'E40000	H'E7FFFF		
56	H'E00000	H'E3FFFF		
55	H'DC0000	H'DFFFFF		
54	H'D80000	H'DBFFFF		
53	H'D40000	H'D7FFFF		
52	H'D00000	H'D3FFFF		
51	H'CC0000	H ' CFFFFF		
50	H'C80000	H ' CBFFFF		
49	H'C40000	H'C7FFFF		
48	H'C00000	H'C3FFFF		
47	H'BC0000	H'BFFFFF		
46	H'B80000	H'BBFFFF		
45	H'B40000	H'B7FFFF		
44	H'B00000	H'B3FFFF		

Saatar	Address Range (Byte Addresses in HEX)		
Sector	Start	End	
43	H'AC0000	H'AFFFF	
42	H'A80000	H'ABFFFF	
41	H'A40000	H'A7FFFF	
40	H'A00000	H'A3FFFF	
39	Н'9С0000	H'9FFFF	
38	H'980000	H'9BFFFF	
37	H'940000	H'97FFFF	
36	H'900000	H'93FFFF	
35	H'8C0000	H'8FFFF	
34	H'880000	H'8BFFFF	
33	H'840000	H'87FFF	
32	H'800000	H'83FFFF	
31	H'7C0000	H'7FFFF	
30	H'780000	H'7BFFFF	
29	H'740000	H'77FFF	
28	H'700000	H'73FFFF	
27	H'6C0000	H'6FFFF	
26	H'680000	H'6BFFFF	
25	H'640000	H'67FFF	
24	Н'600000	H'63FFFF	
23	H'5C0000	H'5FFFF	
22	H'580000	H'5BFFFF	
21	H'540000	H'57FFFF	
20	H'500000	H'53FFFF	
19	H'4C0000	H'4FFFF	
18	H'480000	H'4BFFFF	
17	H'440000	H'47FFFF	
16	H'400000	H'43FFFF	
15	H'3C0000	H'3FFFF	
14	H'380000	H'3BFFFF	
13	H'340000	H'37FFFF	
12	H'300000	H'33FFFF	
11	H'2C0000	H'2FFFF	
10	H'280000	H'2BFFFF	
9	H'240000	H'27FFFF	
8	H'200000	H'23FFFF	
7	H'1C0000	H'1FFFF	
6	H'180000	H'1BFFFF	

Table 7. Address Range for Sectors in EPCS128 Devices (Part 2 of 3)

Sector	Address Range (Byte Addresses in HEX)		
Sector	Start	End	
5	H'140000	H'17FFFF	
4	H'100000	H'13FFFF	
3	H'0C0000	H'OFFFFF	
2	H'080000	H'OBFFFF	
1	H'040000	H'07FFFF	
0	H'00000	H'03FFFF	

Table 7. Address Range for Sectors in EPCS128 Devices (Part 3 of 3)

Operation Codes

This section describes the operations that you can use to access the memory in EPCS devices. Use the DATA, DCLK, ASDI, and nCS signals to access the memory in EPCS devices. When performing the operation, addresses and data are shifted in and out of the device serially, with MSB first.

The device samples the AS data input on the first rising edge of the DCLK after the active low chip select (nCS) input signal is driven low. Shift the operation code, with MSB first, into the EPCS device serially through the AS data input (ASDI) pin. Each operation code bit is latched into the EPCS device on the rising edge of the DCLK.

Different operations require a different sequence of inputs. While executing an operation, you must shift in the desired operation code, followed by the address bytes or data bytes, both address and data bytes, or none of them. The device must drive nCS pin high after the last bit of the operation sequence is shifted in. Table 8 lists the operation sequence for every operation supported by the EPCS devices.

For read operations, the data read is shifted out on the DATA pin. You can drive the nCS pin high after any bit of the data-out sequence is shifted out.

For write and erase operations, drive the nCS pin high at a byte boundary that is in a multiple of eight clock pulses. Otherwise, the operation is rejected and not executed.

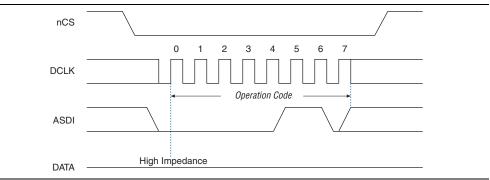
All attempts to access the memory contents while a write or erase cycle is in progress are rejected, and the write or erase cycle will continue unaffected.

Operation	Operation Code ⁽¹⁾	Address Bytes	Dummy Bytes	Data Bytes	DCLK f _{max} (MHz)
Write enable	0000 0110	0	0	0	25
Write disable	0000 0100	0	0	0	25
Read status	0000 0101	0	0	1 to infinite ⁽²⁾	32
Read bytes	0000 0011	3	0	1 to infinite ⁽²⁾	20
Read silicon ID (4)	1010 1011	0	3	1 to infinite ⁽²⁾	32
Fast read	0000 1011	3	1	1 to infinite ⁽²⁾	40
Write status	0000 0001	0	0	1	25
Write bytes	0000 0010	3	0	1 to 256 ⁽³⁾	25
Erase bulk	1100 0111	0	0	0	25

 Table 8. EPCS Devices Operation Codes

Operation	Operation Code ⁽¹⁾	Address Bytes	Dummy Bytes	Data Bytes	DCLK f _{max} (MHz)
Erase sector	1101 1000	3	0	0	25
Read device identification ⁽⁵⁾	1001 1111	0	2	1 to infinite ⁽²⁾	25

Table 8. EPCS Devices Operation Codes


Notes to Table 8:

- (1) List MSB first and LSB last.
- (2) The status register, data, or silicon ID is read out at least once on the DATA pin and is continuously read out until the nCS pin is driven high.
- (3) A write bytes operation requires at least one data byte on the DATA pin. If more than 256 bytes are sent to the device, only the last 256 bytes are written to the memory.
- (4) The read silicon ID operation is available only for EPCS1, EPCS4, EPCS16, and EPCS64 devices.
- (5) The read device identification operation is available only for EPCS128 devices.

Write Enable Operation

The write enable operation code is b'0000 0110, and it lists the MSB first. The write enable operation sets the write enable latch bit, which is bit 1 in the status register. Always set the write enable latch bit before write bytes, write status, erase bulk, and erase sector operations. Figure 5 shows the instruction sequence of the write enable operation.

Figure 5. Write Enable Operation Timing Diagram

Write Disable Operation

The write disable operation code is b'0000 0100 and it lists the MSB first. The write disable operation resets the write enable latch bit, which is bit 1 in the status register. To prevent the memory from being written unintentionally, the write enable latch bit is automatically reset when implementing the write disable operation, and under the following conditions:

- Power up
- Write bytes operation completion
- Write status operation completion
- Erase bulk operation completion
- Erase sector operation completion

Figure 6 shows the instruction sequence of the write disable operation.

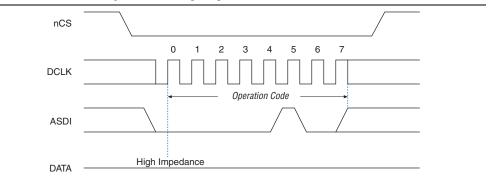
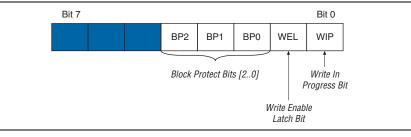
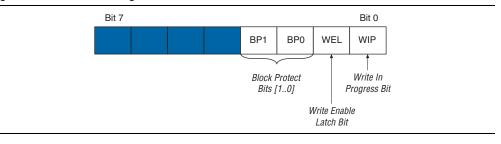



Figure 6. Write Disable Operation Timing Diagram


Read Status Operation

The read status operation code is b'0000 0101 and it lists the MSB first. You can use the read status operation to read the status register. Figure 7 and Figure 8 show the status bits in the status register of the EPCS devices.

Figure 7. EPCS128, EPCS64, EPCS16, and EPCS4 Status Register Status Bits

Figure 8. EPCS1 Status Register Status Bits

Setting the write in progress bit to 1 indicates that the EPCS device is busy with a write or erase cycle. Resetting the write in progress bit to 0 indicates no write or erase cycle is in progress.

Resetting the write enable latch bit to 0 indicates that no write or erase cycle is accepted. Set the write enable latch bit to 1 before every write bytes, write status, erase bulk, and erase sector operations.

The non-volatile block protect bits determine the area of the memory protected from being written or erased unintentionally. Table 9 through Table 13 on page 19 list the protected area in the EPCS devices with reference to the block protect bits. The erase bulk operation is only available when all the block protect bits are set to 0. When any of the block protect bits are set to 1, the relevant area is protected from being written by a write bytes operation or erased by an erase sector operation.

Status Reg	ister Content	Memory Content	
BP1 Bit	BPO Bit	Protected Area	Unprotected Area
0	0	None	All four sectors—0 to 3
0	1	Sector 3	Three sectors—0 to 2
1	0	Two sectors—2 and 3	Two sectors—0 and 1
1	1	All sectors	None

 Table 9. Block Protection Bits in the EPCS1 Device

Table 10. Block Protection Bits in the EPCS4 Device

Statu	Status Register Content		Memory Content	
BP2 Bit	BP1 Bit	BPO Bit	Protected Area	Unprotected Area
0	0	0	None	All eight sectors—0 to 7
0	0	1	Sector 7	Seven sectors—0 to 6
0	1	0	Sectors 6 and 7	Six sectors—0 to 5
0	1	1	Four sectors—4 to 7	Four sectors—0 to 3
1	0	0	All sectors	None
1	0	1	All sectors	None
1	1	0	All sectors	None
1	1	1	All sectors	None

Table 11. Block Protection Bits in the EPCS16 Device

Status Register Content			Memory Content		
BP2 Bit	BP1 Bit	BPO Bit	Protected Area	Unprotected Area	
0	0	0	None	All sectors (32 sectors 0 to 31)	
0	0	1	Upper 32nd (Sector 31)	Lower 31/32nds (31 sectors—0 to 30)	
0	1	0	Upper sixteenth (two sectors—30 and 31) Lower 15/16ths (30 sectors—0 to 29)		
0	1	1	Upper eighth (four sectors—28 to 31)	Lower seven-eighths (28 sectors—0 to 27)	
1	0	0	Upper quarter (eight sectors—24 to 31)	Lower three-quarters (24 sectors—0 to 23)	
1	0	1	Upper half (sixteen sectors—16 to 31) Lower half (16 sectors—0 to 15)		
1	1	0	All sectors (32 sectors—0 to 31) None		
1	1	1	All sectors (32 sectors—0 to 31) None		

Status Register Content			Memory Content		
BP2 Bit	BP1 Bit	BPO Bit	Protected Area	Unprotected Area	
0	0	0	None	All sectors (128 sectors: 0 to 127)	
0	0	1	Upper 64th (2 sectors: 126 and 127)	Lower 63/64ths (126 sectors: 0 to 125)	
0	1	0	Upper 32nd (4 sectors: 124 to 127)	Lower 31/32nds (124 sectors: 0 to 123)	
0	1	1	Upper sixteenth (8 sectors: 120 to 127)	Lower 15/16ths (120 sectors: 0 to 119)	
1	0	0	Upper eighth (16 sectors: 112 to 127)	Lower seven-eights (112 sectors: 0 to 111)	
1	0	1	Upper quarter (32 sectors: 96 to 127)	Lower three-quarters (96 sectors: 0 to 95)	
1	1	0	Upper half (64 sectors: 64 to 127)	Lower half (64 sectors: 0 to 63)	
1	1	1	All sectors (128 sectors: 0 to 127)	None	

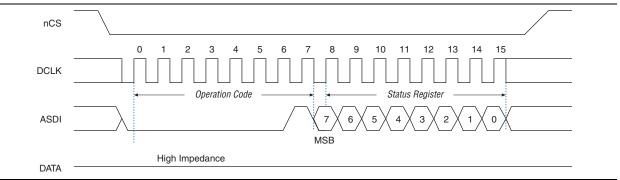

Table 12. Block Protection Bits in the EPCS64 Devices

Table 13. Block Protection Bits in the EPCS128 Device

Status Register Content			Memory Content		
BP2 Bit	BP1 Bit	BPO Bit	Protected Area	Unprotected Area	
0	0	0	None	All sectors (64 sectors—0 to 63)	
0	0	1	Upper 64th (1 sector—63)	Lower 63/64ths (63 sectors—0 to 62)	
0	1	0	Upper 32nd (2 sectors—62 to 63)	Lower 31/32nds (62 sectors—0 to 61)	
0	1	1	Upper 16th (4 sectors—60 to 63)	Lower 15/16ths (60 sectors—0 to 59)	
1	0	0	Upper 8th (8 sectors—56 to 63)	Lower seven-eighths (56 sectors—0 to 55)	
1	0	1	Upper quarter (16 sectors—48 to 63)	Lower three-quarters (48 sectors—0 to 47)	
1	1	0	Upper half (32 sectors—32 to 63)	Lower half (32 sectors—0 to 31)	
1	1	1	All sectors (64 sectors—0 to 63) None		

You can read the status register at any time, even during a write or erase cycle is in progress. When one of these cycles is in progress, you can check the write in progress bit (bit 0 of the status register) before sending a new operation to the device. The device can also read the status register continuously, as shown in Figure 9.

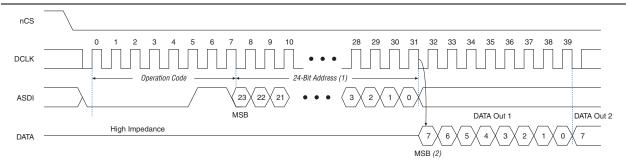
Figure 9. Read Status Operation Timing Diagram


Write Status Operation

The write status operation code is b'0000 0001 and it lists the MSB first. Use the write status operation to set the status register block protection bits. The write status operation does not affect the other bits. Therefore, you can implement this operation to protect certain memory sectors, as listed in Table 9 through Table 13. After setting the block protect bits, the protected memory sectors are treated as read-only memory. You must execute the write enable operation before the write status operation so the device sets the status register's write enable latch bit to 1.

The write status operation is implemented by driving the nCS signal low, followed by shifting in the write status operation code and one data byte for the status register on the ASDI pin. Figure 10 shows the instruction sequence of the write status operation. The nCS must be driven high after the eighth bit of the data byte has been latched in, otherwise the write status operation is not executed.

Immediately after the nCS signal drives high, the device initiates the self-timed write status cycle. The self-timed write status cycle usually takes 5 ms for all EPCS devices and is guaranteed to be less than 15 ms. For more information, refer to the t_{WS} value in Table 16 on page 29. You must account for this delay to ensure that the status register is written with desired block protect bits. Alternatively, you can check the write in progress bit in the status register by executing the read status operation while the self-timed write status cycle is in progress. The write in progress bit is 1 during the self-timed write status cycle and 0 when it is complete.


Read Bytes Operation

The read bytes operation code is b'0000 0011 and it lists the MSB first. To read the memory contents of the EPCS device, the device is first selected by driving the nCS signal low. Then, the read bytes operation code is shifted in followed by a 3-byte address (A[23..0]). Each address bit must be latched in on the rising edge of the DCLK signal. After the address is latched in, the memory contents of the specified address are shifted out serially on the DATA pin, beginning with the MSB. For reading Raw Programming Data files (**.rpd**), the content is shifted out serially beginning with the LSB. Each data bit is shifted out on the falling edge of the DCLK signal. The maximum DCLK frequency during the read bytes operation is 20 MHz.

The first byte address can be at any location. The device automatically increases the address to the next higher address after shifting out each byte of data. Therefore, the device can read the whole memory with a single read bytes operation. When the device reaches the highest address, the address counter restarts at 0x000000, allowing the memory contents to be read out indefinitely until the read bytes operation is terminated by driving the nCS signal high. The device can drive the nCS signal high at any time after data is shifted out. If the read bytes operation is shifted in while a write or erase cycle is in progress, the operation is not executed and does not affect the write or erase cycle in progress.

Figure 11 shows the instruction sequence of the read bytes operation.

Notes to Figure 11:

- Address bit A [23] is a don't-care bit in the EPCS64 device. Address bits A [23..21] are don't-care bits in the EPCS16 device. Address bits A [23..19] are don't-care bits in the EPCS1 device.
 (1) Address bits A [23..17] are don't-care bits in the EPCS16 device. Address bits A [23..17] are don't-care bits in the EPCS16 device.
- (2) For .rpd files, the read sequence shifts out the LSB of the data byte first.

Fast Read Operation

The fast read operation code is b'0000 1011 and it lists the MSB first. You can select the device by driving the nCS signal low. The fast read instruction code is followed by a 3-byte address (A23-A0) and a dummy byte with each bit being latched-in during the rising edge of the DCLK signal. Then, the memory contents at that address is shifted out on DATA with each bit being shifted out at a maximum frequency of 40 MHz during the falling edge of the DCLK signal.

The first addressed byte can be at any location. The address is automatically increased to the next higher address after each byte of data is shifted out. Therefore, the whole memory can be read with a single fast read instruction. When the highest address is reached, the address counter rolls over to 000000h, allowing the read sequence to continue indefinitely.

The fast read instruction is terminated by driving the nCS signal high at any time during data output. Any fast read instruction is rejected during the erase, program, or write operations without affecting the operation that is in progress.

Figure 12 shows the instruction sequence of the fast read operation.

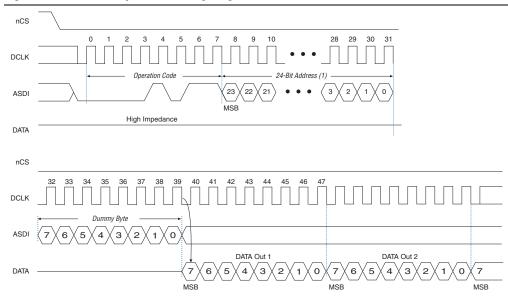


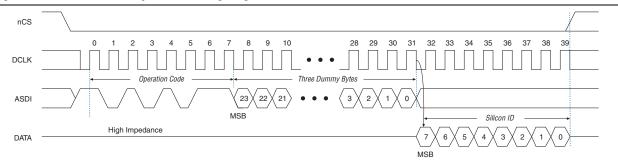
Figure 12. Fast Read Operation Timing Diagram

Note to Figure 12:

(1) Address bit A [23] is a don't-care bit in the EPCS64 device. Address bits A [23..21] are don't-care bits in the EPCS16 device. Address bits A [23..19] are don't-care bits in the EPCS4 device. Address bits A [23..17] are don't-care bits in the EPCS1 device.

Read Silicon ID Operation

The read silicon ID operation code is b'1010 1011 and it lists the MSB first. Only EPCS1, EPCS4, EPCS16, and EPCS64 devices support this operation. This operation reads the 8-bit silicon ID of the EPCS device from the DATA output pin. If this operation is shifted in during an erase or write cycle, it is ignored and does not affect the cycle that is in progress.


Table 14 lists the EPCS device silicon IDs.

EPCS Device	Silicon ID (Binary Value)
EPCS1	b'0001 0000
EPCS4	b'0001 0010
EPCS16	b'0001 0100
EPCS64	b'0001 0110

 Table 14. EPCS Device Silicon ID

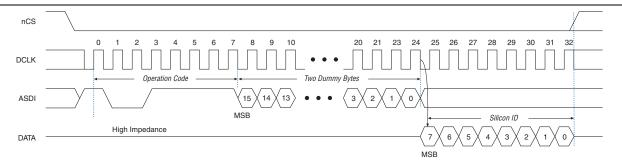
The device implements the read silicon ID operation by driving the nCS signal low and then shifting in the read silicon ID operation code, followed by three dummy bytes on the ASDI pin. The 8-bit silicon ID of the EPCS device is then shifted out on the DATA pin on the falling edge of the DCLK signal. The device can terminate the read silicon ID operation by driving the nCS signal high after reading the silicon ID at least one time. Sending additional clock cycles on DCLK while nCS is driven low can cause the silicon ID to be shifted out repeatedly. Figure 13 shows the instruction sequence of the read silicon ID operation.

Note to Figure 13:

(1) Only EPCS1, EPCS4, EPCS16, and EPCS64 devices support the read silicon ID operation.

Read Device Identification Operation

The read device identification operation code is b'1001 1111 and it lists the MSB first. Only EPCS128 device supports this operation. This operation reads the 8-bit device identification of the EPCS device from the DATA output pin. If this operation is shifted in during an erase or write cycle, it is ignored and does not affect the cycle that is in progress. Table 15 lists the EPCS device identification.


Table 15. EPCS Device Identification

EPCS Device	Silicon ID (Binary Value)
EPCS128	b'0001 1000

The device implements the read device identification operation by driving the nCS signal low and then shifting in the read device identification operation code, followed by two dummy bytes on the ASDI pin. The 16-bit device identification of the EPCS device is then shifted out on the DATA pin on the falling edge of the DCLK signal. The device can terminate the read device identification operation by driving the nCS signal high after reading the device identification at least one time.

Figure 14 shows the instruction sequence of the read device identification operation.

Note to Figure 14:

(1) Only EPCS128 device supports the read device identification operation.

Write Bytes Operation

The write bytes operation code is b'0000 0010 and it lists the MSB first. This operation allows bytes to be written to the memory. You must execute the write enable operation before the write bytes operation to set the write enable latch bit in the status register to 1.

The write bytes operation is implemented by driving the nCS signal low, followed by the write bytes operation code, three address bytes, and at least one data byte on the ASDI pin. If the eight LSBs (A[7..0]) are not all 0, all sent data that goes beyond the end of the current page is not written into the next page. Instead, this data is written at the start address of the same page (from the address whose eight LSBs are all 0). You must ensure the nCS signal is set low during the entire write bytes operation.

If more than 256 data bytes are shifted into the EPCS device with a write bytes operation, the previously latched data is discarded and the last 256 bytes are written to the page. However, if less than 256 data bytes are shifted into the EPCS device, they are guaranteed to be written at the specified addresses and the other bytes of the same page are not affected.

If your design requires writing more than 256 data bytes to the memory, more than one page of memory is required. Send the write enable and write bytes operation codes, followed by three new targeted address bytes and 256 data bytes, before a new page is written.

The nCS signal must be driven high after the eighth bit of the last data byte has been latched in. Otherwise, the device does not execute the write bytes operation. The write enable latch bit in the status register is reset to 0 before the completion of each write bytes operation. Therefore, the write enable operation must be carried out before the next write bytes operation.

The device initiates a self-timed write cycle immediately after the nCS signal is driven high. For more information about the self-timed write cycle time, refer to the t_{WB} value in Table 16 on page 29. You must account for this amount of delay before another page of memory is written. Alternatively, you can check the write in progress bit in the status register by executing the read status operation while the self-timed write cycle is in progress. The write in progress bit is set to 1 during the self-timed write cycle and 0 when it is complete.

You must erase all the memory bytes of the EPCS devices to all 1 or 0xFF before you implement the write bytes operation. You can erase all the memory bytes by executing the erase sector operation in a sector or the erase bulk operation throughout the entire memory.