: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China FLEX 10KE Logic Device

Features...

- Embedded programmable logic devices (PLDs), providing system-on-a-programmable-chip (SOPC) integration in a single device
- Enhanced embedded array for implementing megafunctions such as efficient memory and specialized logic functions
- Dual-port capability with up to 16-bit width per embedded array block (EAB)
- Logic array for general logic functions
- High density
- 30,000 to 200,000 typical gates (see Tables 1 and 2)
- Up to 98,304 RAM bits (4,096 bits per EAB), all of which can be used without reducing logic capacity
- System-level features
- MultiVolt ${ }^{\mathrm{TM}} \mathrm{I} / \mathrm{O}$ pins can drive or be driven by $2.5-\mathrm{V}, 3.3-\mathrm{V}$, or 5.0-V devices
- Low power consumption
- Bidirectional I/O performance ($t_{S U}$ and $t_{C O}$) up to 212 MHz
- Fully compliant with the PCI Special Interest Group (PCI SIG) PCI Local Bus Specification, Revision 2.2 for 3.3-V operation at 33 MHz or 66 MHz
- $\quad-1$ speed grade devices are compliant with PCI Local Bus Specification, Revision 2.2, for 5.0-V operation
- Built-in Joint Test Action Group (JTAG) boundary-scan test (BST) circuitry compliant with IEEE Std. 1149.1-1990, available without consuming additional device logic

For information on 5.0-V FLEX ${ }^{\circledR}$ 10K or 3.3-V FLEX 10KA devices, see the FLEX 10K Embedded Programmable Logic Family Data Sheet.
\(\left.\begin{array}{|l|c|c|}\hline Table 1. FLEX 10KE Device Features

\hline Feature \& EPF10K30E \& EPF10K50E

EPF10K50S\end{array}\right]\)| (1) |
| :--- |
| Typical gates (1)000 |
| Maximum system gates |
| Logic elements (LEs) |
| EABs |
| Total RAM bits |
| Maximum user I/O pins |

Table 2. FLEX 10KE Device Features			
Feature	EPF10K100E (2)	EPF10K130E	EPF10K200E EPF10K200S
Typical gates (1)	100,000	130,000	200,000
Maximum system gates	257,000	342,000	513,000
Logic elements (LEs)	4,992	6,656	9,984
EABs	12	16	24
Total RAM bits	49,152	65,536	98,304
Maximum user I/O pins	338	413	470

Note to tables:

(1) The embedded IEEE Std. 1149.1 JTAG circuitry adds up to 31,250 gates in addition to the listed typical or maximum system gates.
(2) New EPF10K100B designs should use EPF10K100E devices.

...and More
 Features

- Fabricated on an advanced process and operate with a $2.5-\mathrm{V}$ internal supply voltage
- In-circuit reconfigurability (ICR) via external configuration devices, intelligent controller, or JTAG port
- ClockLock ${ }^{\mathrm{TM}}$ and ClockBoost ${ }^{\mathrm{TM}}$ options for reduced clock delay/skew and clock multiplication
- Built-in low-skew clock distribution trees
- 100% functional testing of all devices; test vectors or scan chains are not required
- Pull-up on I/O pins before and during configuration
- Flexible interconnect
- FastTrack ${ }^{\circledR}$ Interconnect continuous routing structure for fast, predictable interconnect delays
- Dedicated carry chain that implements arithmetic functions such as fast adders, counters, and comparators (automatically used by software tools and megafunctions)
- Dedicated cascade chain that implements high-speed, high-fan-in logic functions (automatically used by software tools and megafunctions)
- Tri-state emulation that implements internal tri-state buses
- Up to six global clock signals and four global clear signals
- Powerful I/O pins
- Individual tri-state output enable control for each pin
- Open-drain option on each I/O pin
- Programmable output slew-rate control to reduce switching noise
- Clamp to $\mathrm{V}_{\mathrm{CCIO}}$ user-selectable on a pin-by-pin basis
- Supports hot-socketing
- Software design support and automatic place-and-route provided by Altera's development systems for Windows-based PCs and Sun SPARCstation, and HP 9000 Series 700/800
- Flexible package options
- Available in a variety of packages with 144 to 672 pins, including the innovative FineLine BGA ${ }^{\text {TM }}$ packages (see Tables 3 and 4)
- SameFrame ${ }^{\mathrm{TM}}$ pin-out compatibility between FLEX 10KA and FLEX 10KE devices across a range of device densities and pin counts
- Additional design entry and simulation support provided by EDIF 200 and 300 netlist files, library of parameterized modules (LPM), DesignWare components, Verilog HDL, VHDL, and other interfaces to popular EDA tools from manufacturers such as Cadence, Exemplar Logic, Mentor Graphics, OrCAD, Synopsys, Synplicity, VeriBest, and Viewlogic

Table 3. FLEX 10KE Package Options \& I/O Pin Count Notes (1), (2)

Device	144-Pin TQFP	208-Pin PQFP	240-Pin PQFP RQFP	256-Pin Fin-Line BGA	356-Pin BGA	484-Pin FineLine BGA	599-Pin PGA	600-Pin BGA	672-Pin FineLine BGA
EPF10K30E	102	147		176		220			$220(3)$
EPF10K50E	102	147	189	191		254			$254(3)$
EPF10K50S	102	147	189	191	220	254			$254(3)$
EPF10K100E		147	189	191	274	338			$338(3)$
EPF10K130E			186		274	369		424	413
EPF10K200E							470	470	470
EPF10K200S			182		274	369	470	470	470

Notes:

(1) FLEX 10KE device package types include thin quad flat pack (TQFP), plastic quad flat pack (PQFP), power quad flat pack (RQFP), pin-grid array (PGA), and ball-grid array (BGA) packages.
(2) Devices in the same package are pin-compatible, although some devices have more I/O pins than others. When planning device migration, use the I/O pins that are common to all devices.
(3) This option is supported with a 484-pin FineLine BGA package. By using SameFrame pin migration, all FineLine BGA packages are pin-compatible. For example, a board can be designed to support 256-pin, 484-pin, and 672 -pin FineLine BGA packages. The Altera software automatically avoids conflicting pins when future migration is set.

Table 4. FLEX 10KE Package Sizes

Device	144- Pin TQFP	208-Pin PQFP	240-Pin PQFP RQFP	256-Pin FineLine BGA	356- Pin BGA	484-Pin FineLine BGA	599-Pin PGA	600- Pin BGA	672-Pin FineLine BGA
Pitch (mm)	0.50	0.50	0.50	1.0	1.27	1.0	-	1.27	1.0
Area $\left(\mathrm{mm}^{2}\right)$	484	936	1,197	289	1,225	529	3,904	2,025	729
Length \times width $(\mathrm{mm} \times \mathrm{mm})$	22×22	30.6×30.6	34.6×34.6	17×17	35×35	23×23	62.5×62.5	45×45	27×27

General Description

Altera FLEX 10KE devices are enhanced versions of FLEX 10K devices. Based on reconfigurable CMOS SRAM elements, the FLEX architecture incorporates all features necessary to implement common gate array megafunctions. With up to 200,000 typical gates, FLEX 10KE devices provide the density, speed, and features to integrate entire systems, including multiple 32-bit buses, into a single device.

The ability to reconfigure FLEX 10KE devices enables 100% testing prior to shipment and allows the designer to focus on simulation and design verification. FLEX 10KE reconfigurability eliminates inventory management for gate array designs and generation of test vectors for fault coverage.

Table 5 shows FLEX 10KE performance for some common designs. All performance values were obtained with Synopsys DesignWare or LPM functions. Special design techniques are not required to implement the applications; the designer simply infers or instantiates a function in a Verilog HDL, VHDL, Altera Hardware Description Language (AHDL), or schematic design file.

Table 5. FLEX 10KE Performance

Application	Resources Used		Performance			
	LEs	EABs	-1 Speed Grade	-2 Speed Grade	-3 Speed Grade	
16-bit loadable counter	16	0	285	250	200	MHz
16-bit accumulator	16	0	285	250	200	MHz
16-to-1 multiplexer (1)	10	0	3.5	4.9	7.0	ns
16 -bit multiplier with 3-stage pipeline (2)	592	0	156	131	93	MHz
256×16 RAM read cycle speed (2)	0	1	196	154	118	MHz
256×16 RAM write cycle speed (2)	0	1	185	143	106	MHz

Notes:

(1) This application uses combinatorial inputs and outputs.
(2) This application uses registered inputs and outputs.

Table 6 shows FLEX 10KE performance for more complex designs. These designs are available as Altera MegaCore ${ }^{\circledR}$ functions.

Table 6. FLEX 10KE Performance for Complex Designs

Application	LEs Used	Performance			Units
		-1 Speed Grade	-2 Speed Grade	-3 Speed Grade	
8-bit, 16-tap parallel finite impulse response (FIR) filter	597	192	156	116	MSPS
8-bit, 512-point fast Fourier transform (FFT) function	1,854	23.4	28.7	38.9	$\mu \mathrm{~s} \mathrm{(1)}$
a16450 universal asynchronous receiver/transmitter (UART)	342	113	92	68	MHz
		36	28	20.5	MHz

Note:

(1) These values are for calculation time. Calculation time $=$ number of clocks required $/ f_{\text {max }}$. Number of clocks required $=$ ceiling $[\log 2($ points $) / 2] \times$ [points $+14+$ ceiling]

Similar to the FLEX 10KE architecture, embedded gate arrays are the fastest-growing segment of the gate array market. As with standard gate arrays, embedded gate arrays implement general logic in a conventional "sea-of-gates" architecture. Additionally, embedded gate arrays have dedicated die areas for implementing large, specialized functions. By embedding functions in silicon, embedded gate arrays reduce die area and increase speed when compared to standard gate arrays. While embedded megafunctions typically cannot be customized, FLEX 10KE devices are programmable, providing the designer with full control over embedded megafunctions and general logic, while facilitating iterative design changes during debugging.

Each FLEX 10KE device contains an embedded array and a logic array. The embedded array is used to implement a variety of memory functions or complex logic functions, such as digital signal processing (DSP), wide data-path manipulation, microcontroller applications, and datatransformation functions. The logic array performs the same function as the sea-of-gates in the gate array and is used to implement general logic such as counters, adders, state machines, and multiplexers. The combination of embedded and logic arrays provides the high performance and high density of embedded gate arrays, enabling designers to implement an entire system on a single device.

FLEX 10KE devices are configured at system power-up with data stored in an Altera serial configuration device or provided by a system controller. Altera offers the EPC1, EPC2, and EPC16 configuration devices, which configure FLEX 10KE devices via a serial data stream. Configuration data can also be downloaded from system RAM or via the Altera BitBlaster ${ }^{\mathrm{TM}}$, ByteBlasterMV ${ }^{\mathrm{TM}}$, or MasterBlaster download cables. After a FLEX 10KE device has been configured, it can be reconfigured in-circuit by resetting the device and loading new data. Because reconfiguration requires less than 85 ms , real-time changes can be made during system operation.

FLEX 10KE devices contain an interface that permits microprocessors to configure FLEX 10KE devices serially or in-parallel, and synchronously or asynchronously. The interface also enables microprocessors to treat a FLEX 10KE device as memory and configure it by writing to a virtual memory location, making it easy to reconfigure the device.

For more information on FLEX device configuration, see the following documents:

- Configuration Devices for APEX \& FLEX Devices Data Sheet
- BitBlaster Serial Download Cable Data Sheet
- ByteBlasterMV Parallel Port Download Cable Data Sheet
- MasterBlaster Download Cable Data Sheet
- Application Note 116 (Configuring APEX 20K, FLEX 10K, \& FLEX 6000 Devices)

FLEX 10KE devices are supported by the Altera development systems, which are integrated packages that offer schematic, text (including AHDL), and waveform design entry, compilation and logic synthesis, full simulation and worst-case timing analysis, and device configuration. The Altera software provides EDIF 200 and 30 0, LPM, VHDL, Verilog HDL, and other interfaces for additional design entry and simulation support from other industry-standard PC- and UNIX workstation-based EDA tools.

The Altera software works easily with common gate array EDA tools for synthesis and simulation. For example, the Altera software can generate Verilog HDL files for simulation with tools such as Cadence Verilog-XL. Additionally, the Altera software contains EDA libraries that use devicespecific features such as carry chains, which are used for fast counter and arithmetic functions. For instance, the Synopsys Design Compiler library supplied with the Altera development system includes DesignWare functions that are optimized for the FLEX 10KE architecture.

The Altera development system runs on Windows-based PCs and Sun SPARCstation, and HP 9000 Series 700/800.

See the MAX+PLUS II Programmable Logic Development System \mathcal{E} Software Data Sheet and the Quartus Programmable Logic Development System \mathcal{E} Software Data Sheet for more information.

Functional Description

Each FLEX 10KE device contains an enhanced embedded array to implement memory and specialized logic functions, and a logic array to implement general logic.

The embedded array consists of a series of EABs. When implementing memory functions, each EAB provides 4,096 bits, which can be used to create RAM, ROM, dual-port RAM, or first-in first-out (FIFO) functions. When implementing logic, each EAB can contribute 100 to 600 gates towards complex logic functions, such as multipliers, microcontrollers, state machines, and DSP functions. EABs can be used independently, or multiple EABs can be combined to implement larger functions.

The logic array consists of logic array blocks (LABs). Each LAB contains eight LEs and a local interconnect. An LE consists of a four-input look-up table (LUT), a programmable flipflop, and dedicated signal paths for carry and cascade functions. The eight LEs can be used to create medium-sized blocks of logic-such as 8-bit counters, address decoders, or state machines-or combined across LABs to create larger logic blocks. Each LAB represents about 96 usable gates of logic.

Signal interconnections within FLEX 10KE devices (as well as to and from device pins) are provided by the FastTrack Interconnect routing structure, which is a series of fast, continuous row and column channels that run the entire length and width of the device.

Each I/O pin is fed by an I/O element (IOE) located at the end of each row and column of the FastTrack Interconnect routing structure. Each IOE contains a bidirectional I/O buffer and a flipflop that can be used as either an output or input register to feed input, output, or bidirectional signals. When used with a dedicated clock pin, these registers provide exceptional performance. As inputs, they provide setup times as low as 0.9 ns and hold times of 0 ns . As outputs, these registers provide clock-to-output times as low as 3.0 ns . IOEs provide a variety of features, such as JTAG BST support, slew-rate control, tri-state buffers, and open-drain outputs.

Figure 1 shows a block diagram of the FLEX 10KE architecture. Each group of LEs is combined into an LAB; groups of LABs are arranged into rows and columns. Each row also contains a single EAB. The LABs and EABs are interconnected by the FastTrack Interconnect routing structure. IOEs are located at the end of each row and column of the FastTrack Interconnect routing structure.

Figure 1. FLEX 10KE Device Block Diagram

FLEX 10KE devices provide six dedicated inputs that drive the flipflops' control inputs and ensure the efficient distribution of high-speed, lowskew (less than 1.5 ns) control signals. These signals use dedicated routing channels that provide shorter delays and lower skews than the FastTrack Interconnect routing structure. Four of the dedicated inputs drive four global signals. These four global signals can also be driven by internal logic, providing an ideal solution for a clock divider or an internally generated asynchronous clear signal that clears many registers in the device.

Embedded Array Block

The EAB is a flexible block of RAM, with registers on the input and output ports, that is used to implement common gate array megafunctions. Because it is large and flexible, the EAB is suitable for functions such as multipliers, vector scalars, and error correction circuits. These functions can be combined in applications such as digital filters and microcontrollers.

Logic functions are implemented by programming the EAB with a readonly pattern during configuration, thereby creating a large LUT. With LUTs, combinatorial functions are implemented by looking up the results, rather than by computing them. This implementation of combinatorial functions can be faster than using algorithms implemented in general logic, a performance advantage that is further enhanced by the fast access times of EABs. The large capacity of EABs enables designers to implement complex functions in one logic level without the routing delays associated with linked LEs or field-programmable gate array (FPGA) RAM blocks. For example, a single EAB can implement any function with 8 inputs and 16 outputs. Parameterized functions such as LPM functions can take advantage of the EAB automatically.

The FLEX 10KE EAB provides advantages over FPGAs, which implement on-board RAM as arrays of small, distributed RAM blocks. These small FPGA RAM blocks must be connected together to make RAM blocks of manageable size. The RAM blocks are connected together using multiplexers implemented with more logic blocks. These extra multiplexers cause extra delay, which slows down the RAM block. FPGA RAM blocks are also prone to routing problems because small blocks of RAM must be connected together to make larger blocks. In contrast, EABs can be used to implement large, dedicated blocks of RAM that eliminate these timing and routing concerns.

The FLEX 10KE enhanced EAB adds dual-port capability to the existing EAB structure. The dual-port structure is ideal for FIFO buffers with one or two clocks. The FLEX 10KE EAB can also support up to 16-bit-wide RAM blocks and is backward-compatible with any design containing FLEX 10K EABs. The FLEX 10KE EAB can act in dual-port or single-port mode. When in dual-port mode, separate clocks may be used for EAB read and write sections, which allows the EAB to be written and read at different rates. It also has separate synchronous clock enable signals for the EAB read and write sections, which allow independent control of these sections.

The EAB can also be used for bidirectional, dual-port memory applications where two ports read or write simultaneously. To implement this type of dual-port memory, two EABs are used to support two simultaneous read or writes.

Alternatively, one clock and clock enable can be used to control the input registers of the EAB, while a different clock and clock enable control the output registers (see Figure 2).

Figure 2. FLEX 10KE Device in Dual-Port RAM Mode Notes (1)

Notes:

(1) All registers can be asynchronously cleared by EAB local interconnect signals, global signals, or the chip-wide reset.
(2) EPF10K30E and EPF10K50E devices have 88 EAB local interconnect channels; EPF10K100E, EPF10K130E, and EPF10K200E devices have 104 EAB local interconnect channels.

The EAB can also use Altera megafunctions to implement dual-port RAM applications where both ports can read or write, as shown in Figure 3.

Figure 3. FLEX 10KE EAB in Dual-Port RAM Mode

The FLEX 10KE EAB can be used in a single-port mode, which is useful for backward-compatibility with FLEX 10K designs (see Figure 4).

Figure 4. FLEX 10KE Device in Single-Port RAM Mode

Note:

(1) EPF10K30E, EPF10K50E, and EPF10K50S devices have 88 EAB local interconnect channels; EPF10K100E, EPF10K130E, EPF10K200E, and EPF10K200S devices have 104 EAB local interconnect channels.

EABs can be used to implement synchronous RAM, which is easier to use than asynchronous RAM. A circuit using asynchronous RAM must generate the RAM write enable signal, while ensuring that its data and address signals meet setup and hold time specifications relative to the write enable signal. In contrast, the EAB's synchronous RAM generates its own write enable signal and is self-timed with respect to the input or write clock. A circuit using the EAB's self-timed RAM must only meet the setup and hold time specifications of the global clock.

When used as RAM, each EAB can be configured in any of the following sizes: $256 \times 16,512 \times 8,1,024 \times 4$, or $2,048 \times 2$ (see Figure 5).

Figure 5. FLEX 10KE EAB Memory Configurations

Larger blocks of RAM are created by combining multiple EABs. For example, two 256×16 RAM blocks can be combined to form a 256×32 block; two 512×8 RAM blocks can be combined to form a 512×16 block (see Figure 6).

Figure 6. Examples of Combining FLEX 10KE EABs

If necessary, all EABs in a device can be cascaded to form a single RAM block. EABs can be cascaded to form RAM blocks of up to 2,048 words without impacting timing. The Altera software automatically combines EABs to meet a designer's RAM specifications.

EABs provide flexible options for driving and controlling clock signals. Different clocks and clock enables can be used for reading and writing to the EAB. Registers can be independently inserted on the data input, EAB output, write address, write enable signals, read address, and read enable signals. The global signals and the EAB local interconnect can drive write enable, read enable, and clock enable signals. The global signals, dedicated clock pins, and EAB local interconnect can drive the EAB clock signals. Because the LEs drive the EAB local interconnect, the LEs can control write enable, read enable, clear, clock, and clock enable signals.

An EAB is fed by a row interconnect and can drive out to row and column interconnects. Each EAB output can drive up to two row channels and up to two column channels; the unused row channel can be driven by other LEs. This feature increases the routing resources available for EAB outputs (see Figures 2 and 4). The column interconnect, which is adjacent to the EAB, has twice as many channels as other columns in the device.

Logic Array Block

An LAB consists of eight LEs, their associated carry and cascade chains, LAB control signals, and the LAB local interconnect. The LAB provides the coarse-grained structure to the FLEX 10 KE architecture, facilitating efficient routing with optimum device utilization and high performance (see Figure 7).

FLEX 10KE Embedded Programmable Logic Devices Data Sheet

Figure 7. FLEX 10KE LAB

Notes:

(1) EPF10K30E, EPF10K50E, and EPF10K50S devices have 22 inputs to the LAB local interconnect channel from the row; EPF10K100E, EPF10K130E, EPF10K200E, and EPF10K200S devices have 26.
(2) EPF10K30E, EPF10K50E, and EPF10K50S devices have 30 LAB local interconnect channels; EPF10K100E, EPF10K130E, EPF10K200E, and EPF10K200S devices have 34.

Each LAB provides four control signals with programmable inversion that can be used in all eight LEs. Two of these signals can be used as clocks, the other two can be used for clear/preset control. The LAB clocks can be driven by the dedicated clock input pins, global signals, I/O signals, or internal signals via the LAB local interconnect. The LAB preset and clear control signals can be driven by the global signals, I/O signals, or internal signals via the LAB local interconnect. The global control signals are typically used for global clock, clear, or preset signals because they provide asynchronous control with very low skew across the device. If logic is required on a control signal, it can be generated in one or more LE in any $L A B$ and driven into the local interconnect of the target $L A B$. In addition, the global control signals can be generated from LE outputs.

Logic Element

The LE, the smallest unit of logic in the FLEX 10KE architecture, has a compact size that provides efficient logic utilization. Each LE contains a four-input LUT, which is a function generator that can quickly compute any function of four variables. In addition, each LE contains a programmable flipflop with a synchronous clock enable, a carry chain, and a cascade chain. Each LE drives both the local and the FastTrack Interconnect routing structure (see Figure 8).

Figure 8. FLEX 10KE Logic Element

The programmable flipflop in the LE can be configured for D, T, JK, or SR operation. The clock, clear, and preset control signals on the flipflop can be driven by global signals, general-purpose I/O pins, or any internal logic. For combinatorial functions, the flipflop is bypassed and the output of the LUT drives the output of the LE.

The LE has two outputs that drive the interconnect: one drives the local interconnect and the other drives either the row or column FastTrack Interconnect routing structure. The two outputs can be controlled independently. For example, the LUT can drive one output while the register drives the other output. This feature, called register packing, can improve LE utilization because the register and the LUT can be used for unrelated functions.

The FLEX 10KE architecture provides two types of dedicated high-speed data paths that connect adjacent LEs without using local interconnect paths: carry chains and cascade chains. The carry chain supports high-speed counters and adders and the cascade chain implements wide-input functions with minimum delay. Carry and cascade chains connect all LEs in a LAB as well as all LABs in the same row. Intensive use of carry and cascade chains can reduce routing flexibility. Therefore, the use of these chains should be limited to speed-critical portions of a design.

Carry Chain

The carry chain provides a very fast (as low as 0.2 ns) carry-forward function between LEs. The carry-in signal from a lower-order bit drives forward into the higher-order bit via the carry chain, and feeds into both the LUT and the next portion of the carry chain. This feature allows the FLEX 10KE architecture to implement high-speed counters, adders, and comparators of arbitrary width efficiently. Carry chain logic can be created automatically by the Altera Compiler during design processing, or manually by the designer during design entry. Parameterized functions such as LPM and DesignWare functions automatically take advantage of carry chains.

Carry chains longer than eight LEs are automatically implemented by linking LABs together. For enhanced fitting, a long carry chain skips alternate LABs in a row. A carry chain longer than one LAB skips either from even-numbered LAB to even-numbered LAB, or from oddnumbered LAB to odd-numbered LAB. For example, the last LE of the first LAB in a row carries to the first LE of the third LAB in the row. The carry chain does not cross the EAB at the middle of the row. For instance, in the EPF10K50E device, the carry chain stops at the eighteenth LAB and a new one begins at the nineteenth LAB.

Figure 9 shows how an n-bit full adder can be implemented in $n+1$ LEs with the carry chain. One portion of the LUT generates the sum of two bits using the input signals and the carry-in signal; the sum is routed to the output of the LE. The register can be bypassed for simple adders or used for an accumulator function. Another portion of the LUT and the carry chain logic generates the carry-out signal, which is routed directly to the carry-in signal of the next-higher-order bit. The final carry-out signal is routed to an LE, where it can be used as a general-purpose signal.

Figure 9. FLEX 10KE Carry Chain Operation (n-Bit Full Adder)

Cascade Chain

With the cascade chain, the FLEX 10KE architecture can implement functions that have a very wide fan-in. Adjacent LUTs can be used to compute portions of the function in parallel; the cascade chain serially connects the intermediate values. The cascade chain can use a logical AND or logical OR (via De Morgan's inversion) to connect the outputs of adjacent LEs. An a delay as low as 0.6 ns per LE, each additional LE provides four more inputs to the effective width of a function. Cascade chain logic can be created automatically by the Altera Compiler during design processing, or manually by the designer during design entry.

Cascade chains longer than eight bits are implemented automatically by linking several LABs together. For easier routing, a long cascade chain skips every other LAB in a row. A cascade chain longer than one LAB skips either from even-numbered LAB to even-numbered LAB, or from odd-numbered LAB to odd-numbered LAB (e.g., the last LE of the first LAB in a row cascades to the first LE of the third LAB). The cascade chain does not cross the center of the row (e.g., in the EPF10K50E device, the cascade chain stops at the eighteenth LAB and a new one begins at the nineteenth $L A B$). This break is due to the EAB's placement in the middle of the row.

Figure 10 shows how the cascade function can connect adjacent LEs to form functions with a wide fan-in. These examples show functions of $4 n$ variables implemented with n LEs. The LE delay is 0.9 ns ; the cascade chain delay is 0.6 ns . With the cascade chain, 2.7 ns are needed to decode a 16-bit address.

Figure 10. FLEX 10KE Cascade Chain Operation

LE Operating Modes

The FLEX 10KE LE can operate in the following four modes:

- Normal mode
- Arithmetic mode
- Up/down counter mode
- Clearable counter mode

Each of these modes uses LE resources differently. In each mode, seven available inputs to the LE-the four data inputs from the LAB local interconnect, the feedback from the programmable register, and the carry-in and cascade-in from the previous LE-are directed to different destinations to implement the desired logic function. Three inputs to the LE provide clock, clear, and preset control for the register. The Altera software, in conjunction with parameterized functions such as LPM and DesignWare functions, automatically chooses the appropriate mode for common functions such as counters, adders, and multipliers. If required, the designer can also create special-purpose functions that use a specific LE operating mode for optimal performance.

The architecture provides a synchronous clock enable to the register in all four modes. The Altera software can set DATA1 to enable the register synchronously, providing easy implementation of fully synchronous designs.

FLEX 10KE Embedded Programmable Logic Devices Data Sheet

Figure 11 shows the LE operating modes.

Figure 11. FLEX 10KE LE Operating Modes

Normal Mode

Arithmetic Mode

Up/Down Counter Mode

Clearable Counter Mode

Normal Mode

The normal mode is suitable for general logic applications and wide decoding functions that can take advantage of a cascade chain. In normal mode, four data inputs from the LAB local interconnect and the carry-in are inputs to a four-input LUT. The Altera Compiler automatically selects the carry-in or the DATA3 signal as one of the inputs to the LUT. The LUT output can be combined with the cascade-in signal to form a cascade chain through the cascade-out signal. Either the register or the LUT can be used to drive both the local interconnect and the FastTrack Interconnect routing structure at the same time.

The LUT and the register in the LE can be used independently (register packing). To support register packing, the LE has two outputs; one drives the local interconnect, and the other drives the FastTrack Interconnect routing structure. The DATA4 signal can drive the register directly, allowing the LUT to compute a function that is independent of the registered signal; a three-input function can be computed in the LUT, and a fourth independent signal can be registered. Alternatively, a four-input function can be generated, and one of the inputs to this function can be used to drive the register. The register in a packed LE can still use the clock enable, clear, and preset signals in the LE. In a packed LE, the register can drive the FastTrack Interconnect routing structure while the LUT drives the local interconnect, or vice versa.

Arithmetic Mode

The arithmetic mode offers 2 three-input LUTs that are ideal for implementing adders, accumulators, and comparators. One LUT computes a three-input function; the other generates a carry output. As shown in Figure 11 on page 22, the first LUT uses the carry-in signal and two data inputs from the LAB local interconnect to generate a combinatorial or registered output. For example, in an adder, this output is the sum of three signals: a, b, and carry-in. The second LUT uses the same three signals to generate a carry-out signal, thereby creating a carry chain. The arithmetic mode also supports simultaneous use of the cascade chain.

Up/Down Counter Mode

The up/down counter mode offers counter enable, clock enable, synchronous up/down control, and data loading options. These control signals are generated by the data inputs from the LAB local interconnect, the carry-in signal, and output feedback from the programmable register. Use 2 three-input LUTs: one generates the counter data, and the other generates the fast carry bit. A 2-to-1 multiplexer provides synchronous loading. Data can also be loaded asynchronously with the clear and preset register control signals without using the LUT resources.

Clearable Counter Mode

The clearable counter mode is similar to the up/down counter mode, but supports a synchronous clear instead of the up/down control. The clear function is substituted for the cascade-in signal in the up/down counter mode. Use 2 three-input LUTs: one generates the counter data, and the other generates the fast carry bit. Synchronous loading is provided by a 2-to-1 multiplexer. The output of this multiplexer is AND ed with a synchronous clear signal.

Internal Tri-State Emulation

Internal tri-state emulation provides internal tri-states without the limitations of a physical tri-state bus. In a physical tri-state bus, the tri-state buffers' output enable (OE) signals select which signal drives the bus. However, if multiple OE signals are active, contending signals can be driven onto the bus. Conversely, if no OE signals are active, the bus will float. Internal tri-state emulation resolves contending tri-state buffers to a low value and floating buses to a high value, thereby eliminating these problems. The Altera software automatically implements tri-state bus functionality with a multiplexer.

Clear \& Preset Logic Control

Logic for the programmable register's clear and preset functions is controlled by the DATA3, LABCTRL1, and LABCTRL2 inputs to the LE. The clear and preset control structure of the LE asynchronously loads signals into a register. Either LABCTRL1 or LABCTRL2 can control the asynchronous clear. Alternatively, the register can be set up so that LABCTRL1 implements an asynchronous load. The data to be loaded is driven to DATA3; when LABCTRL1 is asserted, DATA 3 is loaded into the register.

During compilation, the Altera Compiler automatically selects the best control signal implementation. Because the clear and preset functions are active-low, the Compiler automatically assigns a logic high to an unused clear or preset.

The clear and preset logic is implemented in one of the following six modes chosen during design entry:

- Asynchronous clear
- Asynchronous preset
- Asynchronous clear and preset
- Asynchronous load with clear
- Asynchronous load with preset
- Asynchronous load without clear or preset

In addition to the six clear and preset modes, FLEX 10KE devices provide a chip-wide reset pin that can reset all registers in the device. Use of this feature is set during design entry. In any of the clear and preset modes, the chip-wide reset overrides all other signals. Registers with asynchronous presets may be preset when the chip-wide reset is asserted. Inversion can be used to implement the asynchronous preset. Figure 12 shows examples of how to setup the preset and clear inputs for the desired functionality.

Figure 12. FLEX 10KE LE Clear \& Preset Modes

Asynchronous Clear

Asynchronous Preset

Asynchronous Preset \& Clear

Asynchronous Load with Clear

Asynchronous Load with Preset

Asynchronous Load without Clear or Preset

