imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

AC-DC Power Supplies

150 Watts

- 100 W Convection/150 W Forced-cooled Ratings
- 2" by 4" Footprint
- Low 0.99" Profile
- Class I & Class II Operation
- 12 V Fan Output
- High Efficiency, up to 95%
- ITE & Medical (BF) Approvals
- High Power Density
- Less than 0.5 W No Load Input Power
- 3 Year Warranty

Dimensions:

EPL150: 4.00 × 2.00 × 0.99" (101.6 × 50.8 × 25.1 mm)

The EPL150 series maximises efficiency across the load range and minimises no load power consumption minimising heat dissipation, reducing running costs and enabling compliance with the latest environmental goals and legislation. Fully approved as Class I & Class II for ITE, Industrial and Medical applications the EPL150 provides up to 100 W when convection cooled and up to 150 W when force cooled at just 10 CFM. A 12 V 0.5 A fan supply is included to support force cooled applications. The small footprint, low profile, low noise and comprehensive safety agency approvals allow this versatile product to be used in a wide range of ITE and industrial applications.

Models & Ratings	

Output	Output	Output	Current	Eon Output	Efficiency (2)	Model Number
Power	Voltage	Convection-cooled	Forced-cooled ⁽¹⁾	Fan Output	Efficiency ⁽²⁾	
150 W	12.0 V	8.33 A	12.50 A	12 V/0.5 A	93%	EPL150PS12
150 W	15.0 V	6.67 A	10.00 A	12 V/0.5 A	93%	EPL150PS15
150 W	18.0 V	5.56 A	8.33 A	12 V/0.5 A	93%	EPL150PS18
150 W	24.0 V	4.17 A	6.25 A	12 V/0.5 A	93%	EPL150PS24
150 W	28.0 V	3.50 A	5.40 A	12 V/0.5 A	93%	EPL150PS28
150 W	36.0 V	2.78 A	4.17 A	12 V/0.5 A	93%	EPL150PS36
150 W	48.0 V	2.08 A	3.10 A	12 V/0.5 A	93%	EPL150PS48

Notes

1. Requires 10 CFM.

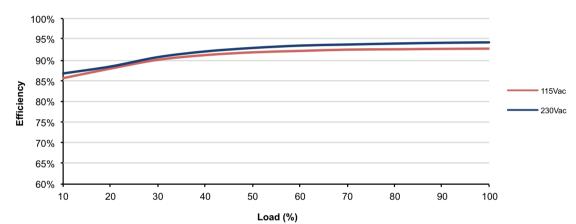
2. Minimum average efficiencies measured at 25%, 50%, 75% & 100% of 150 W load and 230 VAC input.

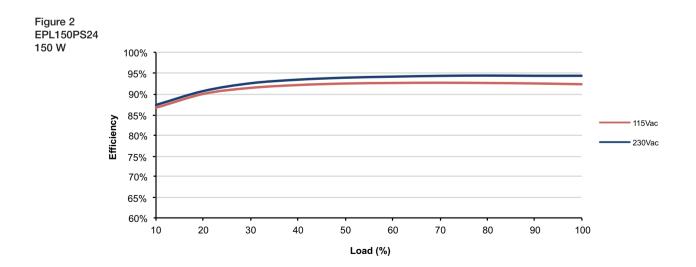
Summary					
Characteristic	Minimum	Typical	Maximum	Units	Notes & Conditions
Input Range	80	115/230	264	VAC	Derate load from 100% at 90 VAC to 90% at 85 VAC and 85% at 80 VAC
No Load Input Power			0.5	W	
Efficiency		95		%	230 VAC (see fig.1 & 2)
Operating Temperature	-20		+70	°C	See derating curve (fig.3)
EMC	Conducted: ENS	5011/32, Class B,	Radiated: EN5501	1/32, Class A (Cla	ss B with external core, see EMC Emissions for details)
Safety Approvals	CB/EN/UL/CSA	for ITE and Medic	al		

Input Characteristic Minimum Maximum Units Notes & Conditions Typical Derate output from 100% at 90 VAC to 90% at 85 VAC and Input Voltage - Operating 80 115/230 264 VAC 85% at 80 VAC Input Frequency 47 50/60 63 Hz Power Factor >0.9 230 VAC, 100% load EN61000-3-2 class A Input Current - Full Load 2.2/1.1 115/230 VAC А Inrush Current 120 А 230 VAC cold start, 25 °C 80/140 230 115/230 VAC/50 Hz (Typ), 264 VAC/60 Hz (Max) Earth Leakage Current μA No load Input Power 0.5 W Input Protection F3.15 A/250 V Internal fuse fitted in line and neutral.

Output - Main Output					
Characteristic	Minimum	Typical	Maximum	Units	Notes & Conditions
Output Voltage - V1	12		48	VDC	See Models and Ratings table
Initial Set Accuracy			±1	%	50% load, 115/230 VAC
Output Voltage Adjustment-V1				%	None
Minimum Load	0			A	
Start Up Delay			2	S	115/230 VAC full load.
Hold Up Time	10	20/13		ms	Min at full load, 115 VAC. Typical at 100W/150W
Drift			±0.02	%	After 20 min warm up
Line Regulation			±0.5	%	90-264 VAC
Load Regulation			±0.5	%	0-100% load.
Transient Response			4	%	Recovery within 1% in less than 500 μs for a 50-75% and 75-50% load step
Over/Undershoot			7	%	Full load
Ripple & Noise			1	% pk-pk	20 MHz bandwidth and 10 μF electrolytic capacitator in parallel with 0.1 μF ceramic capacitator.
Overvoltage Protection	110		140	%	Vnom, recycle input to reset
Overload Protection	110		170	% I nom	
Short Circuit Protection					Trip & Restart
Temperature Coefficient			0.02	%/°C	
Overtemperature Protection				°C	Measured internally, Auto Resetting

AC-DC Power Supplies



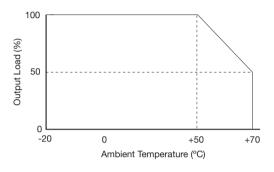

General

Characteristic	Minimum	Typical	Maximum	Units	Notes & Conditions
Efficiency		94		%	230 VAC (see fig. 1 & 2)
Isolation: Input to Output	4000			VAC	2 MOPP
Input to Ground	1500			VAC	1 MOPP
Output to Ground	1500			VAC	1 MOPP
Patient Leakage			50	μA	At 264 VAC, 50 Hz
Switching Frequency	40		130	kHz	PFC
Switching Frequency	50		95	kHz	Main converter
Power Density			18.9/12.6	W/in ³	Forced/convection-cooled
Mean Time Between Failure		300		kHrs	MIL-HDBK-217F, Notice 2 +25 °C GB
Weight		0.43(195)		lb(g)	

Efficiency Vs Load

Figure 1 EPL150PS24 100 W

AC-DC Power Supplies



Environmental

Characteristic	Minimum	Typical	Maximum	Units	Notes & Conditions	
Operating Temperature	-20		+70	°C	See derating curve, fig.3	
Storage Temperature	-40		+85	°C		
Cooling	10			CFM	Forced-cooled > 150W	
Humidity	5		95	%RH	Non-condensing	
Operating Altitude			5000	m		
Shock	±3 x 30g shocks in each plane, total 18 shocks. 30g = 11ms (+/- 0.5msecs), half sine. Conforms to EN60068-2-27					
Vibration	Single axis 10-50	ingle axis 10-500 Hz at 2g sweep and endurance at resonance in all 3 planes. Conforms to EN60068-2-6				

Temperature Derating Curve

Figure 3

EMC: Emissions

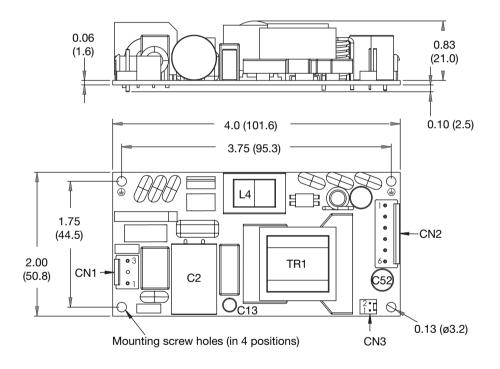
Phenomenon	Standard	Test Level	Criteria	Notes & Conditions
Conducted	EN55011/22	Class B		
Radiated	EN55011/22	Class A		Class B with King Core K5B RC 13 x 23 x 7 on input cable and K5B T 25 x 12 x 5 on output cable.
Harmonic Current	EN61000-3-2	Class A		
Voltage Functions	EN61000-3-3			

EMC: Immunity

Phenomenon	Standard	Test Level	Criteria	Notes & Conditions
Medical Device EMC	IEC60601-1-2	Ed.4.0 : 2014	as below	
Low Voltage PSU EMC	EN61204-3	High severity level	as below	
		-		
ESD	EN61000-4-2	4	A	±8kV contact, ±15kV air
Radiated	EN61000-4-3	3	A	
EFT	EN61000-4-4	3	A	
Surges	EN61000-4-5	Installation class 3	A	
Conducted	EN61000-4-6	3	A	
Magnetic Fields	EN61000-4-8	4	A	
		Dip >95% (0 VAC), 8.3 ms	А	
	EN55024 (100 VAC)	Dip 30% (70 VAC), 416 ms	А	
		Dip >95% (0 VAC), 4160 ms	В	
		Dip >95% (0 VAC), 10.0 ms	А	
	EN55024 (240 VAC)	Dip 30% (168 VAC), 500 ms	A	
		Dip >95% (0 VAC), 5000 ms	В	
		Dip 100% (0 VAC), 10.0 ms	А	
Dine and Interruptions		Dip 100% (0 VAC), 20 ms	В	
Dips and Interruptions	EN60601-1-2 (100 VAC)	Dip 60% (40 VAC), 100 ms	В	
		Dip 30% (70 VAC), 500 ms	А	
		Dip 100% (0 VAC), 5000 ms	В	
		Dip 100% (0 VAC), 10.0 ms	A	
		Dip 100% (0 VAC), 20 ms	В	
	EN60601-1-2 (240 VAC)	Dip 60% (96 VAC), 100 ms	А	
		Dip 30% (168 VAC), 500 ms	А	
		Dip 100% (0 VAC), 5000 ms	В	

www.xppower.com

AC-DC Power Supplies



Safety Approvals

Safety Agency	Safety Standard	Notes & Conditions
CB Report	IEC60950-1-1, IEC62368-1	Information Technology
UL	UL60950-1, UL62368-1	Information Technology
TUV	EN62368-1	Information Technology
CB Report	IEC60601-1	Medical
UL	ES60601-1	Medical
EN	EN60601-1	Medical

Isolation	Safety Standard	Notes & Conditions
Primary to Secondary	2 x MOPP (Means of Patient Protection)	
Primary to Earth	1 x MOPP (Means of Patient Protection)	
Secondary to Earth	1 x MOPP (Means of Patient Protection)	Suitable for use as BF applied part application

Mechanical Details

	CN1	
Pin 1	AC-L	
Pin 2		
Pin 3	AC-N	
Mates with JST VHR-3N housing		

and SVH-21T-P1.1 crimps

	CN2	
Pin 1	+Vo	
Pin 2	+Vo	
Pin 3	+Vo	
Pin 4	Com	
Pin 5	Com	
Pin 6	Com	

CN3	
Pin 1	Fan -
Pin 2	Fan +

Mates with Molex 22-01-1022 housing and 2759 crimps

Mates with JST VHR-6N housing and SVH-21T-P1.1 crimps

Mounting holes marked with 🔔 must be connected to safety earth in Class I application or connected together in Class II application.

Notes 1. All dimensions shown in inches (mm).

Tolerance: ±0.02 (0.5)

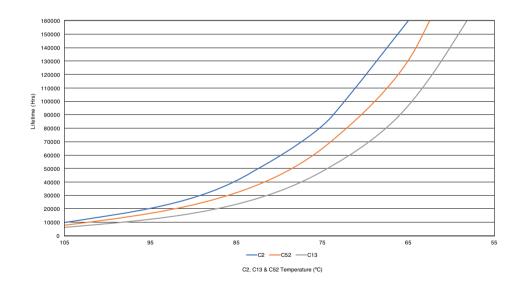
2. Weight: XXX lbs (XXX g) approx.

AC-DC Power Supplies

Thermal Considerations

In order to ensure safe operation of the PSU in the end-use equipment, the temperature of the components listed in the table below must not be exceeded. Temperature should be monitored using thermocouples placed on the hottest part of the component (out of direct air flow). See Mechanical Details for component locations.

Temperature Measurements (At Maximum Ambient)	
Component	Max Temperature °C
TR1 Coil	120°C
L4 Coil	120°C
C13	105°C
C52	105°C
C2	105°C


Service Life

The estimated service life of the EPL150 is determined by the cooling arrangements and load conditions experienced in the end application. Due to the uncertain nature of the end application this estimated service life is based on the actual measured temperature of key capacitors with in the product when installed by the end application,

The graph below expresses the estimated lifetime based on the temperature of these key components based on the average temperature over the lifetime of the equipment.

Estimated Service Life vs Component Temperature

Figure 4

XP Power