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Section I. MAX II Device Family Data
Sheet

This section provides designers with the data sheet specifications for MAX® II devices. 
The chapters contain feature definitions of the internal architecture, Joint Test Action 
Group (JTAG) and in-system programmability (ISP) information, DC operating 
conditions, AC timing parameters, and ordering information for MAX II devices.

This section includes the following chapters:

■ Chapter 1, Introduction

■ Chapter 2, MAX II Architecture

■ Chapter 3, JTAG and In-System Programmability

■ Chapter 4, Hot Socketing and Power-On Reset in MAX II Devices

■ Chapter 5, DC and Switching Characteristics

■ Chapter 6, Reference and Ordering Information

Revision History 
Refer to each chapter for its own specific revision history. For information about when 
each chapter was updated, refer to the Chapter Revision Dates section, which appears 
in the complete handbook.
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1. Introduction

Introduction
The MAX® II family of instant-on, non-volatile CPLDs is based on a 0.18-µm, 
6-layer-metal-flash process, with densities from 240 to 2,210 logic elements (LEs) (128 
to 2,210 equivalent macrocells) and non-volatile storage of 8 Kbits. MAX II devices 
offer high I/O counts, fast performance, and reliable fitting versus other CPLD 
architectures. Featuring MultiVolt core, a user flash memory (UFM) block, and 
enhanced in-system programmability (ISP), MAX II devices are designed to reduce 
cost and power while providing programmable solutions for applications such as bus 
bridging, I/O expansion, power-on reset (POR) and sequencing control, and device 
configuration control.

Features
The MAX II CPLD has the following features:

■ Low-cost, low-power CPLD 

■ Instant-on, non-volatile architecture

■ Standby current as low as 25 µA

■ Provides fast propagation delay and clock-to-output times

■ Provides four global clocks with two clocks available per logic array block (LAB)

■ UFM block up to 8 Kbits for non-volatile storage

■ MultiVolt core enabling external supply voltages to the device of either 
3.3 V/2.5 V or 1.8 V

■ MultiVolt I/O interface supporting 3.3-V, 2.5-V, 1.8-V, and 1.5-V logic levels

■ Bus-friendly architecture including programmable slew rate, drive strength, 
bus-hold, and programmable pull-up resistors

■ Schmitt triggers enabling noise tolerant inputs (programmable per pin)

■ I/Os are fully compliant with the Peripheral Component Interconnect Special 
Interest Group (PCI SIG) PCI Local Bus Specification, Revision 2.2 for 3.3-V 
operation at 66 MHz 

■ Supports hot-socketing

■ Built-in Joint Test Action Group (JTAG) boundary-scan test (BST) circuitry 
compliant with IEEE Std. 1149.1-1990

■ ISP circuitry compliant with IEEE Std. 1532

MII51001-1.9



1–2 Chapter 1: Introduction

Features

MAX II Device Handbook © August 2009 Altera Corporation

Table 1–1 shows the MAX II family features.

f For more information about equivalent macrocells, refer to the MAX II Logic Element to 
Macrocell Conversion Methodology white paper.

MAX II and MAX IIG devices are available in three speed grades: –3, –4, and –5, with 
–3 being the fastest. Similarly, MAX IIZ devices are available in three speed grades: –6, 
–7, and –8, with –6 being the fastest. These speed grades represent the overall relative 
performance, not any specific timing parameter. For propagation delay timing 
numbers within each speed grade and density, refer to the DC and Switching 
Characteristics chapter in the MAX II Device Handbook.

Table 1–2 shows MAX II device speed-grade offerings.

Table 1–1. MAX II Family Features

Feature
EPM240

EPM240G 
EPM570

EPM570G
EPM1270

EPM1270G
EPM2210

EPM2210G EPM240Z EPM570Z

LEs 240 570 1,270 2,210 240 570

Typical Equivalent Macrocells 192 440 980 1,700 192 440

Equivalent Macrocell Range 128 to 240 240 to 570 570 to 1,270 1,270 to 2,210 128 to 240 240 to 570

UFM Size (bits) 8,192 8,192 8,192 8,192 8,192 8,192

Maximum User I/O pins 80 160 212 272 80 160

tPD1 (ns) (1) 4.7 5.4 6.2 7.0 7.5 9.0

fCNT (MHz) (2) 304 304 304 304 152 152

tSU (ns) 1.7 1.2 1.2 1.2 2.3 2.2

tCO (ns) 4.3 4.5 4.6 4.6 6.5 6.7

Notes to Table 1–1:

(1) tPD1 represents a pin-to-pin delay for the worst case I/O placement with a full diagonal path across the device and combinational logic 
implemented in a single LUT and LAB that is adjacent to the output pin.

(2) The maximum frequency is limited by the I/O standard on the clock input pin. The 16-bit counter critical delay will run faster than this number.

Table 1–2. MAX II Speed Grades

Device

Speed Grade

–3 –4 –5 –6 –7 –8

EPM240

EPM240G

v v v — — —

EPM570

EPM570G

v v v — — —

EPM1270

EPM1270G

v v v — — —

EPM2210

EPM2210G

v v v — — —

EPM240Z — — — v v v

EPM570Z — — — v v v
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MAX II devices are available in space-saving FineLine BGA, Micro FineLine BGA, 
and thin quad flat pack (TQFP) packages (refer to Table 1–3 and Table 1–4). MAX II 
devices support vertical migration within the same package (for example, you can 
migrate between the EPM570, EPM1270, and EPM2210 devices in the 256-pin 
FineLine BGA package). Vertical migration means that you can migrate to devices 
whose dedicated pins and JTAG pins are the same and power pins are subsets or 
supersets for a given package across device densities. The largest density in any 
package has the highest number of power pins; you must lay out for the largest 
planned density in a package to provide the necessary power pins for migration. For 
I/O pin migration across densities, cross reference the available I/O pins using the 
device pin-outs for all planned densities of a given package type to identify which 
I/O pins can be migrated. The Quartus® II software can automatically cross-reference 
and place all pins for you when given a device migration list.

 

Table 1–3. MAX II Packages and User I/O Pins

Device

68-Pin 
Micro 

FineLine 
BGA (1)

100-Pin 
Micro 

FineLine 
BGA (1)

100-Pin 
FineLine 

BGA
100-Pin 

TQFP
144-Pin 

TQFP

144-Pin 
Micro 

FineLine 
BGA (1)

256-Pin 
Micro 

FineLine 
BGA (1)

256-Pin 
FineLine 

BGA

324-Pin 
FineLine 

BGA

EPM240

EPM240G

— 80 80 80 — — — — —

EPM570

EPM570G

— 76 76 76 116 — 160 160 —

EPM1270

EPM1270G

— — — — 116 — 212 212 —

EPM2210

EPM2210G

— — — — — — — 204 272

EPM240Z 54 80 — — — — — — —

EPM570Z — 76 — — — 116 160 — —

Note to Table 1–3:

(1) Packages available in lead-free versions only.

Table 1–4. MAX II TQFP, FineLine BGA, and Micro FineLine BGA Package Sizes

Package

68-Pin 
Micro 

FineLine 
BGA

100-Pin 
Micro 

FineLine 
BGA

100-Pin 
FineLine 

BGA
100-Pin 

TQFP
144-Pin 

TQFP

144-Pin 
Micro 

FineLine 
BGA

256-Pin 
Micro 

FineLine 
BGA

256-Pin 
FineLine 

BGA

324-Pin 
FineLine 

BGA

Pitch (mm) 0.5 0.5 1 0.5 0.5 0.5 0.5 1 1

Area (mm2) 25 36 121 256 484 49 121 289 361

Length × width
(mm × mm)

5 × 5 6 × 6 11 × 11 16 × 16 22 × 22 7 × 7 11 × 11 17 × 17 19 × 19
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MAX II devices have an internal linear voltage regulator which supports external 
supply voltages of 3.3 V or 2.5 V, regulating the supply down to the internal operating 
voltage of 1.8 V. MAX IIG and MAX IIZ devices only accept 1.8 V as the external 
supply voltage. MAX IIZ devices are pin-compatible with MAX IIG devices in the 
100-pin Micro FineLine BGA and 256-pin Micro FineLine BGA packages. Except for 
external supply voltage requirements, MAX II and MAX II G devices have identical 
pin-outs and timing specifications. Table 1–5 shows the external supply voltages 
supported by the MAX II family.

Referenced Documents
This chapter references the following documents:

■ DC and Switching Characteristics chapter in the MAX II Device Handbook

■ MAX II Logic Element to Macrocell Conversion Methodology white paper

Document Revision History
Table 1–6 shows the revision history for this chapter.

Table 1–5. MAX II External Supply Voltages

Devices

EPM240
EPM570

EPM1270
EPM2210

EPM240G
EPM570G
EPM1270G
EPM2210G
EPM240Z

EPM570Z (1)

MultiVolt core external supply voltage (VCCINT) (2) 3.3 V, 2.5 V 1.8 V

MultiVolt I/O interface voltage levels (VCCIO) 1.5 V, 1.8 V, 2.5 V, 3.3 V 1.5 V, 1.8 V, 2.5 V, 3.3 V

Notes to Table 1–5:

(1) MAX IIG and MAX IIZ devices only accept 1.8 V on their VCCINT pins. The 1.8-V VCCINT external supply powers the device core directly.

(2) MAX II devices operate internally at 1.8 V. 

Table 1–6. Document Revision History

Date and Revision Changes Made Summary of Changes

August 2009,
version 1.9

■ Updated Table 1–2. Added information for speed grade –8

October 2008,
version 1.8

■ Updated “Introduction” section.

■ Updated new Document Format.

—

December 2007,
version1.7

■ Updated Table 1–1 through Table 1–5.

■ Added “Referenced Documents” section.

Updated document with MAX IIZ information.

December 2006,
version 1.6

■ Added document revision history. —

August 2006,
version 1.5

■ Minor update to features list. —

July 2006,
version 1.4

■ Minor updates to tables. —
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June 2005,
version 1.3

■ Updated timing numbers in Table 1-1. —

December 2004,
version 1.2

■ Updated timing numbers in Table 1-1. —

June 2004,
version 1.1

■ Updated timing numbers in Table 1-1. —

Table 1–6. Document Revision History

Date and Revision Changes Made Summary of Changes
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2. MAX II Architecture

Introduction
This chapter describes the architecture of the MAX II device and contains the 
following sections:

■ “Functional Description” on page 2–1

■ “Logic Array Blocks” on page 2–4

■ “Logic Elements” on page 2–6

■ “MultiTrack Interconnect” on page 2–12

■ “Global Signals” on page 2–16

■ “User Flash Memory Block” on page 2–18

■ “MultiVolt Core” on page 2–22

■ “I/O Structure” on page 2–23

Functional Description
MAX® II devices contain a two-dimensional row- and column-based architecture to 
implement custom logic. Row and column interconnects provide signal interconnects 
between the logic array blocks (LABs).

The logic array consists of LABs, with 10 logic elements (LEs) in each LAB. An LE is a 
small unit of logic providing efficient implementation of user logic functions. LABs 
are grouped into rows and columns across the device. The MultiTrack interconnect 
provides fast granular timing delays between LABs. The fast routing between LEs 
provides minimum timing delay for added levels of logic versus globally routed 
interconnect structures.

The MAX II device I/O pins are fed by I/O elements (IOE) located at the ends of LAB 
rows and columns around the periphery of the device. Each IOE contains a 
bidirectional I/O buffer with several advanced features. I/O pins support Schmitt 
trigger inputs and various single-ended standards, such as 66-MHz, 32-bit PCI, and 
LVTTL.

MAX II devices provide a global clock network. The global clock network consists of 
four global clock lines that drive throughout the entire device, providing clocks for all 
resources within the device. The global clock lines can also be used for control signals 
such as clear, preset, or output enable.

MII51002-2.2
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Figure 2–1 shows a functional block diagram of the MAX II device.

Each MAX II device contains a flash memory block within its floorplan. On the 
EPM240 device, this block is located on the left side of the device. On the EPM570, 
EPM1270, and EPM2210 devices, the flash memory block is located on the bottom-left 
area of the device. The majority of this flash memory storage is partitioned as the 
dedicated configuration flash memory (CFM) block. The CFM block provides the non-
volatile storage for all of the SRAM configuration information. The CFM 
automatically downloads and configures the logic and I/O at power-up, providing 
instant-on operation.

f For more information about configuration upon power-up, refer to the Hot Socketing 
and Power-On Reset in MAX II Devices chapter in the MAX II Device Handbook.

A portion of the flash memory within the MAX II device is partitioned into a small 
block for user data. This user flash memory (UFM) block provides 8,192 bits of 
general-purpose user storage. The UFM provides programmable port connections to 
the logic array for reading and writing. There are three LAB rows adjacent to this 
block, with column numbers varying by device. 

Table 2–1 shows the number of LAB rows and columns in each device, as well as the 
number of LAB rows and columns adjacent to the flash memory area in the EPM570, 
EPM1270, and EPM2210 devices. The long LAB rows are full LAB rows that extend 
from one side of row I/O blocks to the other. The short LAB rows are adjacent to the 
UFM block; their length is shown as width in LAB columns.

Figure 2–1. MAX II Device Block Diagram
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Figure 2–2 shows a floorplan of a MAX II device. 

Table 2–1. MAX II Device Resources

Devices UFM Blocks LAB Columns

LAB Rows

Total LABsLong LAB Rows
Short LAB Rows 

(Width) (1)

EPM240 1 6 4 — 24

EPM570 1 12 4 3 (3) 57

EPM1270 1 16 7 3 (5) 127

EPM2210 1 20 10 3 (7) 221

Note to Table 2–1:

(1) The width is the number of LAB columns in length.

Figure 2–2. MAX II Device Floorplan (Note 1)

Note to Figure 2–2:

(1) The device shown is an EPM570 device. EPM1270 and EPM2210 devices have a similar floorplan with more LABs. For EPM240 devices, the CFM 
and UFM blocks are located on the left side of the device.
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Logic Array Blocks
Each LAB consists of 10 LEs, LE carry chains, LAB control signals, a local interconnect, 
a look-up table (LUT) chain, and register chain connection lines. There are 26 possible 
unique inputs into an LAB, with an additional 10 local feedback input lines fed by LE 
outputs in the same LAB. The local interconnect transfers signals between LEs in the 
same LAB. LUT chain connections transfer the output of one LE’s LUT to the adjacent 
LE for fast sequential LUT connections within the same LAB. Register chain 
connections transfer the output of one LE’s register to the adjacent LE’s register 
within an LAB. The Quartus® II software places associated logic within an LAB or 
adjacent LABs, allowing the use of local, LUT chain, and register chain connections 
for performance and area efficiency. Figure 2–3 shows the MAX II LAB.

LAB Interconnects

The LAB local interconnect can drive LEs within the same LAB. The LAB local 
interconnect is driven by column and row interconnects and LE outputs within the 
same LAB. Neighboring LABs, from the left and right, can also drive an LAB’s local 
interconnect through the DirectLink connection. The DirectLink connection feature 
minimizes the use of row and column interconnects, providing higher performance 
and flexibility. Each LE can drive 30 other LEs through fast local and DirectLink 
interconnects. Figure 2–4 shows the DirectLink connection.

Figure 2–3. MAX II LAB Structure

Note to Figure 2–3:

(1) Only from LABs adjacent to IOEs.
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LAB Control Signals

Each LAB contains dedicated logic for driving control signals to its LEs. The control 
signals include two clocks, two clock enables, two asynchronous clears, a 
synchronous clear, an asynchronous preset/load, a synchronous load, and 
add/subtract control signals, providing a maximum of 10 control signals at a time. 
Although synchronous load and clear signals are generally used when implementing 
counters, they can also be used with other functions.

Each LAB can use two clocks and two clock enable signals. Each LAB’s clock and 
clock enable signals are linked. For example, any LE in a particular LAB using the 
labclk1 signal also uses labclkena1. If the LAB uses both the rising and falling 
edges of a clock, it also uses both LAB-wide clock signals. Deasserting the clock 
enable signal turns off the LAB-wide clock.

Each LAB can use two asynchronous clear signals and an asynchronous load/preset 
signal. By default, the Quartus II software uses a NOT gate push-back technique to 
achieve preset. If you disable the NOT gate push-back option or assign a given register 
to power-up high using the Quartus II software, the preset is then achieved using the 
asynchronous load signal with asynchronous load data input tied high.

With the LAB-wide addnsub control signal, a single LE can implement a one-bit adder 
and subtractor. This saves LE resources and improves performance for logic functions 
such as correlators and signed multipliers that alternate between addition and 
subtraction depending on data. 

The LAB column clocks [3..0], driven by the global clock network, and LAB local 
interconnect generate the LAB-wide control signals. The MultiTrack interconnect 
structure drives the LAB local interconnect for non-global control signal generation. 
The MultiTrack interconnect’s inherent low skew allows clock and control signal 
distribution in addition to data. Figure 2–5 shows the LAB control signal generation 
circuit.

Figure 2–4. DirectLink Connection
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Logic Elements
The smallest unit of logic in the MAX II architecture, the LE, is compact and provides 
advanced features with efficient logic utilization. Each LE contains a four-input LUT, 
which is a function generator that can implement any function of four variables. In 
addition, each LE contains a programmable register and carry chain with carry-select 
capability. A single LE also supports dynamic single-bit addition or subtraction mode 
selectable by an LAB-wide control signal. Each LE drives all types of interconnects: 
local, row, column, LUT chain, register chain, and DirectLink interconnects. See 
Figure 2–6.

Figure 2–5. LAB-Wide Control Signals
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Each LE’s programmable register can be configured for D, T, JK, or SR operation. Each 
register has data, true asynchronous load data, clock, clock enable, clear, and 
asynchronous load/preset inputs. Global signals, general-purpose I/O pins, or any 
LE can drive the register’s clock and clear control signals. Either general-purpose I/O 
pins or LEs can drive the clock enable, preset, asynchronous load, and asynchronous 
data. The asynchronous load data input comes from the data3 input of the LE. For 
combinational functions, the LUT output bypasses the register and drives directly to 
the LE outputs.

Each LE has three outputs that drive the local, row, and column routing resources. The 
LUT or register output can drive these three outputs independently. Two LE outputs 
drive column or row and DirectLink routing connections and one drives local 
interconnect resources. This allows the LUT to drive one output while the register 
drives another output. This register packing feature improves device utilization 
because the device can use the register and the LUT for unrelated functions. Another 
special packing mode allows the register output to feed back into the LUT of the same 
LE so that the register is packed with its own fan-out LUT. This provides another 
mechanism for improved fitting. The LE can also drive out registered and 
unregistered versions of the LUT output.

Figure 2–6. MAX II LE
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LUT Chain and Register Chain

In addition to the three general routing outputs, the LEs within an LAB have LUT 
chain and register chain outputs. LUT chain connections allow LUTs within the same 
LAB to cascade together for wide input functions. Register chain outputs allow 
registers within the same LAB to cascade together. The register chain output allows an 
LAB to use LUTs for a single combinational function and the registers to be used for 
an unrelated shift register implementation. These resources speed up connections 
between LABs while saving local interconnect resources. Refer to “MultiTrack 
Interconnect” on page 2–12 for more information about LUT chain and register chain 
connections.

addnsub Signal

The LE’s dynamic adder/subtractor feature saves logic resources by using one set of 
LEs to implement both an adder and a subtractor. This feature is controlled by the 
LAB-wide control signal addnsub. The addnsub signal sets the LAB to perform either 
A + B or A – B. The LUT computes addition; subtraction is computed by adding the 
two’s complement of the intended subtractor. The LAB-wide signal converts to two’s 
complement by inverting the B bits within the LAB and setting carry-in to 1, which 
adds one to the least significant bit (LSB). The LSB of an adder/subtractor must be 
placed in the first LE of the LAB, where the LAB-wide addnsub signal automatically 
sets the carry-in to 1. The Quartus II Compiler automatically places and uses the 
adder/subtractor feature when using adder/subtractor parameterized functions.

LE Operating Modes

The MAX II LE can operate in one of the following modes:

■ “Normal Mode”

■ “Dynamic Arithmetic Mode”

Each mode uses LE resources differently. In each mode, eight available inputs to the 
LE, the four data inputs from the LAB local interconnect, carry-in0 and carry-
in1 from the previous LE, the LAB carry-in from the previous carry-chain LAB, and 
the register chain connection are directed to different destinations to implement the 
desired logic function. LAB-wide signals provide clock, asynchronous clear, 
asynchronous preset/load, synchronous clear, synchronous load, and clock enable 
control for the register. These LAB-wide signals are available in all LE modes. The 
addnsub control signal is allowed in arithmetic mode. 

The Quartus II software, in conjunction with parameterized functions such as library 
of parameterized modules (LPM) functions, automatically chooses the appropriate 
mode for common functions such as counters, adders, subtractors, and arithmetic 
functions. 
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Normal Mode

The normal mode is suitable for general logic applications and combinational 
functions. In normal mode, four data inputs from the LAB local interconnect are 
inputs to a four-input LUT (see Figure 2–7). The Quartus II Compiler automatically 
selects the carry-in or the data3 signal as one of the inputs to the LUT. Each LE can use 
LUT chain connections to drive its combinational output directly to the next LE in the 
LAB. Asynchronous load data for the register comes from the data3 input of the LE. 
LEs in normal mode support packed registers.

Dynamic Arithmetic Mode

The dynamic arithmetic mode is ideal for implementing adders, counters, 
accumulators, wide parity functions, and comparators. An LE in dynamic arithmetic 
mode uses four 2-input LUTs configurable as a dynamic adder/subtractor. The first 
two 2-input LUTs compute two summations based on a possible carry-in of 1 or 0; the 
other two LUTs generate carry outputs for the two chains of the carry-select circuitry. 
As shown in Figure 2–8, the LAB carry-in signal selects either the carry-in0 or 
carry-in1 chain. The selected chain’s logic level in turn determines which parallel sum 
is generated as a combinational or registered output. For example, when 
implementing an adder, the sum output is the selection of two possible calculated 
sums:

data1 + data2 + carry in0

or

data1 + data2 + carry-in1

Figure 2–7. LE in Normal Mode

Note to Figure 2–7:

(1) This signal is only allowed in normal mode if the LE is at the end of an adder/subtractor chain.
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The other two LUTs use the data1 and data2 signals to generate two possible carry-out 
signals: one for a carry of 1 and the other for a carry of 0. The carry-in0 signal acts 
as the carry-select for the carry-out0 output and carry-in1 acts as the carry-
select for the carry-out1 output. LEs in arithmetic mode can drive out registered 
and unregistered versions of the LUT output.

The dynamic arithmetic mode also offers clock enable, counter enable, synchronous 
up/down control, synchronous clear, synchronous load, and dynamic 
adder/subtractor options. The LAB local interconnect data inputs generate the 
counter enable and synchronous up/down control signals. The synchronous clear 
and synchronous load options are LAB-wide signals that affect all registers in the 
LAB. The Quartus II software automatically places any registers that are not used by 
the counter into other LABs. The addnsub LAB-wide signal controls whether the LE 
acts as an adder or subtractor.

Carry-Select Chain

The carry-select chain provides a very fast carry-select function between LEs in 
dynamic arithmetic mode. The carry-select chain uses the redundant carry calculation 
to increase the speed of carry functions. The LE is configured to calculate outputs for a 
possible carry-in of 0 and carry-in of 1 in parallel. The carry-in0 and carry-in1 
signals from a lower-order bit feed forward into the higher-order bit via the parallel 
carry chain and feed into both the LUT and the next portion of the carry chain. Carry-
select chains can begin in any LE within an LAB. 

Figure 2–8. LE in Dynamic Arithmetic Mode

Note to Figure 2–8:

(1) The addnsub signal is tied to the carry input for the first LE of a carry chain only.
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The speed advantage of the carry-select chain is in the parallel precomputation of 
carry chains. Since the LAB carry-in selects the precomputed carry chain, not every LE 
is in the critical path. Only the propagation delays between LAB carry-in generation 
(LE 5 and LE 10) are now part of the critical path. This feature allows the MAX II 
architecture to implement high-speed counters, adders, multipliers, parity functions, 
and comparators of arbitrary width. 

Figure 2–9 shows the carry-select circuitry in an LAB for a 10-bit full adder. One 
portion of the LUT generates the sum of two bits using the input signals and the 
appropriate carry-in bit; the sum is routed to the output of the LE. The register can be 
bypassed for simple adders or used for accumulator functions. Another portion of the 
LUT generates carry-out bits. An LAB-wide carry-in bit selects which chain is used for 
the addition of given inputs. The carry-in signal for each chain, carry-in0 or 
carry-in1, selects the carry-out to carry forward to the carry-in signal of the next-
higher-order bit. The final carry-out signal is routed to an LE, where it is fed to local, 
row, or column interconnects. 

Figure 2–9. Carry-Select Chain
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The Quartus II software automatically creates carry chain logic during design 
processing, or you can create it manually during design entry. Parameterized 
functions such as LPM functions automatically take advantage of carry chains for the 
appropriate functions. The Quartus II software creates carry chains longer than 10 LEs 
by linking adjacent LABs within the same row together automatically. A carry chain 
can extend horizontally up to one full LAB row, but does not extend between LAB 
rows.

Clear and Preset Logic Control

LAB-wide signals control the logic for the register ’s clear and preset signals. The LE 
directly supports an asynchronous clear and preset function. The register preset is 
achieved through the asynchronous load of a logic high. MAX II devices support 
simultaneous preset/asynchronous load and clear signals. An asynchronous clear 
signal takes precedence if both signals are asserted simultaneously. Each LAB 
supports up to two clears and one preset signal.

In addition to the clear and preset ports, MAX II devices provide a chip-wide reset pin 
(DEV_CLRn) that resets all registers in the device. An option set before compilation in 
the Quartus II software controls this pin. This chip-wide reset overrides all other 
control signals and uses its own dedicated routing resources (that is, it does not use 
any of the four global resources). Driving this signal low before or during power-up 
prevents user mode from releasing clears within the design. This allows you to control 
when clear is released on a device that has just been powered-up. If not set for its chip-
wide reset function, the DEV_CLRn pin is a regular I/O pin.

By default, all registers in MAX II devices are set to power-up low. However, this 
power-up state can be set to high on individual registers during design entry using 
the Quartus II software.

MultiTrack Interconnect
In the MAX II architecture, connections between LEs, the UFM, and device I/O pins 
are provided by the MultiTrack interconnect structure. The MultiTrack interconnect 
consists of continuous, performance-optimized routing lines used for inter- and intra-
design block connectivity. The Quartus II Compiler automatically places critical 
design paths on faster interconnects to improve design performance.

The MultiTrack interconnect consists of row and column interconnects that span fixed 
distances. A routing structure with fixed length resources for all devices allows 
predictable and short delays between logic levels instead of large delays associated 
with global or long routing lines. Dedicated row interconnects route signals to and 
from LABs within the same row. These row resources include:

■ DirectLink interconnects between LABs 

■ R4 interconnects traversing four LABs to the right or left

The DirectLink interconnect allows an LAB to drive into the local interconnect of its 
left and right neighbors. The DirectLink interconnect provides fast communication 
between adjacent LABs and/or blocks without using row interconnect resources.
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The R4 interconnects span four LABs and are used for fast row connections in a four-
LAB region. Every LAB has its own set of R4 interconnects to drive either left or right. 
Figure 2–10 shows R4 interconnect connections from an LAB. R4 interconnects can 
drive and be driven by row IOEs. For LAB interfacing, a primary LAB or horizontal 
LAB neighbor can drive a given R4 interconnect. For R4 interconnects that drive to the 
right, the primary LAB and right neighbor can drive on to the interconnect. For R4 
interconnects that drive to the left, the primary LAB and its left neighbor can drive on 
to the interconnect. R4 interconnects can drive other R4 interconnects to extend the 
range of LABs they can drive. R4 interconnects can also drive C4 interconnects for 
connections from one row to another. 

The column interconnect operates similarly to the row interconnect. Each column of 
LABs is served by a dedicated column interconnect, which vertically routes signals to 
and from LABs and row and column IOEs. These column resources include:

■ LUT chain interconnects within an LAB

■ Register chain interconnects within an LAB

■ C4 interconnects traversing a distance of four LABs in an up and down direction

MAX II devices include an enhanced interconnect structure within LABs for routing 
LE output to LE input connections faster using LUT chain connections and register 
chain connections. The LUT chain connection allows the combinational output of an 
LE to directly drive the fast input of the LE right below it, bypassing the local 
interconnect. These resources can be used as a high-speed connection for wide fan-in 

Figure 2–10. R4 Interconnect Connections

Notes to Figure 2–10:

(1) C4 interconnects can drive R4 interconnects.

(2) This pattern is repeated for every LAB in the LAB row.
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functions from LE 1 to LE 10 in the same LAB. The register chain connection allows 
the register output of one LE to connect directly to the register input of the next LE in 
the LAB for fast shift registers. The Quartus II Compiler automatically takes 
advantage of these resources to improve utilization and performance. Figure 2–11 
shows the LUT chain and register chain interconnects.

The C4 interconnects span four LABs up or down from a source LAB. Every LAB has 
its own set of C4 interconnects to drive either up or down. Figure 2–12 shows the C4 
interconnect connections from an LAB in a column. The C4 interconnects can drive 
and be driven by column and row IOEs. For LAB interconnection, a primary LAB or 
its vertical LAB neighbor can drive a given C4 interconnect. C4 interconnects can 
drive each other to extend their range as well as drive row interconnects for column-
to-column connections. 

Figure 2–11. LUT Chain and Register Chain Interconnects
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Figure 2–12. C4 Interconnect Connections (Note 1)

Note to Figure 2–12:

(1) Each C4 interconnect can drive either up or down four rows.
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The UFM block communicates with the logic array similar to LAB-to-LAB interfaces. 
The UFM block connects to row and column interconnects and has local interconnect 
regions driven by row and column interconnects. This block also has DirectLink 
interconnects for fast connections to and from a neighboring LAB. For more 
information about the UFM interface to the logic array, see “User Flash Memory 
Block” on page 2–18.

Table 2–2 shows the MAX II device routing scheme.

Global Signals
Each MAX II device has four dual-purpose dedicated clock pins (GCLK[3..0], two 
pins on the left side and two pins on the right side) that drive the global clock network 
for clocking, as shown in Figure 2–13. These four pins can also be used as general-
purpose I/O if they are not used to drive the global clock network. 

The four global clock lines in the global clock network drive throughout the entire 
device. The global clock network can provide clocks for all resources within the 
device including LEs, LAB local interconnect, IOEs, and the UFM block. The global 
clock lines can also be used for global control signals, such as clock enables, 
synchronous or asynchronous clears, presets, output enables, or protocol control 
signals such as TRDY and IRDY for PCI. Internal logic can drive the global clock 
network for internally-generated global clocks and control signals. Figure 2–13 shows 
the various sources that drive the global clock network.

Table 2–2. MAX II Device Routing Scheme

Source

Destination

LUT 
Chain

Register 
Chain

Local 
(1)

DirectLink 
(1) R4 (1) C4 (1) LE

UFM 
Block

Column 
IOE

Row 
IOE

Fast I/O 
(1)

LUT Chain — — — — — — v — — — —

Register Chain — — — — — — v — — — —

Local 
Interconnect

— — — — — — v v v v —

DirectLink 
Interconnect

— — v — — — — — — — —

R4 Interconnect — — v — v v — — — — —

C4 Interconnect — — v — v v — — — — —

LE v v v v v v — — v v v

UFM Block — — v v v v — — — — —

Column IOE — — — — — v — — — — —

Row IOE — — — v v v — — — — —

Note to Table 2–2:

(1) These categories are interconnects.
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The global clock network drives to individual LAB column signals, LAB column 
clocks [3..0], that span an entire LAB column from the top to the bottom of the device. 
Unused global clocks or control signals in a LAB column are turned off at the LAB 
column clock buffers shown in Figure 2–14. The LAB column clocks [3..0] are 
multiplexed down to two LAB clock signals and one LAB clear signal. Other control 
signal types route from the global clock network into the LAB local interconnect. See 
“LAB Control Signals” on page 2–5 for more information.

Figure 2–13. Global Clock Generation

Note to Figure 2–13:

(1) Any I/O pin can use a MultiTrack interconnect to route as a logic array-generated global clock signal.
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