imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

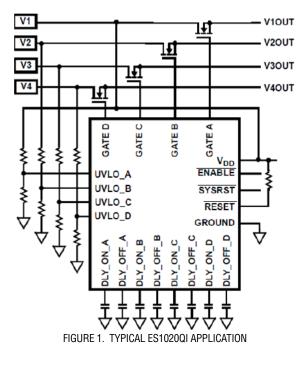
With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

ES1020Q

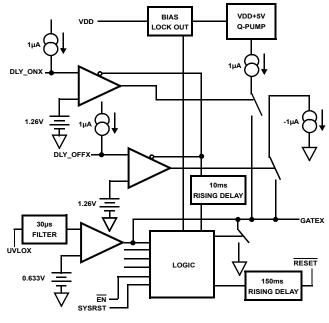

Datasheet

The Altera Enpirion ES1020QI is an integrated 4-channel controlled-on/controlled-off power-supply sequencer with supply monitoring, fault protection and a "sequence completed" signal (RESET). For larger systems, more than four supplies can be sequenced by simply connecting a wire between the SYSRESET pins of cascaded ICs. The ES1020QI uses a patented, micropower 7x charge pump to drive four external low-cost NFET switch gates above the supply rail by 5.3V. These ICs can be biased from 5V down to 1.5V by any supply.

External resistors provide flexible voltage threshold programming of monitored rail voltages. Delay and sequencing are provided by external capacitors for ramp-up and ramp-down.

Additional I/O is provided for indicating and driving the RESET state in various configurations.

For volume applications, other programmable options and features are available.



Features

- Enables Arbitrary Turn-on and Turn-off Sequencing of Up to Four Power Supplies (0.7V to 5V)
- Operates From 1.5V to 5V Supply Voltage
- Supplies V_{DD} +5.3V of Charge Pumped Gate Drive
- · Adjustable Voltage Slew Rate for Each Rail
- Multiple Sequencers Can be Daisy-Chained to Sequence an Infinite Number of Independent Supplies
- Glitch Immunity
- Undervoltage Lockout for Each Supply
- Low ENABLE Input
- QFN Package
- Pb-free (RoHS-compliant)

Applications

- Graphics Cards
- FPGA/ASIC/Microprocessor/PowerPC Supply Sequencing
- Network Routers
- Telecommunications Systems

FIGURE 2. ES1020QI Block Diagram

© 2014 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

Subscribe

May 2014 Altera Corporation

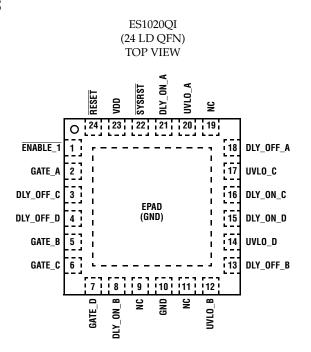
医品质

101 Innovation Drive

San Jose, CA 95134 www.altera.com

Rev A

Ordering Information


PART NUMBER (Notes 1, 2)	PART MARKING	TEMP. RANGE (°C)	PACKAGE (Pb-free)	PKG. DWG. #
ES1020QI	S1020	-40 to +85	24 Ld 4x4 QFN	L24.4x4

NOTES:

1. Add "T" suffix for Tape and Reel. Please refer to Packing and Marking Information: www.altera.com/support/reliability/packing/rel-packing-and-marking.html

2. These Altera Enpirion Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Altera Enpirion Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.

Pin Configurations

ES1020QI Feature Matrix

PART NAME	EN/EN	CMOS/ TTL	GATE DRIVE OR OPEN DRAIN OUTPUTS	REQUIRED Conditions For initial Start-up	NUMBER OF UVLO INPUTS MONITORED BY EACH RESET	NUMBER OF Channels That turn off When one UVLO Faults	PRESET OR ADJUSTABLE SEQUENCE	NUMBER OF UVLO AND PAIRS OF I/O	FEATURES
ES1020QI	EN	CMOS	Gate Drive	4 UVLO 1 EN	4 UVLO	4 Gates	Time Adjustable On and Off	4 Monitors with 1 I/O	Auto Restart

Pin Descriptions

PIN	PIN NUMBER							
NAME	E\$1020QI	DESCRIPTION						
V _{DD}	23	Chip Bias. Bias IC from nominal 1.5V to 5V.						
GND	10	Bias Return. IC ground.						
ENABLE_1	1	Input to start on/off sequencing. Input to initiate start of programmed sequencing of supplies on or off. Enable functionality disabled for 10ms after UVLO is satisfied.						
RESET	24	RESET Output. RESET provides low signal 150ms after all GATEs are fully enhanced. Delay is for stabilization of output voltages. RESET asserts low upon UVLO not being satisfied or ENABLE being deasserted. RESET outputs are open-drain, N- channel FET and are guaranteed to be in correct state for VDD down to 1V and are filtered to ignore fast transients on VDD and UVLO_X.						
UVLO_A	20	Undervoltage Lockout/Monitoring Input. Provides a programmable UV lockout						
UVLO_B	12	referenced to an internal 0.633V reference. Filtered to ignore short (<30µs) transients below programmed UVLO level.						
UVLO_C	17							
UVL0_D	14							
DLY_ON_A	21	Gate On Delay Timer Output. Allows programming of delay and sequence for VOUT						
DLY_ON_B	8	turn-on using a capacitor to ground. Each capacitor charged with 1μ A 10ms aft turn-on initiated by ENABLE. Internal current source provides delay to associate FET GATE turn-on.						
DLY_ON_C	16							
DLY_ON_D	15							
DLY_OFF_A	18	Gate Off Delay Timer Output. Allows programming of delay and sequence for VOUT						
DLY_OFF_B	13	turn-off through ENABLE via a capacitor to ground. Each capacitor charged with						
DLY_OFF_C	3	1µA internal current source to an internal reference voltage, causing correspor gate to be pulled down, thus turning off FET.						
DLY_OFF_D	4							
GATE_A	2	FET Gate Drive Output. Drives external FETs with $1\mu A$ current source to soft-start						
GATE_B	5	ramp into load.						
GATE_C	6							
GATE_D	7							
SYSRST	22	System Reset I/O. As an input, allows for immediate and unconditional latch-off of all GATE outputs when driven low. This input can also be used to initiate programmed sequence with 'zero' wait (no 10ms stabilization delay) from input signal on this pin being driven high to first GATE. As an output, when there is a UV condition, this pin pulls low. If common to other SYSRST pins in a multiple IC configuration, it causes immediate and unconditional latch-off of all other GATEs on all other ES1020QI sequencers.						
GND	EPAD	Ground. Die Substrate. Can be left floating.						
NC	9, 11, 19	No Connect						

Absolute Maximum Ratings (Note 5)

V _{DD}	. +6.0V
GATE	V _{DD} +6V
UVLO, ENABLE, SYSRST0.3V to V _{DI}) + 0.3V
RESET, DLY_ON, DLYOFF0.3V to V _{DI}	₀ + 0.3V

Operating Conditions

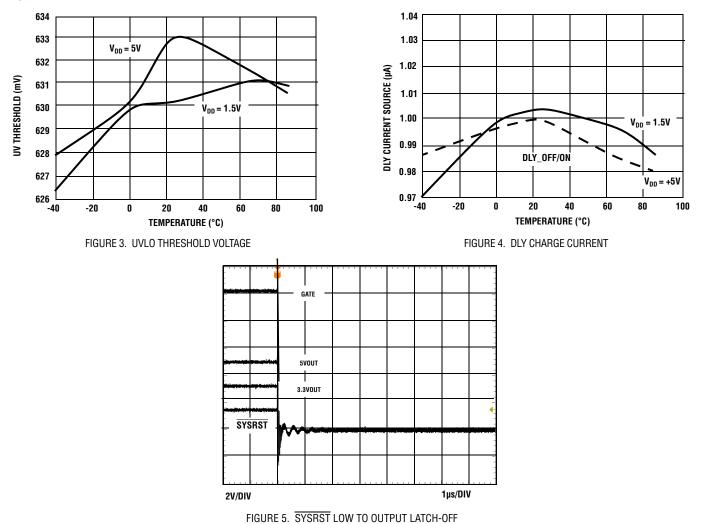
Thermal Information

Thermal Resistance (Typical)	θ_{JA} ((°C/W)	θ_{JC} (°C/W)
24 Ld 4x4 QFN Package (Notes	3, 4)	46	8
Maximum Junction Temperature			+125°C
Maximum Storage Temperature R	lange		65°C to +150°C

CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty.

NOTES:

- 3. θ_{JA} is measured in free air with the component mounted on a high effective thermal conductivity test board with "direct attach" features.
- 4. For θ_{JC} , the "case temp" location is the center of the exposed metal pad on the package underside.
- 5. All voltages are relative to GND, unless otherwise specified.


PARAMETER	SYMBOL	TEST CONDITIONS	MIN (Note 6)	ТҮР	MAX (Note 6)	UNIT
UVLO				L	1	1
Falling Undervoltage Lockout Threshold	V _{UVLOvth}	T _J = +25°C	619	633	647	mV
Undervoltage Lockout Threshold Tempco	TC _{UVLOvth}			40		µV/°C
Undervoltage Lockout Hysteresis	V _{UVLOhys}			10		mV
Undervoltage Lockout Threshold Range	RUVLOvth	Max V _{UVLOvth} - Min V _{UVLOvth}		7		mV
Undervoltage Lockout Delay	TUVLOdel	ENABLE satisfied		10		ms
Transient Filter Duration	t _{FIL}	V _{DD} , UVLO, ENABLE glitch filter		30		μs
DELAY ON/OFF			-		I	r.
Delay Charging Current	DLY_ichg	$V_{DLY} = 0V$	0.92	1	1.08	μA
Delay Charging Current Range	DLY_ichg_r	DLY_ichg(max) - DLY_ichg(min)		0.08		μA
Delay Charging Current Temperature Coefficient	TC_DLY_ichg			0.2		nA/°C
Delay Threshold Voltage	DLY_Vth		1.238	1.266	1.294	V
Delay Threshold Voltage Temperature Coefficient	TC_DLY_Vth			0.2		mV/°C
ENABLE, RESET AND SYSRST I/O				L	4	1
ENABLE Threshold	V _{ENh}			0.5 V _{DD}		V
ENABLE Hysteresis	$V_{ENh} V_{ENI}$	Measured at $V_{DD} = 1.5V$		0.2		V
ENABLE Lockout Delay	t _{delEN_LO}	UVLO satisfied		10		ms
ENABLE Input Capacitance	Cin_en			5		pF
RESET Pull-up Voltage	Vpu_rst			V _{DD}		V
RESET Pull-Down Current	I _{RSTpd1}	$V_{DD} = 1.5V$, $\overline{RST} = 0.1V$		5		mA
	I _{RSTpd3}	$V_{DD} = 3.3V$, $\overline{RST} = 0.1V$		13		mA
	I _{RSTpd5}	$V_{DD} = 5V, \overline{RST} = 0.1V$		17		mA
RESET Delay after GATE High	T _{RST} del	$GATE = V_{DD} + 5V$		160		ms

PARAMETER	SYMBOL	TEST CONDITIONS	MIN (Note 6)	ТҮР	MAX (Note 6)	UNIT
RESET Output Low	V _{RSTI}	Measured at $V_{DD} = 5V$ with 5k pull-up resistors			0.1	V
RESET Output Capacitance	C_{OUT_RST}			10		pF
SYSRST Pull-Up Voltage	Vpu_srst			V _{DD}		V
SYSRST Pull-Down Current	lpu_1.5	V _{DD} = 1.5V		5		μA
-	lpu_5	$V_{DD} = 5V$		100		μA
SYSRST Low Output Voltage	Vol_srst	$V_{DD} = 1.5V, I_{OUT} = 100\mu A$		150		mV
SYSRST Output Capacitance	Cout_srst			10		pF
SYSRST Low to GATE Turn-Off	t _{delSYS_G}	GATE = 80% of V_{DD} + 5V		40		ns
GATE			4	1	L	1
GATE Turn-On Current	IGATEon	GATE = 0V	0.8	1.1	1.4	μA
GATE Turn-Off Current	I _{GATEoff_I}	$GATE = V_{DD}$, Disabled	-1.4	-1.05	-0.8	μA
GATE Current Range	I _{GATE_range}	Within IC I _{GATE} max-min			0.35	μA
GATE Turn-On/Off Current Temperature Coefficient	TC_I _{GATE}			0.2		nA/°C
GATE Pull-Down High Current	$I_{GATEoff_h}$	$GATE = V_{DD}, UVLO = 0V$		88		mA
GATE High Voltage	V _{GATEh}	$V_{DD} < 2V, T_{J} = +25^{\circ}C$		V _{DD} + 4.9V		V
-	V _{GATEh}	$V_{DD} > 2V$	V _{DD} + 5V	V _{DD} + 5.3V		V
GATE Low Voltage	V _{GATEI}	Gate Low Voltage, $V_{DD} = 1V$		0	0.1	V
BIAS			1			r
IC Supply Current	I _{VDD_5V}	$V_{DD} = 5V$		0.20	0.5	mA
-	I _{VDD_3.3V}	V _{DD} = 3.3V		0.14		mA
-	I _{VDD_1.5V}	V _{DD} = 1.5V		0.10		mA
V _{DD} Power-on Reset	V _{DD} _POR				1	V

NOTE:

6. Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise specified. Temperature limits established by characterization and are not production tested.

Typical Performance Curves

Descriptions and Operation

The ES1020QI sequencer is a 4-channel voltage sequencing controller, and is designed for use in multiple-voltage systems requiring power sequencing of various supply voltages. Individual voltage rails are gated on and off by external N-Channel MOSFETs, the gates of which are driven by an internal charge pump to V_{DD} + 5.3V (VQP) in a user-programmed sequence.

The 4-channel ES1020QI ENABLE must be asserted low, and all four voltages to be sequenced must be above their respective user-programmed undervoltage lockout (UVLO) levels before programmed output turn-on sequencing can begin. Sequencing order and delay are determined by the choice of external capacitor values on the DLY_ON and DLY_OFF pins. Once all four UVLO inputs and ENABLE are satisfied for 10ms (t_{delEN_LO}), the four DLY_ON capacitors are simultaneously charged with 1µA current sources to the DLY_Vth level of 1.27V. As each DLY_ON pin reaches the DLY_Vth level, its associated GATE turns on, with a 1µA source current to the charge pump voltage (VQP) of V_{DD} + 5.3V. Thus, all four GATEs sequentially turn on in the user defined order. Once at DLY_Vth, the DLY_ON pins discharge so they are ready when next needed.

After the entire turn-on sequence has been completed and all GATEs have reached the charge pumped voltage (VQP), a 160ms delay ($T_{\overline{RSTdel}}$) is started to ensure stability, after which the \overline{RESET} output is released to go high.

After turn-on, if any input falls below its UVLO point for longer than the glitch filter period (~30µs), it is considered a fault. RESET and SYSRST are pulled low, and all GATEs are simultaneously also pulled low. In this mode, the GATEs are pulled low with 88mA.

Normal shutdown mode is entered when no UVLO is violated and ENABLE is deasserted. When ENABLE is deasserted, RESET is immediately asserted and pulled low. Next, all four shutdown ramp capacitors on the DLY_OFF pins are charged with a 1µA source. When any ramp-capacitor reaches DLY_Vth, a latch is set, and a current is sunk on the respective GATE pin to turn off its external MOSFET. When the GATE voltage is approximately 0.6V, the GATE is pulled down the rest of the way at a higher current level. Each individual external FET is thus turned off, which removes the voltages from the load in the user programmed sequence.

Table 1 shows the nominal time delay on the DLY_X pins for various capacitor values, from the start of charging to the 1.27V reference. This table does not include the 10ms of ENABLE lockout delay during a start-up sequence, but it does represent the time from the end of the ENABLE lockout delay to the start of GATE transition. There is no ENABLE lockout delay for a sequence-off, so this table illustrates the delay to GATE transition from a disable signal.

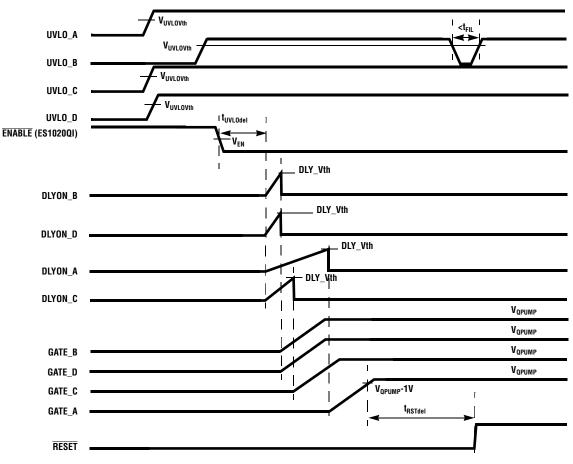
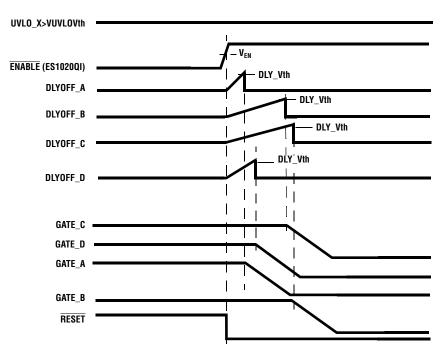
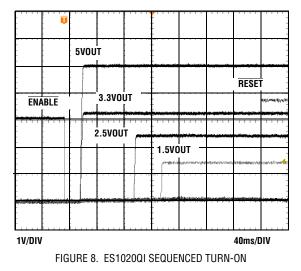
DLY PIN CAPACITANCE	TIME(s)
Open	0.00006
100pF	0.00013
1000pF	0.0013
0.01µF	0.013
0.1µF	0.13
1µF	1.3
10µF	13

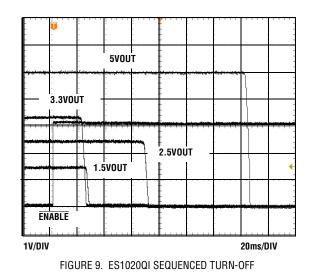
TABLE 1. NOMINAL DELAY TO SEQUENCING THRESHOLD

NOTE: Nom. $T_{DEL SEQ}$ = Capacitor (μ F)*1.3M Ω

Figure 6 shows the turn-on and Figure 7 shows the nominal turn-off timing diagram of the ES1020QI.

Delay and flexible sequencing possibilities include multiple series, parallel, or adjustable capacitors that can be used to easily fine-tune timing over that offered by standard value capacitors.


FIGURE 6. ES1020QI TURN-ON AND GLITCH RESPONSE TIMING DIAGRAM

Typical Performance Waveforms

10041

Application Considerations

Timing Error Sources

In any system there are variance contributors. For the ES1020QI, timing errors are mainly contributed by three sources.

Capacitor Timing Mismatch Error

Obviously, the absolute capacitor value is an error source; thus, lower-percentage tolerance capacitors help to reduce this error source. Figure 10 illustrates a difference of 0.57ms between two DLY_X outputs ramping to DLY_X threshold voltage. These 5% capacitors were from a common source. In applications where two or more GATEs or LOGIC outputs must have concurrent transitions, it is recommended that a common GATE drive be used to eliminate this timing error.

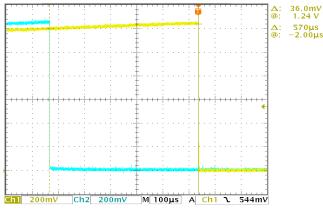
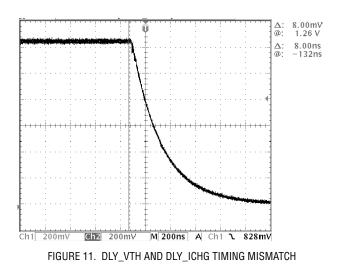



FIGURE 10. CAPACITOR TIMING MISMATCH

DLY_X Threshold Voltage and Charging Current Mismatch

The two other error sources come from the IC itself and are found across the four DLY_X outputs. These errors are the DLY_X threshold voltage (DLY_Vth) variance when the GATE_X charging and discharging current latches are set, and the DLY_X charging current (DLY_ichg) variances to determine the time to next sequencing event. Both of these parameters are bounded by specification. Figure 11 shows that, with a common capacitor, the typical error contributed by these factors is insignificant, since both DLY_X traces overlay each other.

Revision History

The table lists the revision history for this document.

DATE	REVISION	CHANGE
May, 2014	1.0	Initial release.

Package Outline Drawing

L24.4x4

24 LEAD QUAD FLAT NO-LEAD PLASTIC PACKAGE Rev 4, 10/06

NOTES:

- 1. Dimensions are in millimeters. Dimensions in () for Reference Only.
- 2. Dimensioning and tolerancing conform to AMSE Y14.5m-1994.
- 3. Unless otherwise specified, tolerance : Decimal ± 0.05
- 4. Dimension b applies to the metallized terminal and is measured between 0.15mm and 0.30mm from the terminal tip.
- 5. Tiebar shown (if present) is a non-functional feature.
- The configuration of the pin #1 identifier is optional, but must be located within the zone indicated. The pin #1 identifier may be either a mold or mark feature.