

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

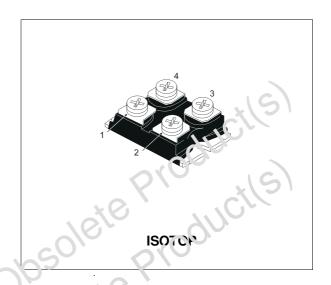
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

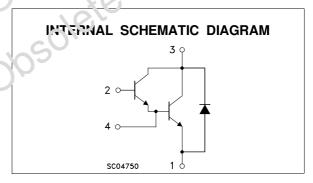
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China




NPN DARLINGTON POWER MODULE

- HIGH CURRENT POWER BIPOLAR MODULE
- VERY LOW Rth JUNCTION CASE
- SPECIFIED ACCIDENTAL OVERLOAD AREAS
- ULTRAFAST FREEWHEELING DIODE
- INSULATED PACKAGE (UL COMPLIANT)
- EASY TO MOUNT
- LOW INTERNAL PARASITIC INDUCTANCE

APPLICATIONS:

- MOTOR CONTROL
- SMPS & UPS
- DC/DC & DC/AC CONVERTERS
- WELDING EQUIPMENT

ABSOLUTE MAXIMUM RATINGS

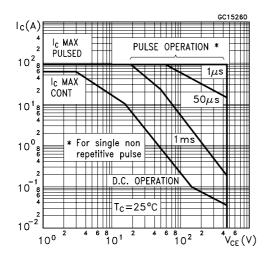
Symbol	Parameter	Value	Unit
V _{CE} /	Collector-Emitter Voltage (V _{BE} = -5 V)	600	V
v CEO(sus)	Collector-Emitter Voltage (I _B = 0)	450	V
V _{EBO} Emitter-Base Voltage (I _C = 0)		7	V
Ic	Collector Current	42	Α
I _{CM}	Collector Peak Current (t _p = 10 ms)	63	Α
I _B	Base Current	4	Α
I_{BM}	Base Peak Current (t _p = 10 ms)	8	Α
P _{tot}	Total Dissipation at T _c = 25 °C	150	W
T _{stg}	Storage Temperature	-55 to 150	°C
Tj	Max. Operating Junction Temperature	150	°C

September 2003

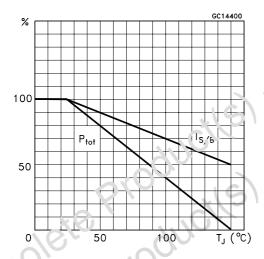
THERMAL DATA

R _{thj-case}	Thermal Resistance Junction-case (trans	istor) Max	0.83	°C/W
R _{thj-case}	Thermal Resistance Junction-case (diode	e) Max	1.5	°C/W
R _{thc-h}	Thermal Resistance Case-heatsink With	Conductive		
	Grease Applied	Max	0.05	°C/W

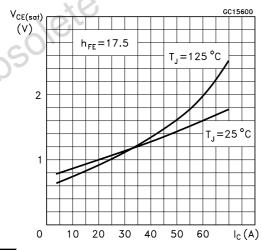
ELECTRICAL CHARACTERISTICS ($T_{case} = 25$ $^{\circ}C$ unless otherwise specified)

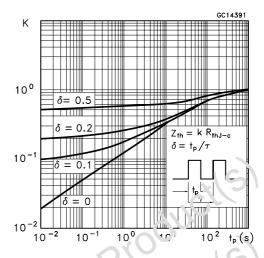

Symbol	Parameter Test Conditions		Min.	Тур.	Max.	Unit
I _{CER} #	Collector Cut-off Current ($R_{BE} = 5 \Omega$)	$V_{CE} = V_{CEV}$ $V_{CE} = V_{CEV}$ $T_j = 100$ °C			1.5 20	mA mA
I _{CEV} #	Collector Cut-off Current (V _{BE} = -5)	$V_{CE} = V_{CEV}$ $V_{CE} = V_{CEV}$ $T_j = 100$ °C			1 13	mA mA
I _{EBO} #	Emitter Cut-off Current (I _C = 0)	V _{EB} = 5 V		111	Cill	mA
V _{CEO(SUS)} *	Collector-Emitter Sustaining Voltage (I _B = 0)	$I_C = 0.2 \text{ A}$ L = 25 mH $V_{clamp} = 450 \text{ V}$	450	00,		V
h _{FE} *	DC Current Gain	Ic = 35 A V _{CE} = 5 V		220		
V _{CE(sat)} *	Collector-Emitter Saturation Voltage	$\begin{array}{llllllllllllllllllllllllllllllllllll$	01	1.15 1.3 1.4 1.5	2 2	< < < <
V _{BE(sat)} *	Base-Emitter Saturation Voltage	I _C = 35 A I _B = 2 A I _j = 100 °C		2.3 2.3	3	V V
di _C /dt	Rate of Rise of On-state Collector	$V_{CC} = 300 \text{ V}$ $R_C = 0$ $t_p = 3 \mu s$ $I_{31} = 0.75 \text{ A}$ $T_j = 100 ^{\circ}\text{C}$	200	250		A/μs
V _{CE} (3 μs)	Collector-Emitter Dynamic Voltage	$V_{CC} = 300 \text{ V}$ $R_C = 12 \Omega$ $I_{B1} = 0.75 \text{ A}$ $T_j = 100 ^{\circ}\text{C}$		4.5	8	V
V _{CE} (5 μs)	Collector-Emitter Dynamic Yoltage	$V_{CC} = 300 \text{ V}$ $R_C = 12 \Omega$ $I_{B1} = 0.75 \text{ A}$ $T_j = 100 ^{\circ}\text{C}$		2.5	4.5	V
t _s t _f t _c	Storage Time Fal' Time Grass-over Time	$\begin{array}{ll} I_{C} = 25A & V_{CC} = 50 \text{ V} \\ V_{BB} = -5 \text{ V} & R_{BB} = 0.6 \Omega \\ V_{clamp} = 450 \text{ V} & I_{B1} = 0.5 \text{ A} \\ L = 0.1 \text{ mH} & T_{j} = 100 ^{\circ}\text{C} \end{array}$		3.2 0.25 0.75	5 0.5 1.5	րջ Աջ Աջ
VCE."	Maximum Collector Emitter Voltage Without Snubber	$\begin{array}{lll} I_{CWoff} = 42 \ A & I_{B1} = 2 \ A \\ V_{BB} = -5 \ V & V_{CC} = 50 \ V \\ L = 0.06 \ mH & R_{BB} = 0.6 \ \Omega \\ T_{j} = 125 \ ^{\circ}C & \end{array}$	450			V
V _F *	Diode Forward Voltage	$I_F = 35 \text{ A}$ $T_j = 100 ^{\circ}\text{C}$		1.5	1.85	V
I _{RM}	Reverse Recovery Current	$V_{CC} = 200 \ V$ $I_F = 35 \ A$ $di_F/dt = -200 \ A/\mu s$ $L < 0.05 \ \mu H$ $T_j = 100 \ ^{\circ}C$		20	24	A

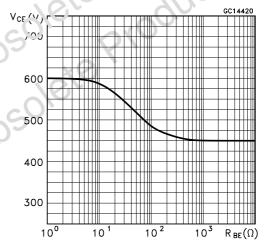
^{*} Pulsed: Pulse duration = $300 \, \mu s$, duty cycle 1.5 %

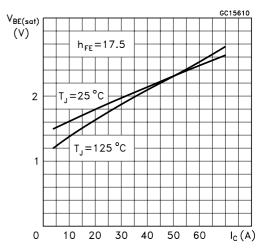

To evaluate the conduction losses of the diode use the following equations: $V_F = 1.5 + 0.001 \, I_F$ $P = 1.5 \, I_{F(AV)} + 0.001 \, I_F^2$ (RMS)

See test circuits in databook introduction

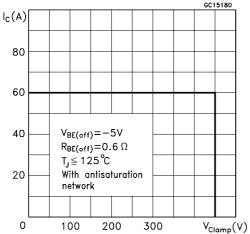

Safe Operating Areas


Derating Curve

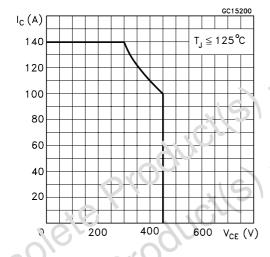

Collector Emitter Saturation Voltage


Thermal Impedance

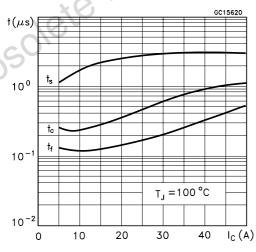
Collector-emitter Voltage Versus base-emitter Resistance



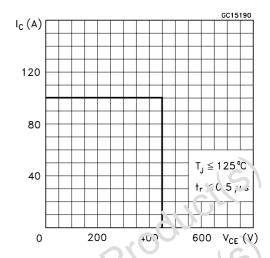
Base-Emitter Saturation Voltage

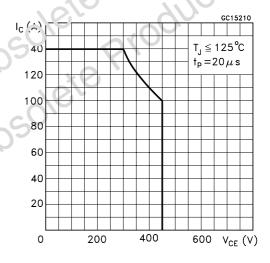

477

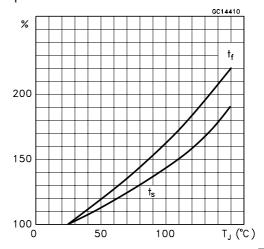
Reverse Biased SOA

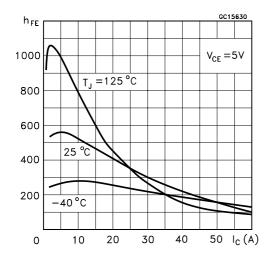


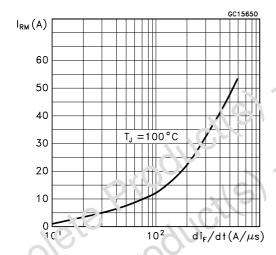
0 100 2

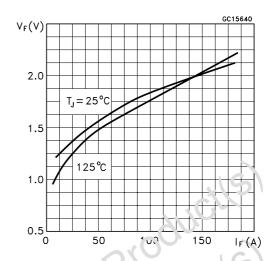

Reverse Biased AOA

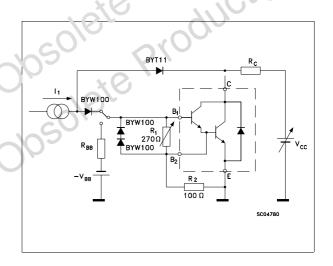

Switching Times Inductive Load

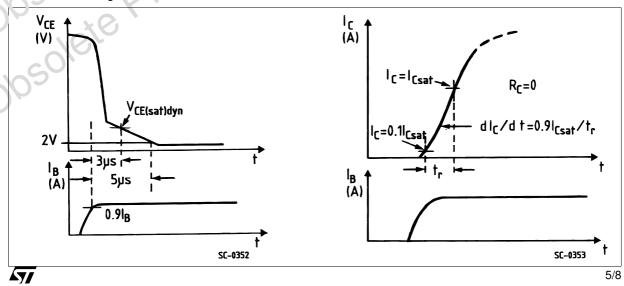

Foward Biased SOA

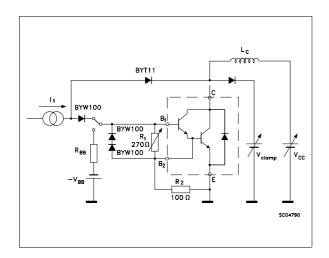

Forward Biased AOA

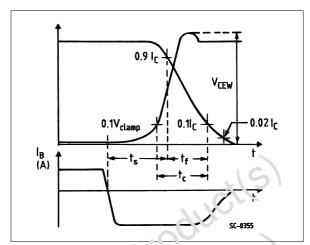

Switching Times Inductive Load Versus Temperature

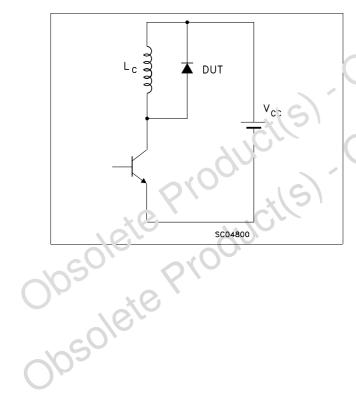

Dc Current Gain

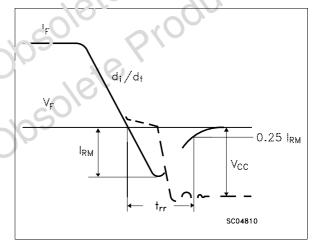

Peak Reverse Current Versus diF/dt


Typical V_F Versus I_F

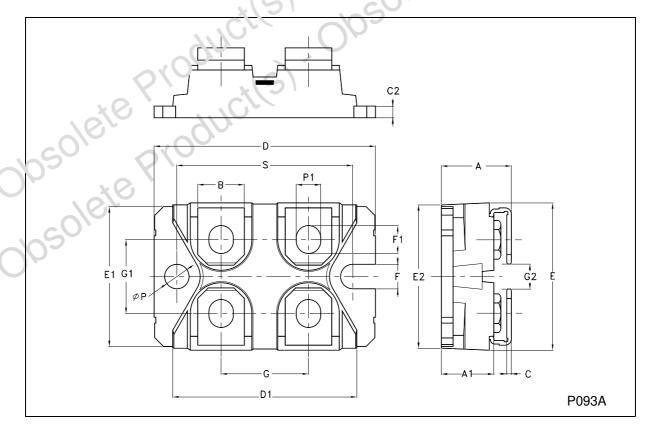

Turn-on Switching Test Circuit


Tunon Switching Waveforms


Turn-on Switching Test Circuit


Turn-off Switching Waveforms

Turn-off Switching Test Circuit of Diode



Turn-off Switching Waveform of Diode

ISOTOP MECHANICAL DATA

DIM.	mm		inch			
DIN.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α	11.8		12.2	0.465		0.480
A1	8.9		9.1	0.350		0.358
В	7.8		8.2	0.307		0.322
С	0.75		0.85	0.029		0.033
C2	1.95		2.05	0.076		0.080
D	37.8		38.2	1.488		1.503
D1	31.5		31.7	1.240		1.243
E	25.15		25.5	0.990		1.003
E1	23.85		24.15	0.938	40	0.950
E2		24.8			(1.976	
G	14.9		15.1	0.586		0.594
G1	12.6		12.8	0.496		0.503
G2	3.5		4.3	0.137	AV	1.169
F	4.1		4.3	7. i o 1	100,	0.169
F1	4.6		5	0.181	2/0	0.196
Р	4		4.3	0.157		0.169
P1	4		5.4	0.157		0.173
S	30.1		30.3	1.185		1.193

Information furnitus of survariated in the superior of the production of the product

of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics.

All other names are the property of their respective owners.

© 2003 STMicroelectronics - All Rights reserved STMicroelectronics GROUP OF COMPANIES

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com

4