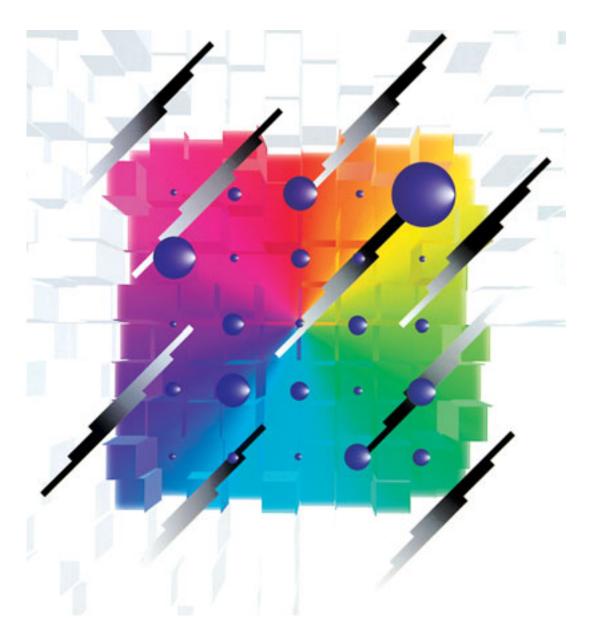
imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!


Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Inductors CONTENTS	Inductors	CONTENTS
--------------------	-----------	----------

Classification	Product Item	Type · Series	Part Number	Page			
		PCC- M0530M/M0540M M0630M/M0645M M0754M/M0750M/M0854M M0850M/M1054M/M1050M M1050ML/M1060ML (MC) for automotive use	ETQ P3M ETQ P4M ETQ P4M ETQ P5M ETQ P6M Y	2			
		PCC- M1280MF (MC) for automotive use	ETQ P8MDDJFA	14			
		PCC- M0530M-LP/M0630M-LP M0840M-LP/M1040M-LP (MC) for automotive use	ETQ P3M□□□KV ETQ P4M□□□KV	19			
		PCC-D1413H (DUST) for automotive use	ETQ PDH240DTV	31			
		PCC-M0630L / M0630M (MC) for consumer use	ETQ P3L/3M	34			
	Power Choke Coils	PCC-M0512W (MC) for consumer use	ETQ P1W	36			
Power		PCC-M0630W (MC) for consumer use	ETQ P3W	38			
		PCC-M0730L (MC) for consumer use	ETQ P3L	40			
		PCC-M0740L (MC) Low DCR Type for consumer use	ETQ P4L	42			
		PCC-M1040L (MC) for consumer use	ETQ P4L	44			
		PCC-M1040L (MC) Low DCR Type for consumer use	ETQ P4L	46			
		PCC-M1040W (MC) for consumer use	ETQ P4W	48			
Inductors		PCC-M1250L (MC) for consumer use	ETQ P5L	50			
(SMD)		Packaging Methods · Soldering Conditions	I	52			
		Safety Precautions (PCC for automotive use)					
		Safety Precautions (PCC for consumer use)					
	Power Inductors	Selection Guide		58			
			ELG UEB	59			
	Multilayer Power Inductors	Magnetic Shielded Type	ELG TEA	61			
		Safety Precautions	l	63			
			ELL VEG, VFG-C, VGG, VGG-C	69			
		Magnetic Shielded Type (Magnetic Adhesive Type)	ELL 4FG-A, 4GG, 4LG-A	72			
		(magnetic Adhesive Type)	ELL 6GG, 6PG	75			
	Power Inductors		ELL 6RH, 6SH, 6UH	77			
	/ Wire Wound type	Magnetic Shielded Type	ELL 8TP	80			
		(Ring Core Type)	ELL ATP	82			
			ELL CTP	84			
		Soldering Conditions · Safety Precautions	·	86			
	Voltage Step-up Coils	Chip	ELT 3KN	88			
		Common page		93			
Power	Choke Coils	Regular Type	ELC 09D, 11D, 12D, 16B, 18B	95			
Inductors (THD)	Pin terminal	Magnetic Shield Type	ELC 10E-L, 12E-L, 15E-L, 18E-L	100			
. ,		Taping/Safety Precautions					

All products in this catalog comply with the RoHS Directive.

The RoHS Directive is "the Directive (2011/65/EU) on the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment " and its revisions.

Power Choke Coil for Automotive application

- PCC-M0630M (MC) PCC-M0645M (MC) PCC-M0754M (MC) PCC-M0750M (MC) PCC-M0854M (MC) PCC-M0850M (MC) PCC-M1054M (MC) PCC-M1050M (MC)
- Series: PCC-M0530M (MC) PCC-M0540M (MC) PCC-M1050ML (MĆ) PCC-M1060ML (MĆ)

Inc (A)

High heat resistance and high reliability Using metal composite core (MC)

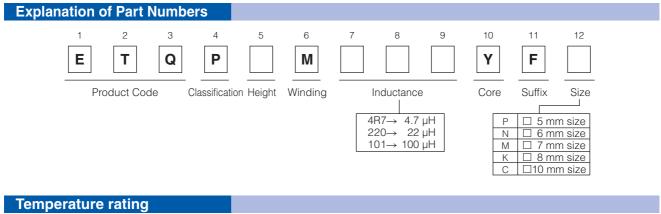
Industrial Property : patents 21 (Registered 2/Pending 19)

Features		
 High heat resistance 	: Operation up to 150 °C including self-heating	• Fig.1 Inductance v.s. DC current, Terr
 High-reliability 	: High vibration resistance as result of newly	ETQP5M470YFM(reference
	developed integral construction; under severe	60.0
	reliability conditions of automotive and other	50.0
- • • • • • • •	strenuous applications	I to o
 High bias current 	: Excellent inductance stability using ferrous alloy	
	magnetic material (Fig.1)	e 30.0 E 30.0 E 20.0 E 20.
• Temp. stability	: Excellent inductance stability over broad temp. range (Fig.1)	₽ 20.0
	: New metal composite core technology	
 High efficiency 	: Low RDC of winding and low eddy-current loss of the core	
 AEC-Q200 Automotive 	qualified	0.0 0.5 1.0 1.5 2.0 2.5 3.0
		0.0 0.3 1.0 1.3 2.0 2.3 3.0

RoHS compliant

Recommended Applications

• Noise filter for various drive circuitry requiring high temp. operation and peak current handling capability


Boost-Converter, Buck-Converter DC/DC

Standard Packing Quantity (Minimum Quantity/Packing Unit)

1,000 pcs./box (2 reel) : PCC-M0645M, M0754M, M0750M, M0854M, M0850M, M1054M,

M1050M, M1050ML, M1060ML

2,000 pcs./box (2 reel) : PCC-M0530M, M0540M, M0630M

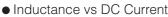
Operatin	g temperature range	Tc : -40 °C to +150 °C(Including self-temperature rise)
Storage condition	After PWB mounting	
Sidrage Condition	Before PWB mounting	Ta : -5 °C to +35 °C 85%RH max.

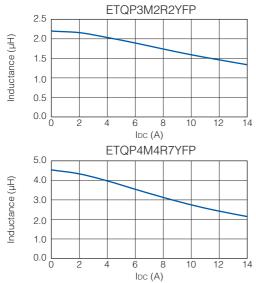
1. Series PCC-M0530M/PCC-M0540M (ETQP3M VFP/ETQP4M VFP)

Standard Parts								
		Inducta	ance *1	DCR (at 20) °C) (mΩ)	Rateo	d Current (Гур. : А)
Series	Part No.	LO	Tolerance	Тур.	Tolerance	∆T=	:40K	△L=-30%
		(µH)	(%)	(max.)	(%)	(*2)	(*3)	(*4)
PCC-M0530M	ETQP3M2R2YFP	2.2		22.6 (24.8)		4.8	5.8	10.9
[5.5×5.0×3.0(mm)]	ETQP3M3R3YFP	3.3	±20	31.3 (34.4)	±10	4.1	5.0	8.6
PCC-M0540M	ETQP4M4R7YFP	4.7	±20	36.0 (39.6)	± 10	4.0	4.8	7.7
[5.5×5.0×4.0(mm)]	ETQP4M220YFP	22]	163 (179)		1.9	2.3	3.1

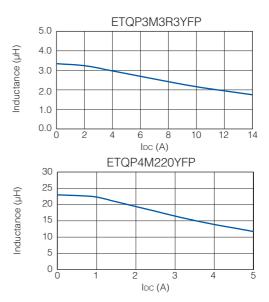
(*1) Measured at 100 kHz.

(*2) DC current which causes temperature rise of 40 K. Parts are soldered by reflow on four-layer PWB (1.6 mm FR4) and measured at room temperature. See also (*5)

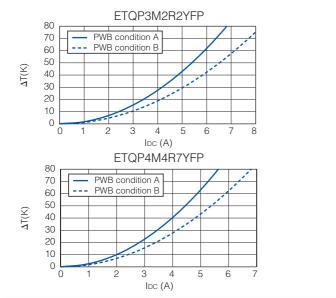

(*3) DC current which causes temperature rise of 40 K. Parts are soldered by reflow on multilayer PWB with high heat dissipation performance. Note: Heat radiation constant are approx. 52 K/W measured on 5.5×5.0×3.0 mm case size and approx. 48 K/W measured on 5.5×5.0×4.0 mm case size. See also (*5)

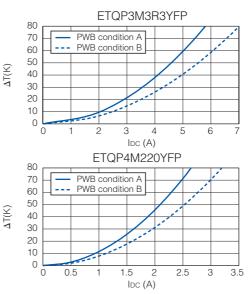

(*4) Saturation rated current : DC current which causes L(0) drop -30 %.

(*5) Within a suitable application, the part's temperature depends on circuit design and certain heat dissipation conditions. This should be double checked in a worst case operation mode. In normal case, the max.standard operating temperature of +150 °C should not be exceeded.


For higher operating temperature conditions, please contact Panasonic representative in your area.

Performance Characteristics (Reference)





PWB condition A : Four-layer PWB (1.6 mm FR4), See also (*2) PWB condition B : Multilayer PWB with high heat dissipation performance. See also (*3)

2. Series PCC-M0630M/PCC-M0645M (ETQP3M VFN/ETQP4M VFN)

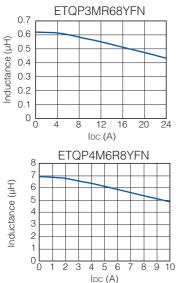
Standard Parts								
		Inducta	ance *1	DCR (at 20) °C) (mΩ)	Rateo	d Current (Гур. : А)
Series	Part No.	LO	Tolerance	Тур.	Tolerance	∆T=	40K	△L=-30%
		(µH)	(%)	(max.)	(%)	(*2)	(*3)	(*4)
PCC-M0630M	ETQP3MR68YFN	0.68		6.3 (6.9)		9.8	12.0	24.0
[6.5×6.0×3.0(mm)]	ETQP3M1R0YFN	1.0]	7.9 (8.7)] [8.8	10.7	20.0
	ETQP4M6R8YFN	6.8	±20	39.3 (43.2)	±10	4.1	5.2	10.0
PCC-M0645M [6.5×6.0×4.5(mm)]	ETQP4M100YFN	10]	54.2 (59.6)] [3.3	4.5	8.3
[0.5×0.0×4.3(1111)]	ETQP4M470YFN	47		210 (231)] [1.8	2.2	3.8

(*1) Measured at 100 kHz.

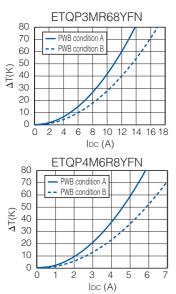
(*2) DC current which causes temperature rise of 40 K. Parts are soldered by reflow on four-layer PWB (1.6 mm FR4) and measured at room temperature. See also (*5)

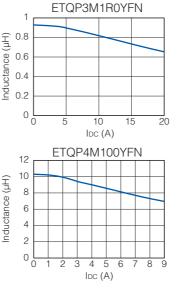
(*3) DC current which causes temperature rise of 40 K. Partsare soldered by reflow on multilayer PWB with high heat dissipation performance. Note: Heat radiation constant are approx. 44 K/W measured on 6.5×6.0×3.0 mm case size and approx. 37 K/W measured on 6.5×6.0×4.5 mm case size. See also (*5)

(*4) Saturation rated current : DC current which causes L(0) drop -30 %.

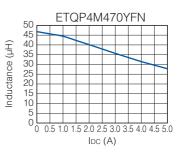

(*5) Within a suitable application, the part's temperature depends on circuit design and certain heat dissipation conditions. This should be double checked in a worst case operation mode.

In normal case, the max.standard operating temperature of +150 °C should not be exceeded.

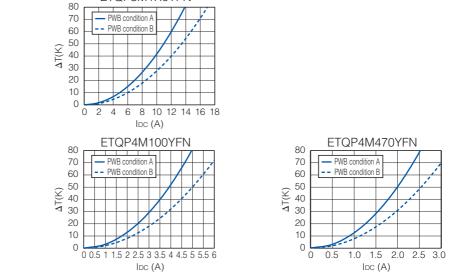

For higher operating temperature conditions, please contact Panasonic representative in your area.


Performance Characteristics (Reference)

Inductance vs DC Current



• Case Temperature vs DC Current



ETQP3M1R0YFN

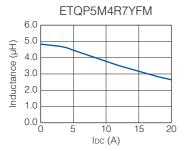
PWB condition A : Four-layer PWB (1.6 mm FR4), See also (*2) PWB condition B : Multilayer PWB with high heat dissipation performance. See also (*3)

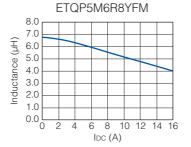
3. Series PCC-M0754M/PCC-M0750M (ETQP5M YFM/ETQP5M YGM)

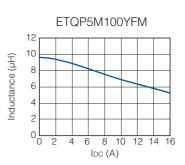
Standard Parts								
		Inducta	ance *1	DCR (at 2	0 °C) (mΩ)	Rate	d Current (Тур. : А)
Series	Part No.	LO	Tolerance	Тур.	Tolerance	∆T=	-40K	△L=-30%
		(µH)	(%)	(max.)	(%)	(*2)	(*3)	(*4)
	ETQP5M4R7YFM	4.7		20(23)		6.3	8.0	13.1
	ETQP5M6R8YFM	6.8		26.7(29.4)] [5.5	6.9	12.1
PCC-M0754M	ETQP5M100YFM	10		37.6(41.3)		4.7	5.7	10.6
[7.5×7.0×5.4(mm)]	ETQP5M220YFM	22		92(102)		3.0	3.7	5.8
	ETQP5M330YFM	33		120(132)		2.6	3.3	4.8
	ETQP5M470YFM	48		156(172)		2.3	2.9	4.1
PCC-M0750M [7.5×7.0×5.0(mm)]	ETQP5M101YGM	95		348(382.8)		1.4	1.9	3.1

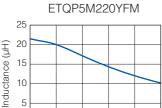
(*1) Measured at 100 kHz.

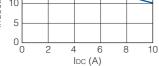
(*2) DC current which causes temperature rise of 40 K. Parts are soldered by reflow on four-layer PWB (1.6 mm FR4) and measured at room temperature. See also (*5)
 (*3) DC current which causes temperature rise of 40 K. Parts are soldered by reflow on multilayer PWB with high

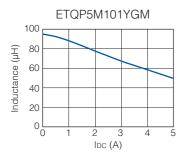

(*3) DC current which causes temperature rise of 40 K. Parts are soldered by reflow on multilayer PWB with high heat dissipation performance. Note: Heat radiation constant is approx. 31 K/W measured on 7.5×7.0×5.4 mm case size and approx. 29 K/W measured on 7.5×7.0×5.0 mm case size. See also (*5)
 (*4) Saturation rated current : DC current which causes L(0) drop -30 %.

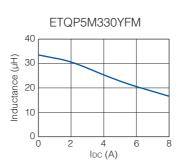

 (**) Saturation rated current. Do current which cases L(0) drop -30 %.
 (*5) Within a suitable application, the part's temperature depends on circuit design and certain heat dissipation conditions. This should be double checked in a worst case operation mode. In normal case, the max.standard operating temperature of +150 °C should not be exceeded.

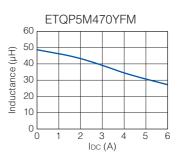

For higher operating temperature conditions, please contact Panasonic representative in your area.

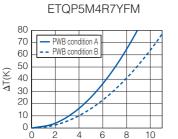

Performance Characteristics (Reference)


Inductance vs DC Current



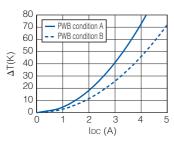




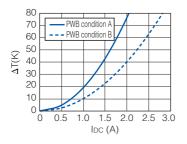


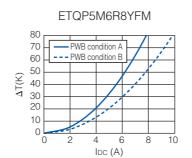

Power Inductors

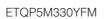
Panasonic

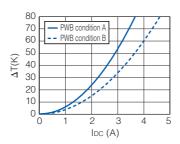

• Case Temperature vs DC Current

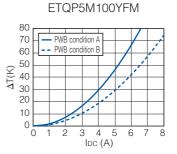
PWB condition A : Four-layer PWB (1.6 mm FR4), See also (*2) PWB condition B : Multilayer PWB with high heat dissipation performance. See also (*3)

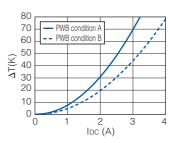





IDC (A)




ETQP5M101YGM



ETQP5M470YFM

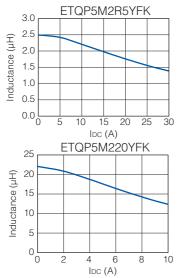
4. Series PCC-M0854M/PCC-M0850M (ETQP5MDDYFK/ETQP5MDDYGK)

Standard Parts								
		Inducta	ance *1	DCR (at 20	0 °C) (mΩ)	Rate	d Current (Тур. : А)
Series	Part No.	LO	Tolerance	Тур.	Tolerance	∆T=	:40K	∆L=–30%
		(µH)	(%)	(max.)	(%)	(*2)	(*3)	(*4)
	ETQP5M2R5YFK	2.5		7.6(8.4)		11.9	14.0	20.1
	ETQP5M100YFK	10		33(37)	±10	5.7	6.7	13.0
PCC-M0854M [8.5×8.0×5.4(mm)]	ETQP5M150YFK	15]	48.2(53.1)		4.7	5.5	7.2
[0.3×0.0×3.4(1111)]	ETQP5M220YFK	22	±20	63(70)		4.1	4.8	6.9
	ETQP5M470YFK	48]	125(138)] [2.9	3.4	5.4
PCC-M0850M [8.5×8.0×5.0(mm)]	ETQP5M101YGK	100		302(333)		1.7	2.1	3.0

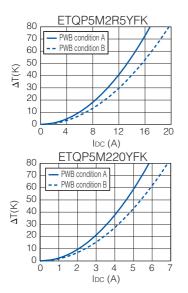
(*1) Measured at 100 kHz.

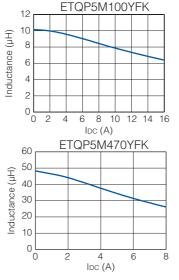
(*2) DC current which causes temperature rise of 40 K. Parts are soldered by reflow on four-layer PWB (1.6 mm FR4) and measured at room temperature. See also (*5)

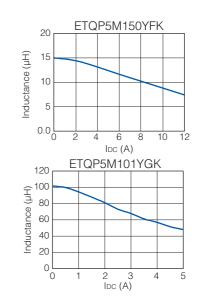
(*3) DC current which causes temperature rise of 40 K. Parts are soldered by reflow on multilayer PWB with high heat dissipation performance. Note: Heat radiation constant are approx. 27 K/W measured on 8.5×8.0×5.4 mm case size and approx. 29 K/W measured on 8.5×8.0×5.0 mm case size. See also (*5)
 (*4) Saturation rated current : DC current which causes L(0) drop -30 %.

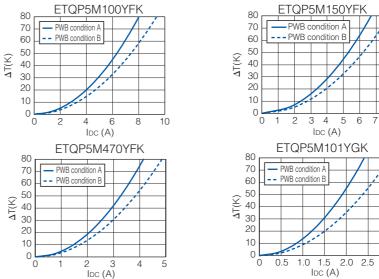

(*5) Within a suitable application, the part's temperature depends on circuit design and certain heat dissipation conditions. This should be double checked in a worst case operation mode.

In normal case, the max standard operating temperature of + 150 °C should not be exceeded.


For higher operating temperature conditions, please contact Panasonic representative in your area.


Performance Characteristics (Reference)


• Inductance vs DC Current


• Case Temperature vs DC Current

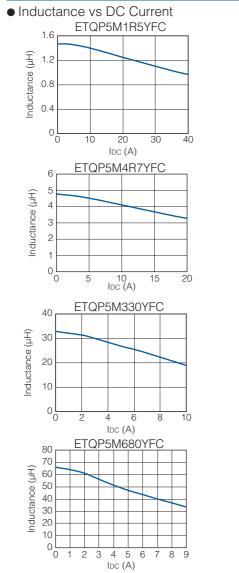
 $\begin{array}{l} \mbox{PWB condition A : Four-layer PWB (1.6 mm FR4), See also (*2) \\ \mbox{PWB condition B : Multilayer PWB with high heat dissipation performance. See also (*3) \\ \end{array}$

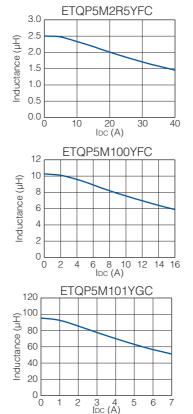
Design and specifications are each subject to change without notice. Ask factory for the current technical specifications before purchase and/or use Should a safety concern arise regarding this product, please be sure to contact us immediately.

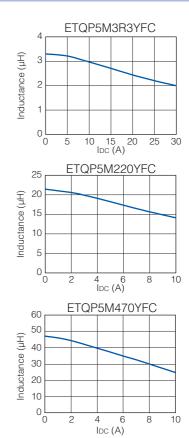
3.0

8

5. Series PCC-M1054M/PCC-M1050M (ETQP5M VFC/ETQP5M VGC)

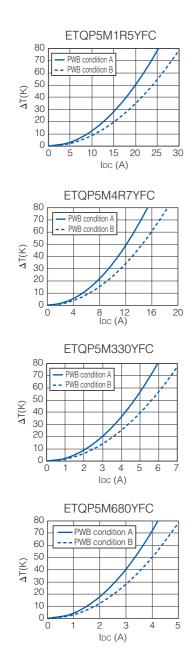

Standard Parts								
		Inducta	ance *1	DCR (at 20	0 °C) (mΩ)	Rate	d Current (Тур. : А)
Series	Part No.	LO	Tolerance	Тур.	Tolerance	∆T=	=40K	∆L=–30%
		(µH)	(%)	(max.)	(%)	(*2)	(*3)	(*4)
	ETQP5M1R5YFC	1.45		3.8(4.2)		17.9	21.4	35.1
	ETQP5M2R5YFC	2.5		5.3(5.9)		15.1	18.1	27.2
	ETQP5M3R3YFC	3.3		7.1(7.9)		13.1	15.7	22.7
PCC-M1054M	ETQP5M4R7YFC	4.7		10.2(11.3)		10.9	13.1	20.0
$[10.7 \times 10.0 \times 5.4(\text{mm})]$	ETQP5M100YFC	10		23.8(26.2)		7.1	8.5	10.7
[10.7 × 10.0 × 5.4(1111)]	ETQP5M220YFC	22	±20	45(50)	±10	5.2	6.2	8.8
	ETQP5M330YFC	32.5		68.5(75.4)		4.2	5.0	7.6
	ETQP5M470YFC	47		99(108.9)] [3.5	4.2	6.8
	ETQP5M680YFC	66		136(149.6)] [3.0	3.6	4.9
PCC-M1050M [10.7×10.0×5.0(mm)]	ETQP5M101YGC	97		208(229)		2.2	2.7	3.0

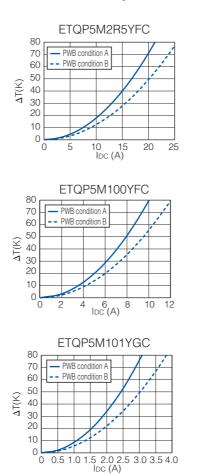

(*1) Measured at 100 kHz.


(*2) DC current which causes temperature rise of 40 K. Parts are soldered by reflow on four-layer PWB (1.6 mm FR4)

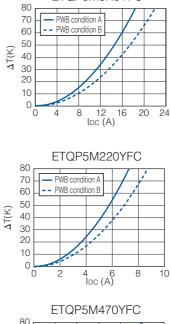
(*2) DC current which causes temperature rise of 40 K. Parts are soldered by reflow on four-layer PWB (1.6 mm FR4) and measured at room temperature. See also (*5)
(*3) DC current which causes temperature rise of 40 K. Parts are soldered by reflow on multilayer PWB with high heat dissipation performance. Note: Heat radiation constant are approx. 23 KW measured on 10.7×10.0x5.4 mm case size and approx. 26 KW measured on 10.7×10.0x5.0 mm case size. See also (*5)
(*4) Saturation rated current : Dc current which causes L(0) drop -30 %.
(*5) Within a suitable application, the part's temperature depends on circuit design and certain heat dissipation conditions. This should be double checked in a worst case operation mode. In normal case, the max.standard operating temperature of +150 °C should not be exceeded. For higher operating temperature conditions, please contact Panasonic representative in your area.

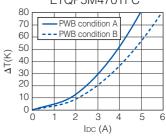
Performance Characteristics (Reference)




ETQP5M3R3YFC

Panasonic

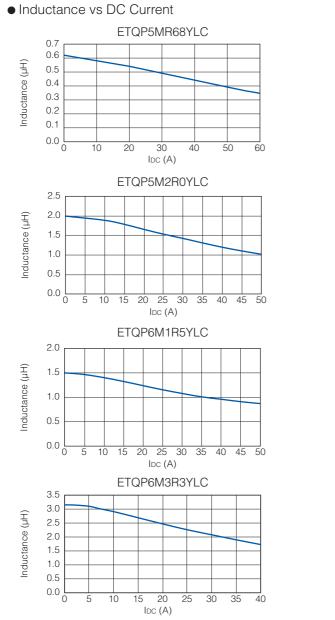

• Case Temperature vs DC Current

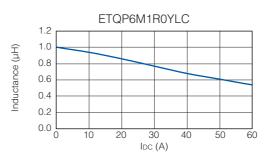

PWB condition A : Four-layer PWB (1.6 mm FR4), See also (*2) PWB condition B : Multilayer PWB with high heat dissipation performance. See also (*3)

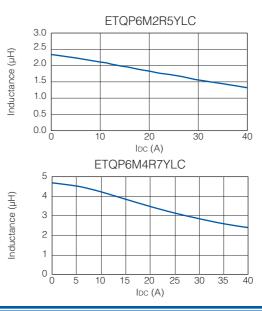
0

6. Series PCC-M1050ML/PCC-M1060ML (ETQP5M VLC/ETQP6M VLC)

Standard Parts								
		Inducta	ance *1	DCR (at 20	$\Omega^{\circ}C)$ (m Ω)	Rate	d Current (Тур. : А)
Series	Part No.	LO	Tolerance	Тур.	Tolerance	∆T=	=40K	∆L=–30%
		(µH)	(%)	(max.)	(%)	(*2)	(*3)	(*4)
	ETQP5MR68YLC	0.68		1.75(1.93)		26.3	31.5	42.0
PCC-M1050ML [10.9×10.0×5.0(mm)]	ETQP5M1R0YLC	1.0		2.3(2.53)		23.0	27.5	38.0
[10:5×10:0×3:0(1111)]	ETQP5M2R0YLC	2.0		4.6(5.06)		16.2	19.4	22.7
	ETQP6M1R5YLC	1.5	±20	3.2(3.52)	±10	19.5	23.3	26.8
PCC-M1060ML	CC-M1060ML ETQP6M2R5YLC 2.5	4.5(5.0)	[16.3	19.6	27.0		
[10.9×10.0×6.0(mm)]	ETQP6M3R3YLC	3.3		6.0(6.6)		14.2	17.0	26.0
	ETQP6M4R7YLC	4.7		8.7(9.57)		11.8	14.1	13.2

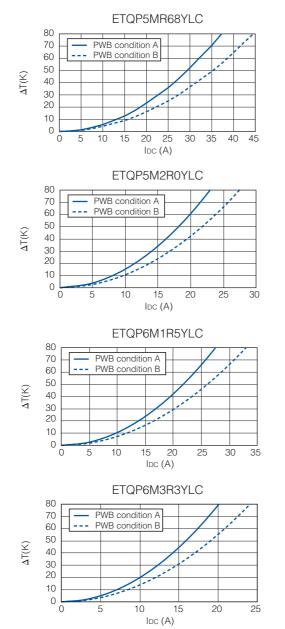

(*1) Measured at 100 kHz.

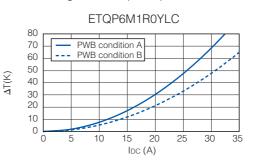

(*2) DC current which causes temperature rise of 40 K. Parts are soldered by reflow on four-layer PWB (1.6 mm FR4)

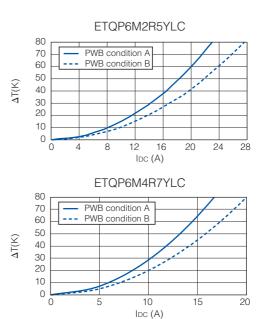

(*2) DC current which causes temperature. See also (*5)
(*3) DC current which causes temperature rise of 40 K. Parts are soldered by reflow on multilayer PWB with high heat dissipation performance. Note: Heat radiation constant are approx. 23 KW measured on 10.9×10.0×5.0 mm case size and approx. 23 KW measured on 10.9×10.0×6.0 mm case size. See also (*5)
(*4) Saturation rated current : Dc current which causes L(0) drop -30 %.

(*5) Within a suitable application, the part's temperature depends on circuit design and certain heat dissipation conditions. This should be double checked in a worst case operation mode. In normal case, the max.standard operating temperature of +150 °C should not be exceeded. For higher operating temperature conditions, please contact Panasonic representative in your area.

Performance Characteristics (Reference)

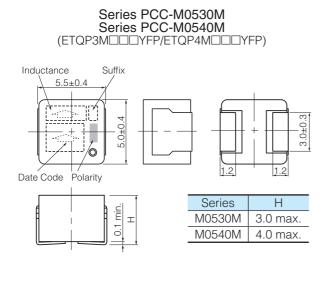


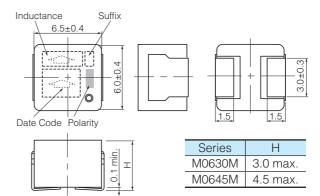



Power Inductors

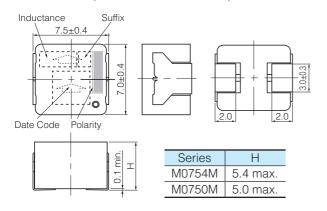
• Case Temperature vs DC Current

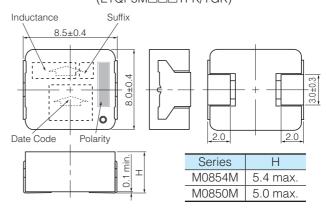
PWB condition A : Four-layer PWB (1.6 mm FR4), See also (*2) PWB condition B : Multilayer PWB with high heat dissipation performance. See also (*3)

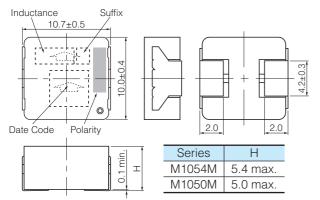


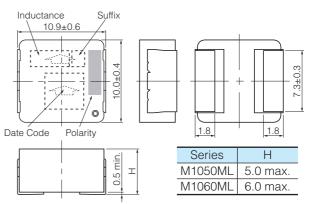


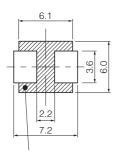
Dimensions in mm (not to scale)


Dimensional tolerance unless noted : ±0.5

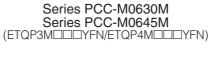

Series PCC-M0630M Series PCC-M0645M (ETQP3MDDYFN/ETQP4MDDYFN)


Series PCC-M0754M Series PCC-M0750M (ETQP5MDDDYFM/YGM)


Series PCC-M0854M Series PCC-M0850M (ETQP5MDDDYFK/YGK)



Recommended Land Pattern in mm (not to scale)


Dimensional tolerance unless noted : ±0.5

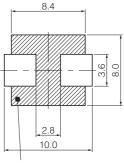
Series PCC-M0530M

Series PCC-M0540M (ETQP3MUUUYFP/ETQP4MUUUYFP)

Don't wire on the pattern on shaded portion the PWB.

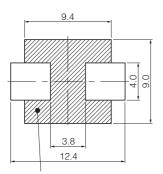
3.6 0

71


28

8.8

The same as the left


V

Series PCC-M0754M Series PCC-M0750M (ETQP5MDDDYFM/YGM)

The same as the left

Series PCC-M0854M Series PCC-M0850M (ETQP5MDDYFK/YGK)

Don't wire on the pattern on shaded portion the PWB

Series PCC-M1054M Series PCC-M1050M (ETQP5MDDYFC/YGC)

11.7 4.0 6.1 13.7 The same as the left

Series PCC-M1050ML Series PCC-M1060ML $(ETQP5M \square \square YLC/ETQP6M \square \square YLC)$

> 11.9 0 ÷ /6 V 6.5 13.9

The same as the left.

■ As for Packaging Methods, Soldering Conditions and Safety Precautions (Power Choke Coils for Automotive application),

Please see Data Files

Power Choke Coil for Automotive application

Series: PCC-M1280MF (MC)

High heat resistance and high reliability Using metal composite core (MC)

Industrial Property : patents 3 (Registered 1/Pending 2)

Features		
 High heat resistance Large current Power High vibration resistance SMD type 	 Operation up to 160 °C including self-heating 53 A (R33 type) 30G 	 Fig.1 Inductance v.s. DC current ETQR8MR33JFA(reference) 0.40 0.35
 High-reliability 	: High vibration resistance as result of newly developed integral construction; under severe reliability conditions of automotive and other strenuous applications	<u>⊥</u> 0.30 <u>⊥</u> 0.25
 High bias current 	: Excellent inductance stability using ferrous alloy magnetic material (Fig.1)	0.10
 Temp. stability Low audible (buzz) noise High efficiency AEC-Q200 Automotive 	 Excellent inductance stability over broad temp. range New metal composite core technology Low Roc of winding and low eddy-current loss of the core qualified 	0 20 40 60 80 100 120 140 160

RoHS compliant

Recommended Applications

- Noise filter for various drive circuitry requiring high temp. operation and peak current handling capability
- Boost-Converter, Buck-Converter DC/DC

Standard Packing Quantity (Minimum Quantity/Packing Unit)

• 500 pcs./box (2 reel)

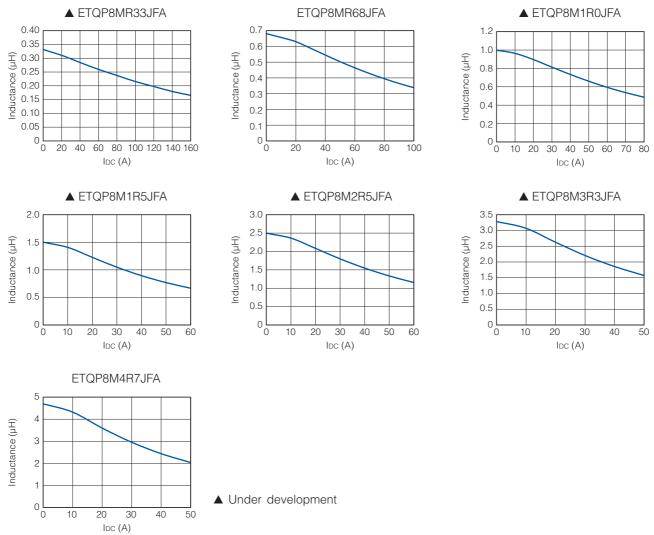
Temperature rat	ing	
Operatin	g temperature range	Tc: -40 °C to +160 °C(Including self-temperature rise)
Storage condition	After PWB mounting	IC: -40 C to +100 C(including sen-temperature rise)
Storage condition	Before PWB mounting	Ta : -5 °C to +35 °C 85%RH max.

Standard Par	ts							
		Induct	ance *1	¹ DCR (at 20 °C) (mΩ) Rated Current (Typ			/p. : A)	
Series	Part No.	LO	Tolerance	Тур.	Tolerance	∆T=40K		△L=-30%
		(µH)	(%)	(max.)	(%)	(*2)	(*3)	(*4)
PCC-M1280MF [12.6×12.8×8.0(mm)]	▲ ETQP8MR33JFA	0.33	±20	0.70 (0.77)	±10	44.4	53.5	84.5
	ETQP8MR68JFA	0.68		1.10 (1.21)		35.4	42.6	56.9
	▲ ETQP8M1R0JFA	1.0		1.36 (1.50)		31.8	38.3	44.4
	▲ ETQP8M1R5JFA	1.5		1.80 (1.98)		27.7	33.3	29.9
	▲ ETQP8M2R5JFA	2.5		2.60 (2.86)		23.0	27.7	32.1
	▲ ETQP8M3R3JFA	3.3		3.60 (3.96)		19.6	23.6	27.6
	ETQP8M4R7JFA	4.7		4.90 (5.39)		16.8	20.2	24.7
(*1) Measured at 1	00k Hz.						▲ Under d	evelopment

(*1) Measured at 100k Hz.

(*2) DC current which causes temperature rise of 40K. Parts are soldered by reflow on four-layer PWB (1.6 mm FR4) and measured at room temperature. See also (*5)

(*3) DC current which causes temperature rise of 40K. Parts are soldered by reflow on multilayer PWB with high heat dissipation performance. Note: Heat radiation constant are approx. 20 K/W measured. See also (*5) (*4) Saturation rated current : DC current which causes L(0) drop -30 %.

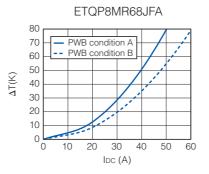

(*5) Within a suitable application, the part's temperature depends on circuit design and certain heat dissipation conditions. This should be double checked in a worst case operation mode.

In normal case, the max.standard operating temperature of +160 °C should not be exceeded.

For higher operating temperature conditions, please contact Panasonic representative in your area.

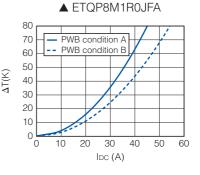
Performance Characteristics (Reference)

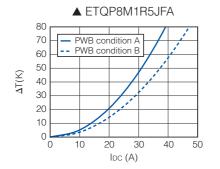
Inductance vs DC Current

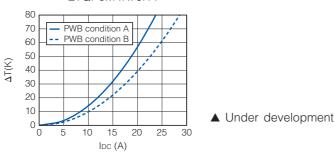

Design and specifications are each subject to change without notice. Ask factory for the current technical specifications before purchase and/or use Should a safety concern arise regarding this product, please be sure to contact us immediately 01

Jul 2016

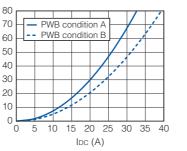
Performance Characteristics (Reference)


• Case Temperature vs DC Current

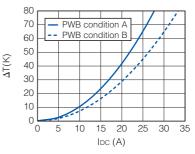

▲ ETQP8MR33JFA 80 70 PWB condition A PWB condition B 60 50 ΔT(K) 40 30 20 10 0 10 20 30 40 50 60 70 0 80 IDC (A)


PWB condition A : Four-layer PWB (1.6 mm FR4), See also (*2)

PWB condition B : Multilayer PWB with high heat dissipation performance. See also (*3)

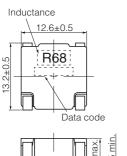


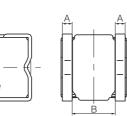
ETQP8M4R7JFA



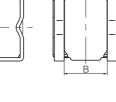
▲ ETQP8M2R5JFA

 $\Delta T(K)$

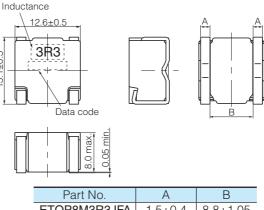




Dimensions in mm (not to scale)


Dimensional tolerance unless noted : ±0.5

- ETQP8MR33JFA
- ETQP8M1R5JFA ETQP8M2R5JFA
- ETQP8MR68JFA ETQP8M1R0JFA



Part No.	А	В
ETQP8MR33JFA	2.15±0.4	7.3±1.0
ETQP8MR68JFA	2.1±0.4	8.0±1.0
ETQP8M1R0JFA	2.1±0.4	8.0±1.0
ETQP8M1R5JFA	2.1±0.4	8.0±1.0
ETQP8M2R5JFA	1.8±0.4	8.6±0.85

ETQP8M4R7JFA

 13.1 ± 0.5

ETQP8M3R3JFA

ETQP8M4R7JFA 1.25±0.4 9.0±1.25	ETQP8M3R3JFA	1.5±0.4	8.8±1.05
	ETQP8M4R7JFA	1.25±0.4	9.0±1.25

ETQP8M3R3JFA

20

4 ц,

.

5.4

2.0

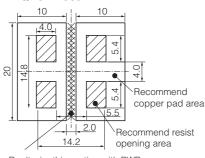
13.8

Don't wire this portion with PWB.

4.0

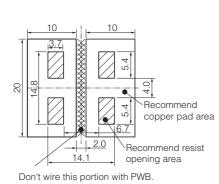
Recommend

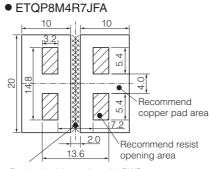
Recommend resist


opening area

copper pad area

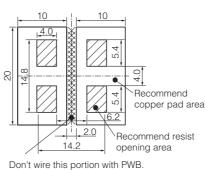
Recommended Land Pattern in mm (not to scale)


Dimensional tolerance unless noted : ±0.5

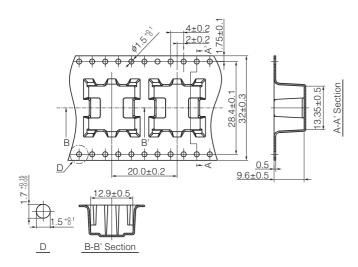

ETQP8MR33JFA

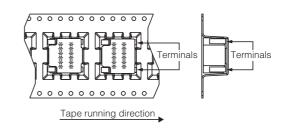
Don't wire this portion with PWB.

ETQP8M2R5JFA

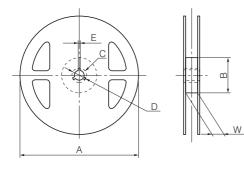


Don't wire this portion with PWB.


ETQP8M1R5JFA


As for Soldering Conditions and Safety Precautions (Power Choke Coils for Automotive application), Please see Data Files

Packaging Methods (Taping)


• Embossed Carrier Tape Dimensions in mm (not to scale)

• Component Placement (Taping)

• Taping Reel Dimensions in mm (not to scale)

Standard Reel Dimensions

Series	А	В	С	D	E	W
PCC-M1280MF	330	(100)	13	21	2	33.5

Power Choke Coil for Automotive application

High heat resistance and high reliability Using metal composite core (MC)

Panasonic

Industrial Property : patents 3 (Registered 2/Pending 1)

Features : Operation up to 155 °C including self-heating High heat resistance Fig.1 Inductance v.s. DC current Low profile : 3 mm max. height (PCC-M0530M-LP, PCC-M0630M-LP) ETQP4M4R7KVC(reference) 4 mm max. height (PCC-M0840M-LP, PCC-M1040M-LP) 5 SMD type High-reliability : High vibration resistance as result of newly 4 Inductance (µH) developed integral construction; under severe 3 reliability conditions of automotive and other strenuous applications 2 High bias current : Excellent inductance stability using ferrous alloy magnetic material (Fig.1) • Temp. stability : Excellent inductance stability over broad temp. range 0 Low audible (buzz) noise : New metal composite core technology 0 5 10 15 20 25 30 High efficiency : Low Rpc of winding and low eddy-current loss of the core IDC (A) AEC-Q200 Automotive gualified

RoHS compliant

Recommended Applications

- Noise filter for various drive circuitry requiring high temp. operation and peak current handling capability
- Boost-Converter, Buck-Converter DC/DC

Standard Packing Quantity (Minimum Quantity/Packing Unit)

- 4,000 pcs./box (2 reel) : PCC-M0530M-LP, PCC-M0630M-LP
- 1,000 pcs./box (2 reel) : PCC-M0840M-LP, PCC-M1040M-LP

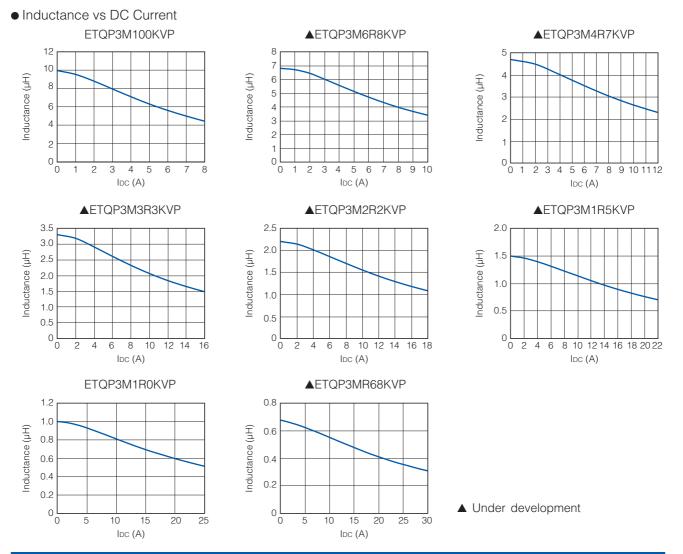
1 2 3 4 5 6 7 8 9 10 11 12 E T Q P Image: Classification Height Winding Suffix Size
$\begin{array}{c c} 4R7 \rightarrow 4.7 \ \mu H \\ 220 \rightarrow 22 \ \mu H \\ R68 \rightarrow 0.68 \ \mu H \end{array} \begin{array}{c c} P \ \Box 5 \ mm \ size \\ \hline K \ \Box 8 \ mm \ size \\ \hline C \ \Box 10 \ mm \ size \end{array}$
Temperature rating

Operatin	g temperature range	Tc : -55 °C to +155 °C(Including self-temperature rise)
Storago condition	After PWB mounting	IC35 C to +155 C(including self-temperature rise)
Storage condition	Before PWB mounting	Ta : -5 °C to +35 °C 85%RH max.

1. Series PCC-M0530M-LP (ETQP3M

Standard Part	ts							
		Inducta	ance *1	DCR (at 20 °C) (m Ω)		Rated	yp. : A)	
Series	Part No.	LO	Tolerance	Тур.	Tolerance	∆T=	=40K	△L=-30%
		(µH)	(%)	(max.)	(%)	(*2)	(*3)	(*4)
	ETQP3M100KVP	10.00	±20	96 (105.6)	±10	2.4	2.9	4.2
	▲ETQP3M6R8KVP	6.80		65.7 (72.27)		2.9	3.5	6.1
	▲ETQP3M4R7KVP	4.70		45.6 (50.16)		3.4	4.1	6.7
PCC-M0530M-LP	▲ETQP3M3R3KVP	3.30		27.3 (30.03)		4.4	5.4	8.0
[5.5×5.0×3.0(mm)]	▲ETQP3M2R2KVP	2.20		20 (22)		5.2	6.3	10.1
	▲ETQP3M1R5KVP	1.50		12 (13.2)		6.7	8.1	12.0
	ETQP3M1R0KVP	1.00		9.6 (10.56)		7.5	9.0	14.1
	▲ETQP3MR68KVP	0.68		7.6 (8.36)		8.4	10.2	15.9

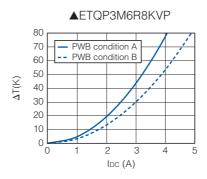
(*1) Measured at 100k Hz.


(*2) DC current which causes temperature rise of 40K. Parts are soldered by reflow on four-layer PWB (1.6 mm FR4) and measured at room temperature. See also (*5)

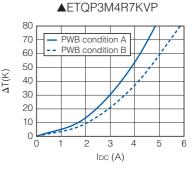
- (*3) DC current which causes temperature rise of 40K. Parts are soldered by reflow on multilayer PWB with high heat dissipation performance. Note: Heat radiation constant are approx. 51 K/W measured on 5.5×5.0×3.0 mm case size. See also (*5)
- (*4) Saturation rated current : DC current which causes L(0) drop -30 %.

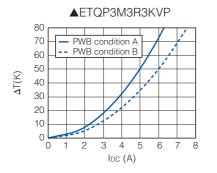
(*5) Within a suitable application, the part's temperature depends on circuit design and certain heat dissipation conditions. This should be double checked in a worst case operation mode. In normal case, the max.standard operating temperature of +155 °C should not be exceeded. For higher operating temperature conditions, please contact Panasonic representative in your area.

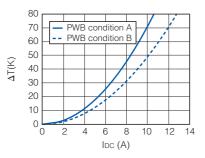
▲ Under development (Start of mass production : the 1st half of 2017) Please contact us for customized part no.

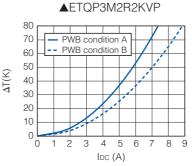

Performance Characteristics (Reference)

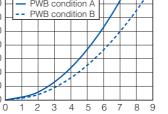
Performance Characteristics (Reference)


• Case Temperature vs DC Current

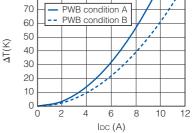


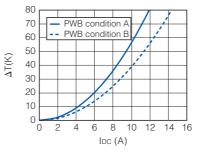

PWB condition A : Four-layer PWB (1.6 mm FR4), See also (*2)


PWB condition B : Multilayer PWB with high heat dissipation performance. See also (*3)



ETQP3M1R0KVP





80

▲ETQP3MR68KVP

▲ Under development

2. Series PCC-M0630M-LP (ETQP3M

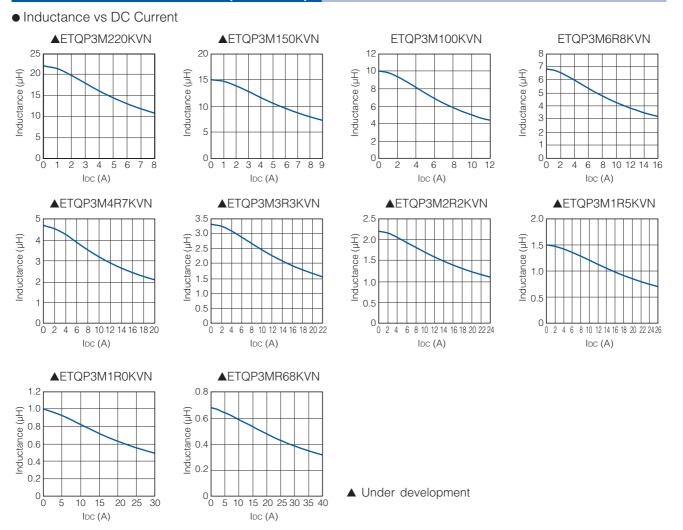
Standard Part	ts							
		Induct	ance *1	DCR (at 20	°C) (mΩ)	Rated	Current (Ty	/p. : A)
Series	Part No.	LO	Tolerance	Тур.	Tolerance	∆T=	40K	△L=-30%
		(µH)	(%)	(max.)	(%)	(*2)	(*3)	(*4)
	▲ETQP3M220KVN	22.00		128 (140.8)		2.2	2.7	4.3
	▲ETQP3M150KVN	15.00	±20	99.2 (109.12)	±10	2.5	3.0	5.1
	ETQP3M100KVN	10.00		71 (78.1)		2.9	3.6	6.1
	ETQP3M6R8KVN	6.80		45.6 (50.16)		3.6	4.5	8.1
PCC-M0630M-LP	▲ETQP3M4R7KVN	4.70		29 (31.9)		4.6	5.6	9.8
[6.5×6.0×3.0(mm)]	▲ETQP3M3R3KVN	3.30		24.1 (26.51)		5.0	6.1	11.5
	▲ETQP3M2R2KVN	2.20]	14.5 (15.95)		6.5	7.9	12.8
	▲ETQP3M1R5KVN	1.50]	11 (12.1)		7.4	9.1	14.2
	▲ETQP3M1R0KVN	1.00]	6.2 (6.82)		9.9	12.1	16.0
	▲ETQP3MR68KVN	0.68]	5.2 (5.72)		10.8	13.2	20.2

(*1) Measured at 100k Hz.

(*2) DC current which causes temperature rise of 40K. Parts are soldered by reflow on four-layer PWB (1.6 mm FR4) and measured at room temperature. See also (*5)

(*3) DC current which causes temperature rise of 40K. Parts are soldered by reflow on multilayer PWB with high heat dissipation performance. Note: Heat radiation constant are approx. 44 K/W measured on 6.5×6.0×3.0 mm case size. See also (*5)

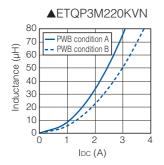
(*4) Saturation rated current : DC current which causes L(0) drop -30 %.

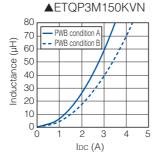

(*5) Within a suitable application, the part's temperature depends on circuit design and certain heat dissipation conditions. This should be double checked in a worst case operation mode.

In normal case, the max standard operating temperature of +155 °C should not be exceeded.

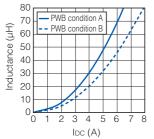
For higher operating temperature conditions, please contact Panasonic representative in your area.

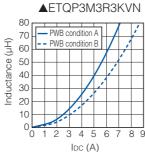
▲ Under development (Start of mass production : the 1st half of 2017) Please contact us for customized part no.

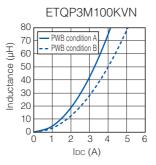

Performance Characteristics (Reference)

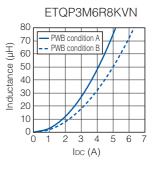


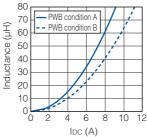
Performance Characteristics (Reference)

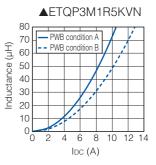

• Case Temperature vs DC Current

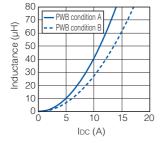

PWB condition A : Four-layer PWB (1.6 mm FR4), See also (*2) PWB condition B : Multilayer PWB with high heat dissipation performance. See also (*3)

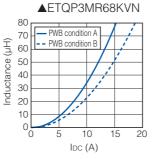












▲ETQP3M1R0KVN

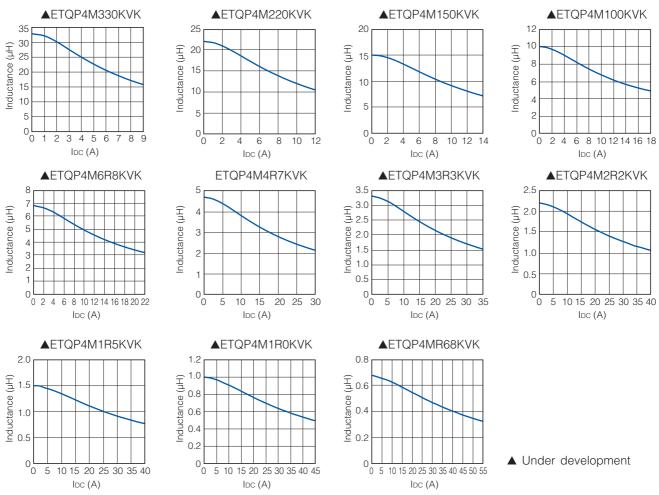
▲ Under development

3. Series PCC-M0840M-LP (ETQP4M

Standard Part	ts							
		Inducta	ance *1	DCR (at 20	°C) (mΩ)	Rated	Current (Ty	/p.:A)
Series	Part No.	LO	Tolerance	Тур.	Tolerance	∆T=	40K	△L=-30%
		(µH)	(%)	(max.)	(%)	(*2)	(*3)	(*4)
	▲ETQP4M330KVK	33.00	-	118 (129.8)		2.6	3.1	5.3
	▲ETQP4M220KVK	22.00		76.3 (83.93)	±10	3.3	3.8	6.7
	▲ETQP4M150KVK	15.00		55 (60.5)		3.8	4.5	7.7
	▲ETQP4M100KVK	10.00		41.6 (45.76)		4.4	5.2	9.1
PCC-M0840M-LP	▲ETQP4M6R8KVK	6.80		23.5 (25.85)		5.9	6.9	11.0
[8.5×8.0×4.0(mm)]	ETQP4M4R7KVK	4.70	±20	16.1 (17.71)		7.1	8.3	15.1
[0.5×0.0×4.0(mm)]	▲ETQP4M3R3KVK	3.30]	14 (15.4)		7.6	8.9	17.4
	▲ETQP4M2R2KVK	2.20]	8.5 (9.35)		9.8	11.4	20.4
	▲ETQP4M1R5KVK	1.50]	4.9 (5.39)		12.8	15.1	22.5
	▲ETQP4M1R0KVK	1.00		3.7 (4.07)		14.8	17.3	24.4
	▲ETQP4MR68KVK	0.68		2.9 (3.19)		16.7	19.6	29.0

(*1) Measured at 100k Hz.

(*2) DC current which causes temperature rise of 40K. Parts are soldered by reflow on four-layer PWB (1.6 mm FR4) and measured at room temperature. See also (*5)


(*3) DC current which causes temperature rise of 40K. Parts are soldered by reflow on multilayer PWB with high heat dissipation performance. Note: Heat radiation constant are approx. 36 K/W measured on 8.5×8.0×4.0 mm case size. See also (*5)

 (*4) Saturation rated current : DC current which causes L(0) drop -30 %.
 (*5) Within a suitable application, the part's temperature depends on circuit design and certain heat dissipation conditions. This should be double checked in a worst case operation mode. In normal case, the max.standard operating temperature of +155 °C should not be exceeded.

For higher operating temperature conditions, please contact Panasonic representative in your area. ▲ Under development (Start of mass production: the 2nd half of 2017) Please contact us for customized part no.

Performance Characteristics (Reference)

Inductance vs DC Current

