imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

EVAL-AD5341DBZ User Guide UG-982

One Technology Way • P.O. Box 9106 • Norwood, MA 02062-9106, U.S.A. • Tel: 781.329.4700 • Fax: 781.461.3113 • www.analog.com

Evaluating the AD5341 12-Bit, Single-Channel, Voltage Output, Digital-to-Analog Converter (DAC)

FEATURES

Full featured evaluation board (EVAL-AD5341DBZ) in conjunction with the nanoDAC motherboard (EVAL-MBnanoDAC-SDZ)

On-board references

Various link options

PC control in conjunction with Analog Devices, Inc., system demonstration platform

PACKAGE CONTENTS

EVAL-AD5341DBZ evaluation board EVAL-MBnanoDAC-SDZ motherboard

SOFTWARE REQUIRED

EVAL-AD5341DBZ evaluation software

HARDWARE REQUIRED

EVAL-SDP-CB1Z controller board (SDP-B controller board), must be purchased separately

GENERAL DESCRIPTION


This user guide details the operation of the evaluation board for the AD5341 single-channel, voltage output DAC.

The EVAL-AD5341DBZ evaluation board helps users quickly prototype new AD5341 circuits and reduce design times. The AD5341 operates from a single 2.5 V to 5.5 V supply.

For full data, see the AD5341 data sheet, which must be used in conjunction with this user guide when using the evaluation board.

The EVAL-AD5341DBZ interfaces to the USB port of a PC via the SDP-B controller board. Software can be downloaded via the EVAL-AD5341DBZ product page that allows users to program the AD5341.

The EVAL-AD5341DBZ evaluation board requires the EVAL-SDP-CB1Z board (SDP-B controller board).

EVAL-AD5341DBZ, EVAL-MBnanoDAC-SDZ, AND EVAL-SDP-CB1Z BOARDS

Figure 1.

TABLE OF CONTENTS

Features
Package Contents1
Software Required 1
Hardware Required1
General Description
EVAL-AD5341DBZ, EVAL-MBnanoDAC-SDZ, and EVAL- SDP-CB1Z Boards 1
Revision History 2
Evaluation Board Hardware 3
Power Supplies
Link Options

REVISION HISTORY

2/2017—Revision 0: Initial Version

Daughter Board Link Options	3
Evaluation Board Software Quick Start Procedures	4
Installing the Software	4
Running the Software	4
Software Operation	5
Evaluation Board Schematics and Artwork	6
EVAL-MBnanoDAC-SDZ Motherboard	6
EVAL-AD5341DBZ Daughter Board	9
Ordering Information	. 11
Bill of Materials	. 11

EVALUATION BOARD HARDWARE POWER SUPPLIES

The EVAL-AD5341DBZ evaluation board can be powered either from the SDP-B port or externally by the J5 and J6 connectors, as described in Table 1.

The nanoDAC^{*} EVAL-MBnanoDAC-SDZ motherboard supports single and dual power supplies.

Both AGND and DGND inputs are provided on the EVAL-AD5341DBZ evaluation board. The AGND and DGND planes are connected at one location on the EVAL-MBnanoDAC-SDZ. It is recommended that AGND and DGND not be connected elsewhere in the system to avoid ground loop problems.

All supplies are decoupled to ground with 10 μ F tantalum and 0.1 μ F ceramic capacitors.

Table 1. Power Supply Connectors

Connector No.	Label	Voltage
J5, Pin 1 (J5-1)	VDD	Analog positive power supply, V _{DD} ; 5.5 V single and dual supply
J5, Pin 2 (J5-2)	AGND	Analog ground
J5, Pin 3 (J5-3)	VSS	Analog negative power supply, Vss; –5.5 V dual supply
J6, Pin 1 (J6-1)	VLOGIC	Digital supply from 1.8 V to V_{DD}
J6, Pin 2 (J6-2)	DGND	Digital ground

LINK OPTIONS

Various link options are incorporated in the EVAL-MBnanoDAC-SDZ and must be set for the required operating conditions before using the EVAL-AD5341DBZ. Table 2 describes the positions of

Table 4. Link Functions

the links to control the EVAL-AD5341DBZ via the SDP-B board using a PC and external power supplies. The functions of these link options are described in detail in Table 4. The positions listed in Table 2 to Table 4 match the evaluation board imprints (see Figure 11).

Table 2. Link Options Setup for SDP-B Control (Default)

Link Number	Position
REF1	EXT
REF2	EXT
REF3	EXT
REF4	EXT
LK5	С
LK6	+3V3
LK7	В

DAUGHTER BOARD LINK OPTIONS

The EVAL-AD5341DBZ daughter board has two link options. The links control the settings for the reference BUF and $\overline{\text{CLR}}$ pins. Table 3 shows how the links are configured.

Table 3. Link Options for Daughter Board

Link Number	Pin	Position
LK1	BUF	A (unbuffered, default)
		B (buffered)
LK2	CLR	A (no operation, default)
		B (zero scale)

Link Number	Function
REF1, REF2	This link selects the reference source.
	Position EXT selects an off board voltage reference via the appropriate EXT_REF connector.
	Position VDD selects VDD as the reference source.
	Position 4.096V selects the on-board 4.096 V reference as the reference source.
	Position 2.5V selects the on-board 2.5 V reference as the reference source.
	Position 5V selects the on-board 5 V reference as the reference source.
REF3, REF4	This link selects the reference source.
	Position EXT selects an off board voltage reference via the appropriate EXT_REF connector.
	Position VDD selects VDD as the reference source.
	Position 4.096V selects the on-board 4.096 V reference as the reference source.
	Position 2.5V selects the on-board 2.5 V reference as the reference source.
	Position 5V selects the on-board 5 V reference as the reference source.
LK5	This link selects the positive DAC analog voltage source.
	Position A selects the internal voltage source from the SDP-B board.
	Position B selects the internal voltage source, 3.3 V, from the ADP121 on the motherboard.
	Position C selects the external supply voltage, VDD.
LK6	This link selects the VLOGIC voltage source.
	Position +3V3 selects the digital voltage source from the SDP-B board (3.3 V).
	Position VLOGIC selects an external digital supply voltage (VLOGIC).
LK7	This link selects the negative DAC analog voltage source.
	Position A selects V _{ss} .
	Position B selects AGND.

EVALUATION BOARD SOFTWARE QUICK START PROCEDURES INSTALLING THE SOFTWARE

The EVAL-AD5341DBZ evaluation software is compatible with Windows[®] Vista (64-bit/32-bit) and Windows 7 (64-bit/32-bit).

Install the software before connecting the SDP-B board to the USB port of the PC to ensure that the SDP-B board is recognized when it connects to the PC.

To install the EVAL-AD5341DBZ software, take the following steps:

- 1. Start the Windows operating system.
- 2. Download the installation software from the EVAL-AD5341DBZ evaluation board page.
- 3. Run the **setup.exe** file from the installer folder if it does not open automatically.
- 4. Power up the EVAL-AD5341DBZ as described in the Power Supplies section after installation is completed.
- 5. Connect the EVAL-AD5341DBZ to the SDP-B and the SDP-B to the PC using the USB cable included in the evaluation kit.
- 6. Proceed through any dialog boxes that appear to finalize the installation when the software detects the EVAL-AD5341DBZ.

RUNNING THE SOFTWARE

To run the EVAL-AD5341DBZ software, take the following steps:

- 1. Connect the EVAL-AD5341DBZ to the SDP-B and connect the USB cable between the SDP-B and the PC.
- 2. Power up the EVAL-AD5341DBZ as described in the Power Supplies section.
- 3. Click Start > All Programs > Analog Devices > AD5341.

If the SDP-B is not connected to the USB port when the software is launched, a connectivity error displays (see Figure 2).

Connect the SDP-B to the USB port of the PC and wait a few seconds. When the SDP-B and the EVAL-AD5341DBZ are detected, the display updates (see Figure 3).

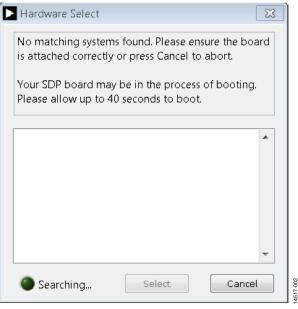


Figure 2. Connectivity Error

► Hardware Select	8
1 matching system found. LED1 is flashing on matching board.	
Press Select to use this board.	
SDPB: EVAL-AD5341DBZ	
Searching Select Ca	ncel

Figure 3. Hardware Select

Alternatively, the software can be used without an evaluation board. The software runs in simulation mode displaying expected outputs based on the input data. The main window of the AD5341 evaluation software then opens, as shown in Figure 4.

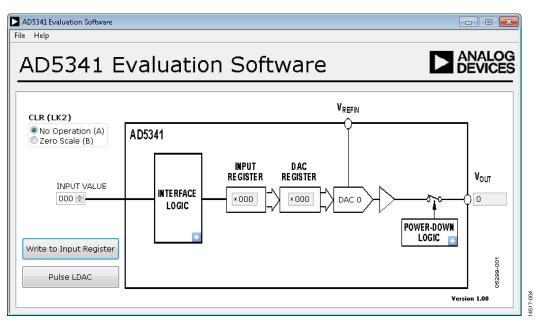


Figure 4. AD5341 Evaluation Board Software Main Window

SOFTWARE OPERATION

The software for the AD5341 allows users to program values to the input and DAC registers of the DAC.

Write to Input Register

Click **Write to Input Register** to load the code of the input data control to the input register of the DAC.

LDAC Control

Click **Pulse LDAC** to bring the $\overline{\text{LDAC}}$ pin low and then back to high, which copies the data from the input registers to the DAC registers, and the outputs update accordingly. Alternatively, set the $\overline{\text{LDAC}}$ pin high or low by clicking the blue progressive disclosure button in the **INTERFACE LOGIC** block. A window then opens that allows the user to click the appropriate **LDAC** setting, as shown in Figure 5.

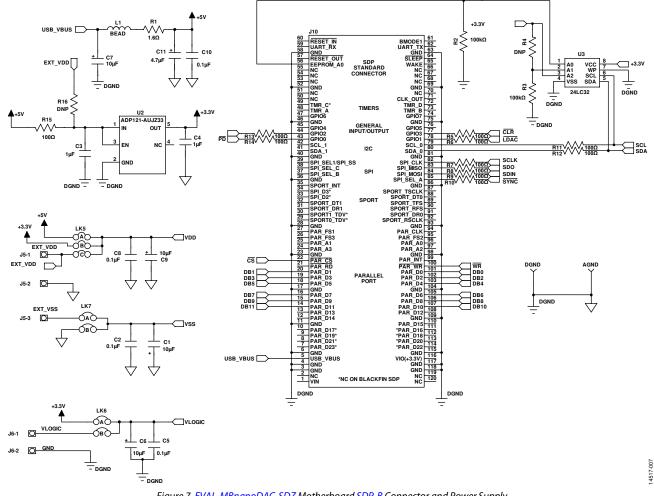
Figure 5. DAC Config Window

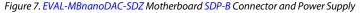
GAIN Control

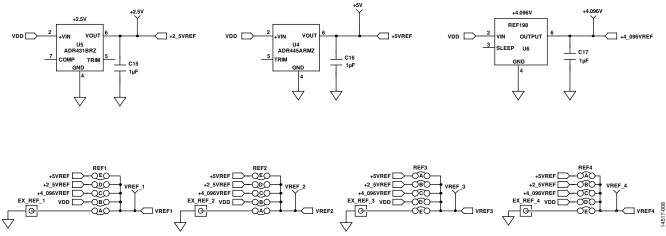
Set the GAIN pin high or low by clicking the blue progressive disclosure button in the **INTERFACE LOGIC** block. A window then opens that allows the user to click the appropriate **GAIN** setting, as shown in Figure 5. Click **GAIN X1** to set a full-scale output of 2.5 V or click **GAIN X2** to set a full-scale output of 5 V.

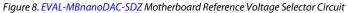
Power-Down Control

Click the blue progressive disclosure button in the **POWER-DOWN LOGIC** block to access a selection box that allows the device to operate in normal mode or power-down mode. A window then opens that allows the user to click the power-down setting for the DAC, as shown in Figure 6. Click **OK** to write the appropriate values to the AD5341 when the power-down settings for the DAC are selected.


Powerdown Config	-X	
 Normal Operation Powerdown 		
ОК		


Figure 6. Powerdown Config Window


CLR Control


Set the CLR pin high or low using LK2 as described in the Daughter Board Link Options section and Table 3. Click the appropriate **CLR (LK2)** setting on the GUI to match the daughter board setting (see Figure 4).

EVALUATION BOARD SCHEMATICS AND ARTWORK EVAL-MBnanoDAC-SDZ MOTHERBOARD

EVAL-AD5341DBZ User Guide

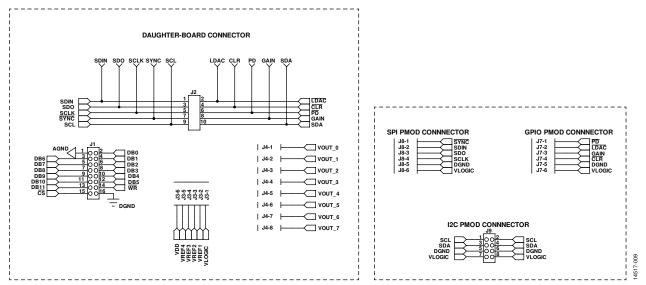


Figure 9. EVAL-MBnanoDAC-SDZ Motherboard Connectors to Daughter Board and Serial Interface

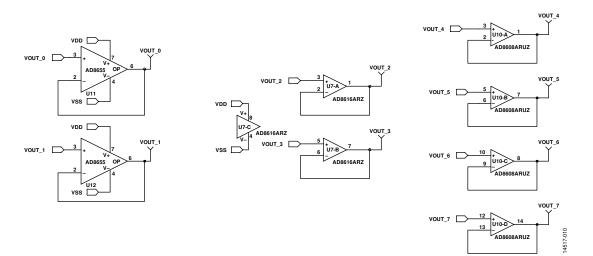


Figure 10. EVAL-MBnanoDAC-SDZ Motherboard Output Amplifier Circuit

UG-982

UG-982

EVAL-AD5341DBZ User Guide

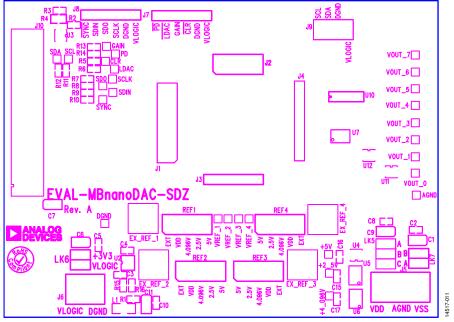


Figure 11. EVAL-MBnanoDAC-SDZ Motherboard Component Placement

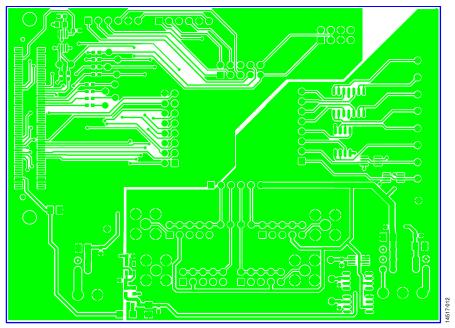


Figure 12. EVAL-MBnanoDAC-SDZ Motherboard Top Side Routing

EVAL-AD5341DBZ User Guide

14517-014

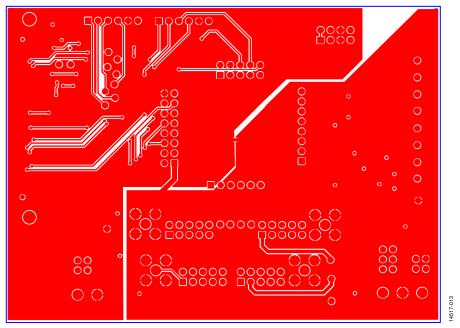


Figure 13. EVAL-MBnanoDAC-SDZ Motherboard Bottom Side Routing

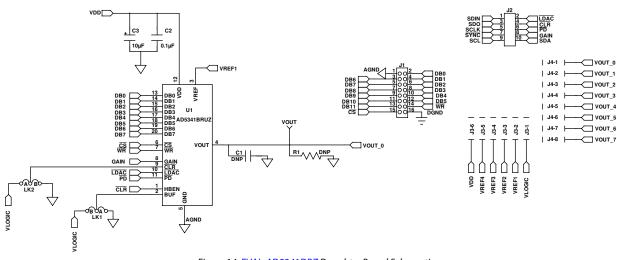


Figure 14. EVAL-AD5341DBZ Daughter Board Schematics

UG-982

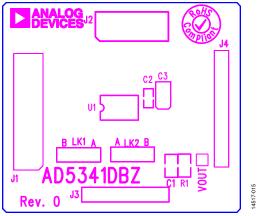


Figure 15. EVAL-AD5341DBZ Daughter Board Component Placement

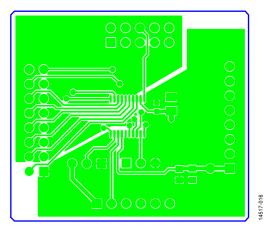


Figure 16. EVAL-AD5341DBZ Daughter Board Top Side Routing

EVAL-AD5341DBZ User Guide

Figure 17. EVAL-AD5341DBZ Daughter Board Bottom Side Routing

ORDERING INFORMATION BILL OF MATERIALS

Table 5. Components List for the EVAL-MBnanoDAC-SDZ Motherboard

Quantity	Reference Designator	Description	Stock Code/Part Number ¹
4	C1, C6, C7, C9	6.3 V tantalum capacitors (Case A), 10 μF, ±20%	FEC 1190107
7	C2, C5, C8, C10, C15, C16, C17	50 V, X7R ceramic capacitors, 0.1 μ F, ±10%	FEC 1759122
2	C3, C4	10 V, X5R ceramic capacitors, 1 μ F, ±10%	GRM188R61A105KA61D ²
1	C11	6.3 V tantalum capacitor (case A), 4.7 μ F, ±20%	FEC 1432350
4	EXT_REF_1, EXT_REF_2, EXT_REF_3, EXT_REF_4	Straight PCB mount SMB jacks, 50 Ω	FEC 1206013
1	J1	Header, 2.54 mm, 2 × 8-way	FEC 2308428
1	J2	Header, 2.54 mm, 2 × 5-way	FEC 9689583
3	J3, J7, J8	Headers, 2.54 mm, 1 × 6-way	FEC 9689508
1	J4	Header, 2.54 mm, 1 × 8-way	FEC 1766172
1	J5	3-pin terminal block	FEC 1667472
1	JG	2-pin terminal block	FEC 151789
1	9	Header, 2.54 mm, 2 × 4-way	FEC 1667509
1	J10	120-way connector	FEC 1324660
1	L1	Inductor, SMD, 600 Ω	FEC 9526862
1	LK5	6-pin (3 $ imes$ 2), 0.1 inch header and shorting block	FEC 148-535 and 150-411 (36-pin strip)
2	LK6, LK7	4-pin (2 \times 2), 0.1 inch headers and shorting blocks	FEC 148-535 and 150-411 (36-pin strip)
4	REF1, REF2, REF3, REF4	10-pin (5 $ imes$ 2), 0.1 inch headers and shorting blocks	FEC 1022227 and 150-411
1	R1	Resistor, surge, 1.6 Ω, 1%, 0603	FEC 1627674
2	R2, R3	SMD resistors, 100 kΩ, 1%, 0603	FEC 9330402
11	R5, R6, R7, R8, R9, R10, R11, R12, R13, R14, R15	SMD resistors, 100 Ω, 1%, 0603	FEC 9330364
1	U2	3.3 V linear regulator	Analog Devices ADP121-AUJZ33R7
1	U3	32 kb, I ² C serial EEPROM	FEC 1331330
1	U4	5 V reference, 8-lead MSOP	Analog Devices ADR445ARMZ
1	U5	Ultralow noise XFET [®] voltage reference	Analog Devices ADR431BRZ
1	U6	4.096 V reference	Analog Devices REF198ESZ
1	U7	Dual op amp	Analog Devices AD8616ARZ
1	U10	Quad op amp	Analog Devices AD8608ARMZ
2	U11, U12	Op amps	Analog Devices AD8655ARMZ

¹ FEC refers to Farnell Electronic Component Distributors. ² GRM refers to Murata Manufacturing Company.

Quantity	Reference Designator	Description	Stock Code/Part Number ¹
1	C1	Not applicable	Not inserted
1	C2	50 V, X7R ceramic capacitor 0.1 μF, ±10%	FEC 759122
1	C3	6.3 V tantalum capacitor (Case A), 10 $\mu\text{F},\pm20\%$	FEC 1190107
1	J1	16-pin (2 \times 8) header	FEC 2308428 inserted from solder side
1	J2	10-pin (2 $ imes$ 5) straight header, 2.54 mm pitch	FEC 9689583 inserted from solder side
1	J3	6-pin (1 $ imes$ 6) straight header, 2.54 mm pitch	FEC 9689508 inserted from solder side
1	J4	Header, 2.5 mm, PCB, 1 × 8-way	FEC 1766172 inserted from solder side
1	LK1	3-pin straight in line (SIL) header and shorting link	FEC 1022248 and 150-411
1	LK2	3-pin SIL header and shorting link	FEC 1022248 and 150-411
1	R1	Not applicable	Not inserted
1	U1	Single 12-bit DAC	Analog Devices AD5341BRUZ
1	Vout	Red test point	Do not insert

Table 6. Components List for the EVAL-AD5341DBZ Daughter Board

¹ FEC refers to Farnell Electronic Component Distributors

I²C refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors).

ESD Caution

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Legal Terms and Conditions

By using the evaluation board discussed herein (together with any tools, components documentation or support materials, the "Evaluation Board"), you are agreeing to be bound by the terms and conditions set forth below ("Agreement") unless you have purchased the Evaluation Board, in which case the Analog Devices Standard Terms and Conditions of Sale shall govern. Do not use the Evaluation Board until you have read and agreed to the Agreement. Your use of the Evaluation Board shall signify your acceptance of the Agreement. This Agreement is made by and between you ("Customer") and Analog Devices, Inc. ("ADI"), with its principal place of business at One Technology Way, Norwood, MA 02062, USA. Subject to the terms and conditions of the Agreement, ADI hereby grants to Customer a free, limited, personal, temporary, non-exclusive, non-sublicensable, non-transferable license to use the Evaluation Board FOR EVALUATION PURPOSES ONLY. Customer understands and agrees that the Evaluation Board is provided for the sole and exclusive purpose referenced above, and agrees not to use the Evaluation Board for any other purpose. Furthermore, the license granted is expressly made subject to the following additional limitations: Customer shall not (i) rent, lease, display, sell, transfer, assign, sublicense, or distribute the Evaluation Board; and (ii) permit any Third Party to access the Evaluation Board. As used herein, the term "Third Party" includes any entity other than ADI, Customer, their employees, affiliates and in-house consultants. The Evaluation Board is NOT sold to Customer; all rights not expressly granted herein, including ownership of the Evaluation Board, are reserved by ADI. CONFIDENTIALITY. This Agreement and the Evaluation Board shall all be considered the confidential and proprietary information of ADI. Customer may not disclose or transfer any portion of the Evaluation Board to any other party for any reason. Upon discontinuation of use of the Evaluation Board or termination of this Agreement, Customer agrees to promptly return the Evaluation Board to ADI. ADDITIONAL RESTRICTIONS. Customer may not disassemble, decompile or reverse engineer chips on the Evaluation Board. Customer shall inform ADI of any occurred damages or any modifications or alterations it makes to the Evaluation Board, including but not limited to soldering or any other activity that affects the material content of the Evaluation Board. Modifications to the Evaluation Board must comply with applicable law, including but not limited to the RoHS Directive. TERMINATION. ADI may terminate this Agreement at any time upon giving written notice to Customer. Customer agrees to return to ADI the Evaluation Board at that time. LIMITATION OF LIABILITY. THE EVALUATION BOARD PROVIDED HEREUNDER IS PROVIDED "AS IS" AND ADI MAKES NO WARRANTIES OR REPRESENTATIONS OF ANY KIND WITH RESPECT TO IT. ADI SPECIFICALLY DISCLAIMS ANY REPRESENTATIONS, ENDORSEMENTS, GUARANTEES, OR WARRANTIES, EXPRESS OR IMPLIED, RELATED TO THE EVALUATION BOARD INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, TITLE, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. IN NO EVENT WILL ADI AND ITS LICENSORS BE LIABLE FOR ANY INCIDENTAL, SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES RESULTING FROM CUSTOMER'S POSSESSION OR USE OF THE EVALUATION BOARD, INCLUDING BUT NOT LIMITED TO LOST PROFITS, DELAY COSTS, LABOR COSTS OR LOSS OF GOODWILL. ADI'S TOTAL LIABILITY FROM ANY AND ALL CAUSES SHALL BE LIMITED TO THE AMOUNT OF ONE HUNDRED US DOLLARS (\$100.00). EXPORT. Customer agrees that it will not directly or indirectly export the Evaluation Board to another country, and that it will comply with all applicable United States federal laws and regulations relating to exports. GOVERNING LAW. This Agreement shall be governed by and construed in accordance with the substantive laws of the Commonwealth of Massachusetts (excluding conflict of law rules). Any legal action regarding this Agreement will be heard in the state or federal courts having jurisdiction in Suffolk County, Massachusetts, and Customer hereby submits to the personal jurisdiction and venue of such courts. The United Nations Convention on Contracts for the International Sale of Goods shall not apply to this Agreement and is expressly disclaimed.

©2017 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. UG14517-0-2/17(0)

www.analog.com

Rev. 0 | Page 12 of 12