: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

FEATURES

40-channel DAC in $13 \mathrm{~mm} \times 13 \mathrm{~mm}$ 108-lead CSPBGA
Guaranteed monotonic to 14 bits
Buffered voltage outputs
Output voltage span of $3.5 \mathrm{~V} \times \mathrm{V}_{\text {REF }}(+)$
Maximum output voltage span of 17.5 V
System calibration function allowing user-programmable offset and gain
Pseudo differential outputs relative to REFGND
Clear function to user-defined REFGND ($\overline{C L R}$ pin)
Simultaneous update of DAC outputs ($\overline{\text { LDAC }}$ pin)
DAC increment/decrement mode
Channel grouping and addressing features

Interface options:
Parallel interface
DSP/microcontroller-compatible, 3-wire serial interface
2.5 V to 5.5 V JEDEC-compliant digital levels

SDO daisy-chaining option
Power-on reset
Digital reset ($\overline{\operatorname{RESET}}$ pin and soft reset function)

APPLICATIONS

Level setting in automatic test equipment (ATE)
Variable optical attenuators (VOA)
Optical switches
Industrial control systems

Figure 1.

Rev. B

COMPARABLE PARTS

View a parametric search of comparable parts.
EVALUATION KITS

- AD5379 Evaluation Board

DOCUMENTATION

Data Sheet

- AD5379: 40-Channel, 14-Bit, Parallel and Serial Input, Voltage-Output DAC Data Sheet

Product Highlight

- Extending the denseDAC ${ }^{\text {rM }}$ Multichannel D/As

REFERENCE MATERIALS

Solutions Bulletins \& Brochures

- Digital to Analog Converters ICs Solutions Bulletin

DESIGN RESOURCES

- AD5379 Material Declaration
- PCN-PDN Information
- Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all AD5379 EngineerZone Discussions.

SAMPLE AND BUY

Visit the product page to see pricing options.

TECHNICAL SUPPORT \square

Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK

Submit feedback for this data sheet.

AD5379

TABLE OF CONTENTS

Features 1
Applications. 1
General Description 3
Specifications. 4
AC Characteristics. 5
Timing Characteristics 6
Serial Interface 6
Parallel Interface. 9
Absolute Maximum Ratings 11
ESD Caution 11
Pin Configuration and Function Descriptions. 12
Terminology 15
Typical Performance Characteristics 16
Functional Description 18
DAC Architecture-General. 18
Channel Groups. 18
Transfer Function 18
$V_{\text {bias }}$ Function 19
Reference Selection 19
REVISION HISTORY
7/09-Rev. At o Rev. BChanges to Table 14.24
1/05-Rev. 0 to Rev. AChanges to Table 1. 3
Change to Transfer Function Equation 18
4/04—Revision 0: Initial Version
Calibration 20
Clear Function 20
$\overline{B U S Y}$ and LDAC Functions 20
FIFO vs. Non-FIFO Operation. 21
$\overline{B U S Y}$ Input Function 21
Power-On Reset Function 21
$\overline{\text { RESET }}$ Input Function 21
Increment/Decrement Function 21
Interfaces. 22
Parallel Interface 22
Serial Interface 22
Data Decoding 24
Address Decoding 25
Power Supply Decoupling 26
Power-On 26
Typical Application Circuit 27
Outline Dimensions 28
Ordering Guide 28

GENERAL DESCRIPTION

The AD5379 contains 40 14-bit DACs in one CSPBGA package. The AD5379 provides a bipolar output range determined by the voltages applied to the $\mathrm{V}_{\text {ref }}(+)$ and $\mathrm{V}_{\text {Ref }}(-)$ inputs. The maximum output voltage span is 17.5 V , corresponding to a bipolar output range of -8.75 V to +8.75 V , and is achieved with reference voltages of $\mathrm{V}_{\text {Ref }}(-)=-3.5 \mathrm{~V}$ and $\mathrm{V}_{\text {Ref }}(+)=+5 \mathrm{~V}$.

The AD5379 offers guaranteed operation over a wide $V_{\text {ss }} / V_{\text {DD }}$ supply range from $\pm 11.4 \mathrm{~V}$ to $\pm 16.5 \mathrm{~V}$. The output amplifier headroom requirement is 2.5 V operating with a load current of 1.5 mA , and 2 V operating with a load current of 0.5 mA .

The AD5379 contains a double-buffered parallel interface in which 14 data bits are loaded into one of the input registers
under the control of the $\overline{\mathrm{WR}}, \overline{\mathrm{CS}}$, and DAC Channel Address Pins A0 to A7. It also has a 3-wire serial interface that is compatible with SPI ${ }^{\bullet}$, QSPI $^{\text {Tw }}$, MICROWIRE ${ }^{\text {mw }}$, and DSP ${ }^{\star}$ interface standards and can handle clock speeds of up to 50 MHz .

The DAC outputs are updated upon reception of new data into the DAC registers. All the outputs can be simultaneously updated by taking the LDAC input low. Each channel has a programmable gain and an offset adjust register.

Each DAC output is gained and buffered on-chip with respect to an external REFGND input. The DAC outputs can also be switched to REFGND via the $\overline{\text { CLR }}$ pin.

Table 1. High Channel Count, Low Voltage, Single-Supply DACs

Model	Resolution	AV ${ }_{\text {dD }}$ Range	Output Channels	Linearity Error (LSB)	Package Description	Package Option
AD5380BST-5	14 bits	4.5 V to 5.5 V	40	± 4	100-Lead LQFP	ST-100
AD5380BST-3	14 bits	2.7 V to 3.6V	40	± 4	100-Lead LQFP	ST-100
AD5381BST-5	12 bits	4.5 V to 5.5 V	40	± 1	100-Lead LQFP	ST-100
AD5381BST-3	12 bits	2.7 V to 3.6V	40	± 1	100-Lead LQFP	ST-100
AD5384BBC-5	14 bits	4.5 V to 5.5 V	40	± 4	100-Lead CSPBGA	BC-100
AD5384BBC-3	14 bits	2.7 V to 3.6V	40	± 4	100-Lead CSPBGA	BC-100
AD5382BST-5	14 bits	4.5 V to 5.5 V	32	± 4	100-Lead LQFP	ST-100
AD5382BST-3	14 bits	2.7 V to 3.6V	32	± 4	100-Lead LQFP	ST-100
AD5383BST-5	12 bits	4.5 V to 5.5 V	32	± 1	100-Lead LQFP	ST-100
AD5383BST-3	12 bits	2.7 V to 3.6V	32	± 1	100-Lead LQFP	ST-100
AD5390BST-5	14 bits	4.5 V to 5.5 V	16	± 3	52-Lead LQFP	ST-52
AD5390BCP-5	14 bits	4.5 V to 5.5 V	16	± 3	64-Lead LFCSP	CP-64
AD5390BST-3	14 bits	2.7 V to 3.6V	16	± 4	52-Lead LQFP	ST-52
AD5390BCP-3	14 bits	2.7 V to 3.6V	16	± 4	64-Lead LFCSP	CP-64
AD5391BST-5	12 bits	4.5 V to 5.5 V	16	± 1	52-Lead LQFP	ST-52
AD5391BCP-5	12 bits	4.5 V to 5.5 V	16	± 1	64-Lead LFCSP	CP-64
AD5391BST-3	12 bits	2.7 V to 3.6 V	16	± 1	52-Lead LQFP	ST-52
AD5391BCP-3	12 bits	2.7 V to 3.6 V	16	± 1	64-Lead LFCSP	CP-64
AD5392BST-5	14 bits	4.5 V to 5.5 V	8	± 3	52-Lead LQFP	ST-52
AD5392BCP-5	14 bits	4.5 V to 5.5 V	8	± 3	64-Lead LFCSP	CP-64
AD5392BST-3	14 bits	2.7V to 3.6V	8	± 4	52-Lead LQFP	ST-52
AD5392BCP-3	14 bits	2.7 V to 3.6 V	8	± 4	64-Lead LFCSP	CP-64

AD5379

SPECIFICATIONS

$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=11.4 \mathrm{~V}$ to $16.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=-11.4 \mathrm{~V}$ to $-16.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{REF}}(+)=5 \mathrm{~V} ; \mathrm{V}_{\mathrm{REF}}(-)=-3.5 \mathrm{~V} ; \mathrm{AGND}=\mathrm{DGND}=\mathrm{REFGND}=0 \mathrm{~V}$;
$\mathrm{V}_{\text {bias }}=5 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=200 \mathrm{pF}$ to $\mathrm{GND} ; \mathrm{R}_{\mathrm{L}}=11 \mathrm{k} \Omega$ to 3 V ; gain $=1$; offset $=0 \mathrm{~V}$; all specifications $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.
Table 2.

Parameter	A Version ${ }^{1}$	Unit	Test Conditions/Comments ${ }^{2}$
ACCURACY			
Resolution	14	Bits	
Relative Accuracy	± 3	LSB max	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
	± 2.5	LSB max	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Differential Nonlinearity	-1/+1.5	LSB max	Guaranteed monotonic by design over temperature
Zero-Scale Error	± 12	mV max	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
	± 5	mV max	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Full-Scale Error	± 12	mV max	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
	± 8	$m \mathrm{~V}$ max	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Gain Error	± 8	mV max	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
	$\pm 1 / \pm 5$	mV typ/max	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
VOUT Temperature Coefficient	5	ppm FSR/ $/{ }^{\circ} \mathrm{C}$ typ	Includes linearity, offset, and gain drift (see Figure 11)
DC Crosstalk ${ }^{2}$	0.5	mV max	Typically $100 \mu \mathrm{~V}$
REFERENCE INPUTS ${ }^{2}$			
$\mathrm{V}_{\text {REF }}(+)$ DC Input Impedance	1	$\mathrm{M} \Omega$ min	Typically $100 \mathrm{M} \Omega$
$V_{\text {REF }}(-)$ DC Input Impedance	8	$k \Omega$ min	Typically $12 \mathrm{k} \Omega$
$\mathrm{V}_{\text {REF }}(+)$ Input Current	± 10	$\mu \mathrm{A}$ max	Per input (typically $\pm 30 \mathrm{nA}$)
$V_{\text {REF }}(+)$ Range	1.5/5	\checkmark min/max	$\pm 2 \%$ for specified operation
$V_{\text {REF }}(-)$ Range	-3.5/0	V min/max	$\pm 2 \%$ for specified operation
REFGND INPUTS ${ }^{2}$			
DC Input Impedance	80	$\mathrm{k} \Omega$ min	Typically $120 \mathrm{k} \Omega$
Input Range	± 0.5	V min/max	
OUTPUT CHARACTERISTICS ${ }^{2}$			
Output Voltage Range	$\mathrm{V}_{\text {SS }}+2 / \mathrm{V}_{\text {SS }}+2.5$	\checkmark min	$\mathrm{I}_{\text {LOAD }}= \pm 0.5 \mathrm{~mA} / \pm 1.5 \mathrm{~mA}$
	$V_{D D}-2 / V_{D D}-2.5$	\checkmark max	$\mathrm{I}_{\text {LOAD }}= \pm 0.5 \mathrm{~mA} / \pm 1.5 \mathrm{~mA}$
Short-Circuit Current	15	mA max	
Load Current	± 1.5	mA max	
Capacitive Load	2200	pF max	
DC Output Impedance	1	Ω max	
DIGITAL INPUTS			JEDEC compliant
Input High Voltage	1.7	\checkmark min	$\mathrm{V}_{\text {cc }}=2.7 \mathrm{~V}$ to 3.6 V
	2.0	\checkmark min	$\mathrm{V}_{\text {cc }}=3.6 \mathrm{~V}$ to 5.5 V
Input Low Voltage	0.8	\checkmark max	$\mathrm{V}_{\text {cc }}=2.7 \mathrm{~V}$ to 5.5 V
Input Current (with pull-up/pull-down)	± 8	$\mu \mathrm{A}$ max	SER/PAR, FIFOEN, and $\overline{\text { RESET }}$ pins only
Input Current (no pull-up/pull-down)	± 1	$\mu \mathrm{A}$ max	All other digital input pins
Input Capacitance ${ }^{2}$	10	pF max	
DIGITAL OUTPUTS ($\overline{\text { BUSY }}$, SDO)			
Output Low Voltage	0.5	V max	Sinking $200 \mu \mathrm{~A}$
Output High Voltage (SDO)	$\mathrm{V}_{\text {cc }}-0.5$	V min	Sourcing $200 \mu \mathrm{~A}$
High Impedance Leakage Current	-70	$\mu \mathrm{A}$ max	SDO only
High Impedance Output Capacitance ${ }^{2}$	10	pF typ	
POWER REQUIREMENTS			
$\mathrm{V}_{\text {cc }}$	2.7/5.5	\checkmark min/max	
$V_{\text {DD }}$	8.5/16.5	\checkmark min/max	
$\mathrm{V}_{5 S}$	-3/-16.5	\checkmark min/max	

Parameter	A Version ${ }^{1}$	Unit	Test Conditions/Comments ${ }^{2}$
Power Supply Sensitivity ${ }^{2}$			
Δ Full Scale/ $\Delta V_{\text {DD }}$	-75	dB typ	
Δ Full Scale/ $\Delta \mathrm{V}_{\text {ss }}$	-75	dB typ	
Δ Full Scale/ $\Delta \mathrm{V}_{\text {cc }}$	-90	dB typ	
Icc	5	$m A \max$	$\mathrm{V}_{\text {cc }}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{V}_{\text {cc }}, \mathrm{V}_{\mathrm{IL}}=\mathrm{GND}$
IDD	28	$m A \max$	Outputs unloaded (typically 20 mA)
Iss	23	$m A \max$	Outputs unloaded (typically 15 mA)
Power Dissipation			
Power Dissipation Unloaded (P)	850	mW max	$V_{\text {DD }}=16.5 \mathrm{~V}, \mathrm{~V}_{S S}=-16.5 \mathrm{~V}$
Power Dissipation Loaded ($\mathrm{P}_{\text {total }}$)	2000	$m W$ max	$\mathrm{P}_{\text {TOTAL }}=\mathrm{P}+\Sigma\left(\mathrm{V}_{\text {DD }}-\mathrm{V}_{\mathrm{O}}\right) \times \mathrm{I}_{\text {SOURCE }}+\Sigma\left(\mathrm{V}_{\mathrm{O}}-\mathrm{V}_{S S}\right) \times \mathrm{I}_{\text {SINK }}$
Junction Temperature	130	${ }^{\circ} \mathrm{C}$ max	$\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\text {A }}+\mathrm{P}_{\text {TOTAL }} \times \theta_{\text {J }}{ }^{3}$

${ }^{1}$ Temperature range for A Version: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical specifications are at $25^{\circ} \mathrm{C}$.
${ }^{2}$ Guaranteed by design and characterization, not production tested.
${ }^{3}$ Where θ, represents the package thermal impedance.

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=11.4 \mathrm{~V}$ to $16.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=-11.4 \mathrm{~V}$ to $-16.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{REF}}(+)=5 \mathrm{~V} ; \mathrm{V}_{\text {REF }}(-)=-3.5 \mathrm{~V} ; \mathrm{AGND}=\mathrm{DGND}=\mathrm{REFGND}=0 \mathrm{~V}$; $\mathrm{V}_{\text {bias }}=5 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=220 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=11 \mathrm{k} \Omega$ to 3 V ; gain $=1$; offset $=0 \mathrm{~V}$.

Table 3.

Parameter	A Version ${ }^{1}$	Unit	Test Conditions/Comments
DYNAMIC PERFORMANCE			
Output Voltage Settling Time	20	$\mu \mathrm{styp}$	Full-scale change to $\pm 1 / 2$ LSB
	30	$\mu \mathrm{s}$ max	DAC latch contents alternately loaded with all 0 s and all 1 s
Slew Rate	1	V/us typ	
Digital-to-Analog Glitch Energy	20	nV-s typ	
Glitch Impulse Peak Amplitude	15	mV max	
Channel-to-Channel Isolation	100	dB typ	$\mathrm{V}_{\text {REF }}(+)=2 \mathrm{Vp}-\mathrm{p},\left(1 \mathrm{~V}_{\text {bias }}\right) 1 \mathrm{kHz}, \mathrm{V}_{\text {REF }}(-)=-1 \mathrm{~V}$
DAC-to-DAC Crosstalk	40	nV-s typ	Between DACs inside a group (see the Terminology section)
	10	nV-s typ	Between DACs from different groups
Digital Crosstalk	0.1	nV-s typ	
Digital Feedthrough	1	nV-s typ	Effect of input bus activity on DAC output under test
Output Noise Spectral Density @ 1 kHz	350	$\mathrm{nV} /(\mathrm{Hz})^{1 / 2}$ typ	$\mathrm{V}_{\text {REF }}(+)=\mathrm{V}_{\text {REF }}(-)=0 \mathrm{~V}$

[^0]
AD5379

TIMING CHARACTERISTICS

SERIAL INTERFACE

$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=11.4 \mathrm{~V}$ to $16.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=-11.4 \mathrm{~V}$ to $-16.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{REF}}(+)=5 \mathrm{~V} ; \mathrm{V}_{\mathrm{REF}}(-)=-3.5 \mathrm{~V} ; \mathrm{AGND}=\mathrm{DGND}=\mathrm{REFGND}=0 \mathrm{~V}$; $\mathrm{V}_{\text {bias }}=5 \mathrm{~V}$, FIFOEN $=0 \mathrm{~V}$; all specifications $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$, unless otherwise noted.

Table 4.

Parameter ${ }^{1,2,3}$	Limit at $\mathrm{T}_{\text {min, }}$, max $^{\text {m }}$	Unit	Description
t_{1}	20	ns min	SCLK cycle time.
t_{2}	8	ns min	SCLK high time.
t_{3}	8	$n \mathrm{nsmin}$	SCLK low time.
t_{4}	10	ns min	$\overline{\text { SYNC }}$ falling edge to SCLK falling edge setup time.
$\mathrm{t}_{5}{ }^{4}$	15	$n \mathrm{nsmin}$	24th SCLK falling edge to $\overline{\text { SYNC }}$ falling edge.
$\mathrm{t}_{6}{ }^{4}$	25	ns min	Minimum $\overline{\text { SYNC }}$ low time.
t_{7}	10	ns min	Minimum $\overline{\text { SYNC }}$ high time.
t_{8}	5	ns min	Data setup time.
t_{9}	4.5	ns min	Data hold time.
$\mathrm{t}_{10}{ }^{4,5}$	30	ns max	24th SCLK falling edge to $\overline{\text { BUSY }}$ falling edge.
t_{11}	330	ns max	$\overline{\text { BUSY }}$ pulse width low (single-channel update). See Table 10.
$\mathrm{t}_{12}{ }^{4}$	20	$n s$ min	24th SCLK falling edge to $\overline{\text { LDAC }}$ falling edge.
t_{13}	20	ns min	$\overline{\text { LDAC }}$ pulse width low.
t_{14}	150	ns typ	$\overline{\text { BUSY }}$ rising edge to DAC output response time.
t_{15}	0	ns min	$\overline{\mathrm{BUSY}}$ rising edge to $\overline{\mathrm{LDAC}}$ falling edge.
t_{16}	100	$n \mathrm{~ns}$ min	$\overline{\text { LDAC }}$ falling edge to DAC output response time.
t_{17}	20/30	$\mu \mathrm{styp} /$ max	DAC output settling time.
t_{18}	10	ns min	$\overline{\mathrm{CLR}}$ pulse width low.
t_{19}	350	ns max	$\overline{\mathrm{CLR}} / \overline{\mathrm{RESET}}$ pulse activation time.
$\mathrm{t}_{20}{ }^{6,7}$	25	ns max	SCLK rising edge to sdo valid.
$\mathrm{t}_{21}{ }^{7}$	5	$n \mathrm{~ns}$ min	SCLK falling edge to $\overline{S Y N C}$ rising edge.
$\mathrm{t}_{22}{ }^{7}$	5	ns min	$\overline{\text { SYNC }}$ rising edge to SCLK rising edge.
$\mathrm{t}_{23}{ }^{7}$	20	ns min	$\overline{\text { SYNC }}$ rising edge to $\overline{\text { LDAC }}$ falling edge.
$\mathrm{t}_{24}{ }^{5}$	30	ns min	$\overline{\text { SYNC }}$ rising edge to $\overline{\text { BUSY }}$ falling edge.
t_{25}	10	$n s$ min	$\overline{\text { RESET }}$ pulse width low.
t_{26}	120	μs max	$\overline{\mathrm{RESET}}$ time indicated by $\overline{\mathrm{BUSY}}$ low.

${ }^{1}$ Guaranteed by design and characterization, not production tested.
${ }^{2}$ All input signals are specified with $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=2 \mathrm{~ns}\left(10 \%\right.$ to 90% of $\left.\mathrm{V}_{c \mathrm{C}}\right)$, and timed from a voltage level of 1.2 V .
${ }^{3}$ See Figure 4 and Figure 5.
${ }^{4}$ Standalone mode only.
${ }^{5}$ This is measured with the load circuit shown in Figure 2.
${ }^{6}$ This is measured with the load circuit shown in Figure 3.
${ }^{7}$ Daisy-chain mode only.

Figure 2. Load Circuit for $\overline{B U S Y}_{\text {Timing Diagram }}$

Figure 3. Load Circuit for SDO Timing Diagram (Serial Interface, Daisy-Chain Mode)

1 $\overline{\text { LDAC }}$ ACTIVE DURING $\overline{B U S Y}$
${ }^{2}$ LDAC ACTIVE AFTER BUSY

Figure 4. Serial Interface Timing Diagram (Standalone Mode)

AD5379

Figure 5. Serial Interface Timing Diagram (Daisy-Chain Mode)

PARALLEL INTERFACE

$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=11.4 \mathrm{~V}$ to $16.5 \mathrm{~V} ; \mathrm{V}$ ss $=-11.4 \mathrm{~V}$ to $-16.5 \mathrm{~V} ; \mathrm{AGND}=\mathrm{DGND}=\mathrm{DUTGND}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{ReF}}(+)=5 \mathrm{~V}$;
$\mathrm{V}_{\text {REF }}(-)=-3.5 \mathrm{~V}$, FIFOEN $=0 \mathrm{~V}$; all specifications $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.
Table 5.

Parameter ${ }^{1,2,3}$	Limit at Tmin to Tmax	Unit	Description
to	4.5	ns min	REG0, REG1, address to $\overline{\overline{W R}}$ rising edge setup time.
t_{1}	4.5	ns min	REG0, REG1, address to $\overline{W R}$ rising edge hold time.
t_{2}	10	ns min	$\overline{\mathrm{CS}}$ pulse width low.
t_{3}	10	$n \mathrm{nsmin}$	$\overline{\text { WR }}$ pulse width low.
t_{4}	0	ns min	$\overline{\mathrm{CS}}$ to $\overline{\mathrm{WR}}$ falling edge setup time.
t_{5}	0	$n s$ min	$\overline{\mathrm{WR}}$ to $\overline{\mathrm{CS}}$ rising edge hold time.
t_{6}	4.5	ns min	Data to $\overline{W R}$ rising edge setup time.
t_{7}	4.5	$n \mathrm{~ns}$ min	Data to $\overline{W R}$ rising edge hold time.
t_{8}	20	$n \mathrm{nsmin}$	$\overline{\text { WR pulse width high. }}$
t9	240	ns min	Minimum $\overline{W R}$ cycle time (single-channel write).
$\mathrm{t}_{10}{ }^{4}$	0/30	ns min/max	$\overline{\mathrm{WR}}$ rising edge to $\overline{\mathrm{BUSY}}$ falling edge.
$\mathrm{t}_{11}{ }^{4}$	330	ns max	$\overline{\text { BUSY }}$ pulse width low (single-channel update). See Table 10.
t_{12}	0	$n s$ min	$\overline{\text { BUSY }}$ rising edge to $\overline{W R}$ rising edge.
t_{13}	30	ns min	$\overline{\mathrm{WR}}$ rising edge to $\overline{\mathrm{LDAC}}$ falling edge.
t_{14}	20	ns min	$\overline{\mathrm{LDAC}}$ pulse width low.
$\mathrm{t}_{15}{ }^{4}$	150	ns typ	$\overline{\text { BUSY }}$ rising edge to DAC output response time.
t_{16}	20	ns min	$\overline{\text { LDAC }}$ rising edge to $\overline{W R}$ rising edge.
t_{17}	0	ns min	$\overline{\text { BUSY }}$ rising edge to $\overline{\text { LDAC }}$ falling edge.
t_{18}	100	ns typ	$\overline{\mathrm{LDAC}}$ falling edge to DAC output response time.
t_{19}	20/30	$\mu \mathrm{styp} /$ max	DAC output settling time.
t_{20}	10	$n s$ min	$\overline{\mathrm{CLR}}$ pulse width low.
t_{21}	350	ns max	$\overline{\mathrm{CLR}} / \overline{\mathrm{RESET}}$ pulse activation time.
t_{22}	10	$n \mathrm{nsmin}$	$\overline{\text { RESET }}$ pulse width low.
t_{23}	120	$\mu \mathrm{s}$ max	$\overline{\mathrm{RESET}}$ time indicated by $\overline{\mathrm{BUSY}}$ low.

[^1]

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Transient currents of up to 100 mA do not cause SCR latch-up.
Table 6.

Parameter	Rating
VDD to AGND	-0.3 V to +17 V
Vss to AGND	-17 V to +0.3 V
Vcc to DGND	-0.3 V to +7 V
Digital Inputs to DGND	-0.3 V to $\mathrm{V}_{\text {cc }}+0.3 \mathrm{~V}$
Digital Outputs to DGND	-0.3 V to $\mathrm{V}_{\mathrm{cc}}+0.3 \mathrm{~V}$
$\mathrm{V}_{\text {ReF }} 1(+), \mathrm{V}_{\text {ref }} 2(+)$ to AGND	-0.3 V to +7 V
$\mathrm{V}_{\text {REF }} 1(-), \mathrm{V}_{\text {ref }} 2(-)$ to AGND	$\mathrm{V}_{S S}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
$\mathrm{V}_{\text {BIAS }}$ to AGND	-0.3 V to +7 V
VOUTO-VOUT39 to AGND	$\mathrm{V}_{S S}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\text {D }}+0.3 \mathrm{~V}$
REFGND to AGND	$\mathrm{V}_{S S}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
AGND to DGND	-0.3 V to +0.3 V
Operating Temperature Range (T_{A}) Industrial (A Version)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature ($\mathrm{J}_{\text {, max) }}$	$150^{\circ} \mathrm{C}$
108-Lead CSPBGA Package	
θ_{JA} Thermal Impedance	$37.5^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {jc }}$ Thermal Impedance	$8.5^{\circ} \mathrm{C} / \mathrm{W}$
Reflow Soldering	
Peak Temperature	$230^{\circ} \mathrm{C}$
Time at Peak Temperature	10 sec to 40 sec

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

AD5379

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 7. Pin Configuration
Table 7. 108-Lead CSPBGA Ball Configuration

CSPBGA Number	Ball Name	CSPBGA Number	Ball Name	CSPBGA Number	Ball Name
A1	REG0	C5	$\overline{\text { LDAC }}$	G3	$\overline{\text { BUSY }}$
A2	Vcc3	C6	VOUT8	G10	Vss 3
A3	DB10	C7	VOUT3	G11	VOUT29
A4	AGND4	C8	VOUT4	G12	REFGNDC2
A5	VBIAS	C9	VOUT9	H1	WR/DCEN
A6	VOUT5	C10	VOUT34	H2	SDO ${ }^{2}$
A7	AGND3	C11	VOUT32	H3	$\overline{\text { CS/SYNC }}$
A8	REFGNDA1	C12	VOUT33	H10	VOUT28
A9	$V_{\text {DD }} 5$	D1	DB7	H11	VOUT26
A10	Vss5	D2	DB8	H12	VOUT27
A11	Vss4	D3	DGND1	J1	A0
A12	VDD4	D10	$\mathrm{V}_{\text {REF }} 1(-)$	J2	A1
B1	REG1	D11	VOUT35	J3	A2
B2	DGND4	D12	VOUT36	J10	VOUT19
B3	DB9	E1	DB5	J11	VOUT24
B4	CLR	E2	DB6	J12	VOUT25
B5	VOUT7	E3	$V_{C C} 1$	K1	A4
B6	VOUT6	E10	REFGNDB2	K2	A5
B7	VOUT0	E11	VOUT37	K3	A3
B8	VOUT1	E12	VOUT38	K4	DGND2
B9	VOUT2	F1	DB4	K5	REFGNDA2
B10	VOUT31	F2	DB3	K6	$\mathrm{V}_{\text {ref }}$ 2(-)
B11	REFGNDD1	F3	DB2	K7	VOUT12
B12	VOUT30	F10	VDD3	K8	VOUT13
C1	DB13	F11	REFGNDD2	K9	VOUT16
C2	DB12/SCLK	F12	VOUT39	K10	VOUT18
C3	DB11/DIN	G1	DB1	K11	VOUT22
C4	SER/ $\overline{\text { PAR }}^{1}$	G2	DB0		

CSPBGA	
Number	Ball Name
K12	VOUT23
L1	A7
L2	A6
L3	N/C 3
L4	RESET 2
L5	VOUT17 $^{\text {L6 }}$
L7	AGND2
L8	VOUT14
L9	VOUT10
L10	VDD1
L11	VEEF2(+)
L12	VOUT20
M1	VOUT21
M2	DGND3
M3	VCC2
M4	FIFOEN
M5	AGND1
M6	VOUT15
M7	VOUT11
M8	REFGNDB1
M9	VREF1(+)
M10	VSS1
M11	VsS2
M12	VDD2

[^2]Table 8. Pin Function Descriptions

Pin	Function
$\mathrm{V}_{\mathrm{cc}}(1-3)$	Logic Power Supply; 2.7 V to 5.5 V . These pins should be decoupled with $0.1 \mu \mathrm{~F}$ ceramic capacitors and $10 \mu \mathrm{~F}$ capacitors.
$\mathrm{V}_{\text {Ss }}(1-5)$	Negative Analog Power Supply; -11.4 V to -16.5 V for Specified Performance. These pins should be decoupled with $0.1 \mu \mathrm{~F}$ ceramic capacitors and $10 \mu \mathrm{~F}$ capacitors.
$V_{\text {DD }}(1-5)$	Positive Analog Power Supply; +11.4 V to +16.5 V for Specified Performance. These pins should be decoupled with $0.1 \mu \mathrm{~F}$ ceramic capacitors and $10 \mu \mathrm{~F}$ capacitors.
AGND(1-4)	Ground for All Analog Circuitry. All AGND pins should be connected to the AGND plane.
DGND(1-4)	Ground for All Digital Circuitry. All DGND pins should be connected to the DGND plane.
$\mathrm{V}_{\text {REF }} 1(+), \mathrm{V}_{\text {REF }} 1(-)$	Reference Inputs for DACs 0 to 7, 10 to 17,20 to 27, and 30 to 37. These voltages are referred to AGND.
$\mathrm{V}_{\text {REF }} 2(+), \mathrm{V}_{\text {REF }} 2(-)$	Reference Inputs for DACs $8,9,18,19,28,29,38$ and 39 . These reference voltages are referred to AGND.
$\mathrm{V}_{\text {bias }}$	DAC Bias Voltage Input/Output. This pin provides an access to the on-chip voltage generator voltage and is provided for bypassing and overdriving purposes only. If $\mathrm{V}_{\text {REF }}(+)>4.25 \mathrm{~V}$, $\mathrm{V}_{\text {BIAS }}$ must be pulled high externally to an equal or higher potential (for example, 5 V). If $\mathrm{V}_{\text {REF }}(+)<4.25 \mathrm{~V}$, the on-chip bias generator can be used. In this case, the $\mathrm{V}_{\text {BIAS }}$ pin should be decoupled with a 10 nF capacitor to AGND.
VOUT0 to VOUT39	DAC Outputs. Buffered analog outputs for each of the 40 DAC channels. Each analog output is capable of driving an output load of $5 \mathrm{k} \Omega$ to ground. Typical output impedance of these amplifiers is 1Ω.
SER/PAR	Interface Select Input. This pin allows the user to select whether the serial or parallel interface is used. This pin has an internal $1 \mathrm{M} \Omega$ pull-down resistor, meaning that the default state at power-on is parallel mode. If this pin is tied high, the serial interface is used.
$\overline{\text { SYNC }}^{1}$	Active Low Input. This is the frame synchronization signal for the serial interface.
SCLK ${ }^{1}$	Serial Clock Input. Data is clocked into the shift register on the falling edge of SCLK. This pin operates at clock speeds up to 50 MHz .
DIN ${ }^{1}$	Serial Data Input. Data must be valid on the falling edge of SCLK.
SDO ${ }^{1}$	Serial Data Output. CMOS output. SDO can be used for daisy-chaining a number of devices together. Data is clocked out on SDO on the rising edge of SCLK and is valid on the falling edge of SCLK.
DCEN ${ }^{1}$	Daisy-Chain Select Input (Level Sensitive, Active High). When high, this signal is used in conjunction with SER/PAR high to enable serial interface daisy-chain mode.
$\overline{C S}$	Parallel Interface Chip Select Input (Level Sensitive, Active Low). If this pin is low, the device is selected.
$\overline{\mathrm{WR}}$	Parallel Interface Write Input (Edge Sensitive). The rising edge of $\overline{\mathrm{WR}}$ is used in conjunction with $\overline{\mathrm{CS}}$ low and the address bus inputs to write to the selected AD5379 registers.
DB13 to DB0	Parallel Data Inputs. The AD5379 can accept a straight 14-bit parallel word on DB0 to DB13, where DB13 is the MSB and DBO is the LSB.
A0 to A7	Parallel Address Inputs. A7 to A4 are decoded to select one group or multiple groups of registers (input registers, gain registers (m) or offset registers (c)) for a data transfer. This pin is used in conjunction with the REG1 and REG0 pins to determine the destination register for the input data. See the Parallel Interface section for details of the address decoding.
REGO	Parallel Interface Register Select Input. This pin is used together with REG1 to select data registers, gain registers, offset registers, increment/decrement mode, or the soft reset function. See Table 11.
$\overline{C L R}$	Asynchronous Clear Input (Level Sensitive, Active Low). When $\overline{\mathrm{CLR}}$ is low, the input to each of the DAC output buffer stages, VOUTO to VOUT39, is switched to the externally set potential on the relevant REFGND pin. While $\overline{\mathrm{CLR}}$ is low, all $\overline{\mathrm{LDAC}}$ pulses are ignored. When $\overline{\mathrm{CLR}}$ is taken high again, the DAC outputs remain cleared until $\overline{\mathrm{LDAC}}$ is taken low. The contents of input registers and DAC registers 0 to 39 are not affected by taking $\overline{C L R}$ low.
$\overline{\text { BUSY }}$	Digital Input/Open-Drain Output. This pin must be pulled high with a pull-up resistor for correct operation. $\overline{\text { BUSY }}$ goes low during internal calculations of $\times 2$. During this time, the user can continue writing new data to additional $\times 1, \mathrm{c}$, and m registers (these are stored in a FIFO), but no further updates to the DAC registers and DAC outputs can take place. If $\overline{L D A C}$ is taken low while $\overline{B U S Y}$ is low, this event is stored. Because $\overline{B U S Y}$ is bidirectional, it can be pulled low externally to delay $\overline{\text { LDAC }}$ action. $\overline{B U S Y}$ also goes low during power-on reset or when the $\overline{\mathrm{RESET}}$ pin is low. During a $\overline{\mathrm{RESET}}$ operation, the parallel interface is disabled and any events on $\overline{\mathrm{LDAC}}$ are ignored.
$\overline{\text { LDAC }}$	Load DAC Logic Input (Active Low). If $\overline{\mathrm{LDAC}}$ is taken low while $\overline{\mathrm{BUSY}}$ is inactive (high), the contents of the input registers are transferred to the DAC registers and the DAC outputs are updated. If $\overline{\mathrm{LDAC}}$ is taken low while $\overline{B U S Y}$ is active and internal calculations are taking place, the $\overline{\text { LDAC }}$ event is stored and the DAC registers are updated when $\overline{\mathrm{BUSY}}$ goes inactive. However, any events on $\overline{\mathrm{LDAC}}$ during power-on reset or $\overline{\mathrm{RESET}}$ are ignored.

Pin	Function
FIFOEN	FIFO Enable (Level Sensitive, Active High). When connected to DVDD, the internal FIFO is enabled, allowing the user to write to the device at full speed. FIFO is available in both serial and parallel mode. The FIFOEN pin has an internal $1 \mathrm{M} \Omega$ pull-down resistor connected to ground, meaning that the FIFO is disabled by default.
$\overline{\text { RESET }}$	Asynchronous Digital Reset Input (Falling Edge Sensitive). If unused, $\overline{\text { RESET }}$ may be left unconnected; an internal pullup resistor ($1 \mathrm{M} \Omega$) ensures that the $\overline{\text { RESET input is held high. The function of this pin is equivalent to that of the power- }}$ on reset generator. When this pin is taken low, the AD5379 state machine initiates a reset sequence to digitally reset $\mathrm{x} 1, \mathrm{~m}, \mathrm{c}$, and x 2 registers to their default power-on values. This sequence takes $100 \mu \mathrm{~s}$ (typ). Furthermore, the input to each of the DAC output buffer stages, VOUTO to VOUT39, is switched to the externally set potential on the relevant REFGND pin. During $\overline{\text { RESET, }} \bar{B} U S Y$ goes low and the parallel interface is disabled. All $\overline{\text { LDAC pulses are ignored until }}$ $\overline{\overline{B U S Y}}$ goes high. When $\overline{\mathrm{RESET}}$ is taken high again, the DAC ouputs remain at REFGND until $\overline{\mathrm{LDAC}}$ is taken low.
REFGNDA1	Reference Ground for DACs 0 to 7. VOUT0 to VOUT7 are referenced to this voltage.
REFGNDA2	Reference Ground for DACs 8 and 9. VOUT8 and VOUT9 are referenced to this voltage.
REFGNDB1	Reference Ground for DACs 10 to 17. VOUT10 to VOUT17 are referenced to this voltage.
REFGNDB2	Reference Ground for DACs 18 and 19. VOUT18 and VOUT19 are referenced to this voltage.
REFGNDC1	Reference Ground for DACs 20 to 27. VOUT20 to VOUT27 are referenced to this voltage.
REFGNDC2	Reference Ground for DACs 28 and 29. VOUT28 and VOUT29 are referenced to this voltage.
REFGNDD1	Reference Ground for DACs 30 to 37. VOUT30 to VOUT37 are referenced to this voltage.
REFGNDD2	Reference Ground for DACs 38 and 39. VOUT38 and VOUT39 are referenced to this voltage.

[^3]
TERMINOLOGY

Relative Accuracy

Relative accuracy, or endpoint linearity, is a measure of the maximum deviation from a straight line passing through the endpoints of the DAC transfer function. It is measured after adjusting for zero-scale error and full-scale error and is expressed in least significant bits (LSB).

Differential Nonlinearity

Differential nonlinearity is the difference between the measured change and the ideal 1 LSB change between any two adjacent codes. A specified differential nonlinearity of 1 LSB maximum ensures monotonicity.

Zero-Scale Error

Zero-scale error is the error in the DAC output voltage when all 0 s are loaded into the DAC register.

Ideally, with all 0 s loaded to the DAC and m is all 1 s , c is 10000000000000 :

$$
V O U T_{(\text {zero scalle })}=2.5 \times(\operatorname{VREF}(-)-A G N D)+R E F G N D
$$

Zero-scale error is a measure of the difference between VOUT (actual) and VOUT (ideal) expressed in mV . Zero-scale error is mainly due to offsets in the output amplifier.

Full-Scale Error

Full-scale error is the error in DAC output voltage when all 1s are loaded into the DAC register.

Ideally, with all 1 s loaded to the DAC and m is all 1 s , c is 10000000000000 :

$$
\begin{aligned}
& V O U T_{\text {full }_{\text {scale })}}=3.5 \times(\operatorname{VREF}(+)-A G N D)+2.5 \times \\
& (V R E F(-)-A G N D)+R E F G N D
\end{aligned}
$$

Full-scale error is a measure of the difference between VOUT (actual) and VOUT (ideal) expressed in mV . It does not include zero-scale error.

Gain Error

Gain error is the difference between full-scale error and zeroscale error. It is expressed in mV .

Gain Error = Full-Scale Error - Zero-Scale Error

VOUT Temperature Coefficient

This includes output error contributions from linearity, offset, and gain drift.

DC Output Impedance

DC output impedance is the effective output source resistance. It is dominated by package lead resistance.

DC Crosstalk

The 40 DAC outputs are buffered by op amps that share common $V_{D D}$ and $V_{s S}$ power supplies. If the dc load current changes in one channel (due to an update), this can result in a further dc change in one or more channel outputs. This effect is more significant at high load currents and reduces as the load currents are reduced. With high impedance loads, the effect is virtually unmeasurable. Multiple $V_{D D}$ and $\mathrm{V}_{\text {sS }}$ terminals are provided to minimize dc crosstalk.

Output Voltage Settling Time

The amount of time it takes for the output of a DAC to settle to a specified level for a full-scale input change.

Digital-to-Analog Glitch Energy

The amount of energy injected into the analog output at the major code transition. It is specified as the area of the glitch in nV-s. It is measured by toggling the DAC register data between 0 x 1 FFF and 0×2000.

Channel-to-Channel Isolation

Channel-to-channel isolation refers to the proportion of input signal from one DAC's reference input that appears at the output of another DAC operating from another reference. It is expressed in dB and measured at midscale.

DAC-to-DAC Crosstalk

DAC-to-DAC crosstalk is the glitch impulse that appears at the output of one converter due to both the digital change and subsequent analog output change at another converter. It is specified in nV -s.

Digital Crosstalk

The glitch impulse transferred to the output of one converter due to a change in the DAC register code of another converter is defined as the digital crosstalk and is specified in nV -s.

Digital Feedthrough

When the device is not selected, high frequency logic activity on the device's digital inputs can be capacitively coupled both across and through the device to show up as noise on the VOUT pins. It can also be coupled along the supply and ground lines. This noise is digital feedthrough.

Output Noise Spectral Density

Output noise spectral density is a measure of internally generated random noise. Random noise is characterized as a spectral density (voltage per $\sqrt{ } \mathrm{Hz}$). It is measured by loading all DACs to midscale and measuring noise at the output. It is measured in $\mathrm{nV} /(\mathrm{Hz})^{1 / 2}$.

AD5379

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 8. Typical INL Plot

Figure 9. INL Error Distribution $\left(-40^{\circ} \mathrm{C},+25^{\circ} \mathrm{C},+85^{\circ} \mathrm{C}\right.$ Superimposed)

Figure 10. Typical INL Error vs. Temperature

Figure 11. Typical Full-Scale and Zero-Scale Errors vs. Temperature

Figure 12. IDD vs. VDD over Temperature

Figure 13.Iss vs. VDD over Temperature

Figure 14. Icc vs. Supply

Figure 15. Major Code Transition Glitch Energy

Figure 16. Digital Feedthrough

Figure 17. DAC-to-DAC Crosstalk

Figure 18. Supply Current vs. Digital Input Voltage

FUNCTIONAL DESCRIPTION

DAC ARCHITECTURE—GENERAL

The AD5379 contains 40 DAC channels and 40 output amplifiers in a single package. The architecture of a single DAC channel consists of a 14-bit resistor-string DAC followed by an output buffer amplifier. The resistor-string section is simply a string of resistors, each of value R , from $\mathrm{V}_{\text {ReF }}(+)$ to AGND. This type of architecture guarantees DAC monotonicity. The 14-bit binary digital code loaded to the DAC register determines at which node on the string the voltage is tapped off before being fed into the output amplifier. The output amplifier translates the output of the DAC to a wider range. The DAC output is gained up by a factor of 3.5 and offset by the voltage on the $\mathrm{V}_{\text {Ref }}(-)$ pin. See the Transfer Function section for more information.

CHANNEL GROUPS

The 40 DAC channels on the AD5379 are arranged into four groups (A, B, C, D) of 10 channels. In each group, eight channels are connected to $\mathrm{V}_{\text {ReF }} 1(+)$ and $\mathrm{V}_{\text {ReF }} 1(-)$, and the remaining two channels are connected to $\mathrm{V}_{\text {Ref }} 2(+)$ and $\mathrm{V}_{\text {ref2 }} 2(-)$. Each group has two individual REFGND pins. For example, in Group A, eight channels are connected to REFGNDA1, and the remaining two channels are connected to REFGNDA2. In addition to an input register (x 1) and a DAC register (x2), each channel has a gain register (m) and an offset register (c). See Table 17. The inclusion of these registers allows the user to calibrate out errors in the complete signal chain, including the DAC errors.

Table 9 shows the reference and REFGND inputs, and the m and c registers for Group A. Groups B, C, and D are similar.

Table 9. Inputs and Registers for Group A

Channel	Reference	REFGND	m, c Registers
0 to 7	$V_{\text {REF1 }}(+), V_{\text {REF }} 1(-)$	REFGNDA1	m REG0 to REG7 c REG0 to REG7
8 and 9	$V_{\text {REF2 }}(+), V_{\text {REE } 2(-)}$	REFGNDA2	m REG8 and REG9 c REG8 and REG9

TRANSFER FUNCTION

The digital input transfer function for each DAC can be represented as

$$
x 2=\left[(m+1) / 2^{13} \times x 1\right]+\left(c-2^{n-1}\right)
$$

where:
$x 2$ is the data-word loaded to the resistor string DAC.
(Default is 1000000000 0000.)
$x 1$ is the 14 -bit data-word written to the DAC input register.
(Default is 1000000000 0000.)
m is the 13-bit gain coefficient. (Default is 1111111111111.$)$
c is the 14 -bit offset coefficient. (Default is 10000000000000 .)
n is the DAC resolution ($n=14$).

Figure 19 shows a single DAC channel and its associated registers. The power-on values for the m and c registers are full scale and 0×2000, respectively. The user can individually adjust the voltage range on each DAC channel by overwriting the power-on values of m and c . The AD5379 has digital overflow and underflow detection circuitry to clamp the DAC output at full scale or zero scale when the values chosen for $\mathrm{x} 1, \mathrm{~m}$, and c result in x 2 being out of range.

Figure 19. Single DAC Channel
The complete transfer function for the AD5379 can be represented as

$$
\begin{aligned}
\operatorname{VOUT}= & 3.5 \times\left((\operatorname{VREF}(+)-A G N D) \times \mathrm{x} 2 / 2^{14}\right)+ \\
& 2.5 \times(\operatorname{VREF}(-)-A G N D)+R E F G N D
\end{aligned}
$$

where:
$x 2$ is the data word loaded to the resistor string DAC.
$V_{R E F}(+)$ is the voltage at the positive reference pin.
$V_{\text {REF }}(-)$ is the voltage at the negative reference pin.
Figure 20 shows the output amplifier stage of a single channel. VDAC is the voltage output from the resistor string DAC. The nominal range of VDAC is 1 LSB to full scale.

Figure 20. Output Amplifier Stage

$\mathbf{V}_{\text {BIAS }}$ FUNCTION

The AD5379 has an on-chip voltage generator that provides a bias voltage of 4.25 V (minimum). The $\mathrm{V}_{\text {bias }}$ pin is provided for bypassing and overdriving purposes only. It is not intended to be used as a supply or a reference. If $\mathrm{V}_{\text {REF }}(+)>4.25 \mathrm{~V}, \mathrm{~V}_{\text {BIAS }}$ must be pulled high externally to an equal or higher potential (such as 5 V). The external voltage source should be capable of driving a $50 \mu \mathrm{~A}$ (typical) current sink load.

REFERENCE SELECTION

The voltages applied to $\mathrm{V}_{\text {Ref }}(+)$ and $\mathrm{V}_{\text {ReF }}(-)$ determine the output voltage range and span on VOUT0 to VOUT39. If the offset and gain features are not used (m and c are left at their power-on values), the required reference levels can be calculated as follows:

$$
\begin{aligned}
& \operatorname{VREF}(+)_{\min }=\left(\text { VOUT }_{\text {max }}-\operatorname{VOUT}_{\text {min }}\right) / 3.5 \\
& \operatorname{VREF}(-)_{\max }=\left(A G N D+\operatorname{VOUT}_{\text {min }}\right) / 2.5
\end{aligned}
$$

If the offset and gain features of the AD5379 are used, then the required output range is slightly different. The chosen output range should take into account the offset and gain errors that need to be trimmed out. Therefore, the chosen output range should be larger than the actual, required range.

The required reference levels can be calculated as follows:

1. Identify the nominal output range on VOUT.
2. Identify the maximum offset span and the maximum gain required on the full output signal range.
3. Calculate the new maximum output range on VOUT including the expected, maximum offset and gain errors.
4. Choose the new required $\mathrm{VOUT}_{\text {max }}$ and $\mathrm{VOUT}_{\text {min }}$, keeping the new VOUT limits centered on the nominal values and assuming REFGND is zero (or equal to AGND). Note that $V_{D D}$ and $V_{S S}$ must provide sufficient headroom.
5. Calculate the values of $\mathrm{V}_{\mathrm{ReF}}(+)$ and $\mathrm{V}_{\mathrm{ReF}}(-)$ as follows:

$$
\begin{aligned}
& V_{R E F}(+)_{\min }=\left(\text { VOUT }_{\text {max }}-\text { VOUT }_{\text {min }}\right) / 3.5 \\
& V_{\text {REF }}(-)_{\max }=\left(A G N D+\text { VOUT }_{\text {min }}\right) / 2.5
\end{aligned}
$$

In addition, when using reference values other than those suggested $\left(\mathrm{V}_{\text {REF }}(+)=5 \mathrm{~V}\right.$ and $\left.\mathrm{V}_{\text {ReF }}(-)=-3.5 \mathrm{~V}\right)$, the expected offset error component changes to

$$
V_{\text {OFFSET }}=0.125 \times\left(V_{R E F}(-)_{A}+0.7 \times V_{R E F}(+)_{A}\right)
$$

where:
$V_{R E F}(-)_{A}$ is the new negative reference value. $V_{R E F}(+)_{A}$ is the new positive reference value.

If this offset error is too large to calibrate, then adjust the negative reference value to account for this using the following equation:

$$
V_{\text {REF }}(-)_{\text {NEW }}=V_{\text {REF }}(-)_{A}-V_{\text {OFFSET }} / 2.625
$$

Reference Selection Example

Nominal Output Range $=10 \mathrm{~V} ;(-2 \mathrm{~V}$ to $+8 \mathrm{~V})$
Offset Error $= \pm 100 \mathrm{mV}$;
Gain Error $= \pm 3 \%$;
$R E F G N D=A G N D=0 \mathrm{~V}$;

1) Gain Error $= \pm 3 \%$;
=> Maximum Positive Gain Error $=+3 \%$
$\Rightarrow>$ Output Range incl. Gain Error $=10+0.03(10)=10.3 \mathrm{~V}$
2) Offset Error $= \pm 100 \mathrm{mV}$;
=> Maximum Offset Error Span $=2(100) \mathrm{mV}=0.2 \mathrm{~V}$
$=>$ Output Range including Gain Error and Offset Error $=10.3+0.2=10.5 \mathrm{~V}$
3) $V_{R E F}(+)$ and $V_{R E F}(-)$ Calculation:

Actual Output Range $=10.5 \mathrm{~V}$, that is, -2.25 V to +8.25 V
(centered);

$$
\begin{aligned}
=>V_{R E F}(+)= & (8.25+2.25) / 3.5=3 \mathrm{~V} \\
V_{R E F}(-) & =-2.25 /+2.5=-0.9 \mathrm{~V}
\end{aligned}
$$

If the solution yields inconvenient reference levels, the user can adopt one of three approaches:

- Use a resistor divider to divide down a convenient, higher reference level to the required level.
- Select convenient reference levels above $\mathrm{V}_{\text {ref }}(+)_{\min }$ or below $\mathrm{V}_{\text {Ref }}(-)_{\text {max }}$. Modify the gain and offset registers to digitally downsize the references. In this way, the user can use almost any convenient reference level, but may reduce performance by overcompaction of the transfer function.
- Use a combination of these two approaches.

CALIBRATION

The user can perform a system calibration by overwriting the default values in the m and c registers for any individual DAC channel as follows:

- Calculate the nominal offset and gain coefficients for the new output range (see previous example).
- Calculate the new m and c values for each channel based on the specified offset and gain errors.

Calibration Example

Nominal Offset Coefficient $=0$

Nominal Gain Coefficient $=$ $10 / 10.5 \times 8191=0.95238 \times 8191=7801$

Example 1: Channel 0, Gain Error $=3 \%$, Offset Error $=100 \mathrm{mV}$ 1) Gain Error (3\%) Calibration: $7801 \times 1.03=8035$
=> Load Code "1 111101100011 " to m Register 0
2) Offset Error (100 mV) Calibration:

LSB Size $=10.5 / 16384=641 \mu \mathrm{~V}$;
Offset Coefficient for 100 mV Offset $=100 / 0.64=156$ LSBs
=> Load "10 00001001 1100" to c Register 0
Example 2: Channel 1, Gain Error $=-3 \%$, Offset Error $=-100 \mathrm{mV}$ 1) Gain Error (-3%) Calibration: $7801 \times 0.97=7567$
=> Load Code "1 11101000 1111" to m Register 1
2) Offset Error (-100 mV) Calibration:

LSB Size $=10.5 / 16384=641 \mu \mathrm{~V}$;
Offset Coefficient for -100 mV Offset $=-100 / 0.64=-156$ LSBs => Load "01 11110110 0100" to c Register 1

CLEAR FUNCTION

The clear function on the AD5379 can be implemented in hardware or software.

Hardware Clear

Bringing the $\overline{\mathrm{CLR}}$ pin low switches the outputs, VOUT0 to VOUT39, to the externally set potential on the REFGND pin. This is achieved by switching in REFGND and reconfiguring the output amplifier stages into unity gain buffer mode, thus ensuring VOUT = REFGND. The contents of the input registers and DAC registers are not affected by taking $\overline{\mathrm{CLR}}$ low. When $\overline{\mathrm{CLR}}$ is brought high, the DAC outputs remain cleared until $\overline{\mathrm{LDAC}}$ is taken low. While $\overline{\mathrm{CLR}}$ is low, the value of $\overline{\mathrm{LDAC}}$ is ignored.

Software Clear

Loading a clear code to the x1 registers also enables the user to set VOUT0 to VOUT39 to the REFGND level. The default clear code corresponds to m at full-scale and c at midscale $(\mathrm{x} 2=\mathrm{x} 1)$.

$$
\begin{aligned}
& \text { Default Clear Code } \\
& =2^{14} \times(- \text { Output Offset) } /(\text { Output Range }) \\
& =2^{14} \times 2.5 \times\left(A G N D-V_{\text {REF }}(-)\right) /\left(3.5 \times\left(V_{\text {REF }}(+)-A G N D\right)\right)
\end{aligned}
$$

The more general expression for the clear code is as follows:

$$
\text { Clear Code }=\left(2^{14}\right) /(m+1) \times(\text { Default Clear Code }-c)
$$

$\overline{\text { BUSY }}$ AND $\overline{\text { LDAC }}$ FUNCTIONS

The value of x 2 is calculated each time the user writes new data to the corresponding $\mathrm{x} 1, \mathrm{c}$, or m registers. During the calculation of x2, the $\overline{\text { BUSY }}$ output goes low. While BUSY is low, the user can continue writing new data to the $\mathrm{x} 1, \mathrm{~m}$, or c registers, but no DAC output updates can take place. The DAC outputs are updated by taking the $\overline{\mathrm{LDAC}}$ input low. If $\overline{\mathrm{LDAC}}$ goes low while $\overline{\mathrm{BUSY}}$ is active, the $\overline{\mathrm{LDAC}}$ event is stored and the DAC outputs update immediately after $\overline{\mathrm{BUSY}}$ goes high. A user can also hold the $\overline{\text { LDAC }}$ input permanently low. In this case, the DAC outputs update immediately after BUSY goes high.

Table 10. $\overline{\text { BUSY }}$ Pulse Width

Action	$\overline{\text { BUSY }}$ Pulse Width (ns max)	
	FIFO Enabled	FIFO Disabled
	530	330
Loading $\times 1, c$, or m to 2 channels	700	500
Loading $\times 1, c$ or m to 3 channels	900	700
Loading $\times 1, c$, or m to 4 channels	1050	850
Loading $\times 1, c$, or m to all 40 channels	5500	5300

The value of x 2 for a single channel or group of channels is recalculated each time there is a write to any x 1 register(s), c register(s), or m register(s). During the calculation of x 2 , $\overline{\text { BUSY }}$ goes low. The duration of this BUSY pulse depends on the number of channels being updated. For example, if $x 1, c$, or m data is written to one DAC channel, $\overline{\text { BUSY }}$ goes low for 550 ns (maximum). However, if data is written to two DAC channels, $\overline{\text { BUSY }}$ goes low for 700 ns (maximum). As shown in Table 10, there are approximately 200 ns of overhead due to FIFO access.

The AD5379 contains an extra feature whereby a DAC register is not updated unless its x 2 register has been written to since the last time $\overline{\mathrm{LDAC}}$ was brought low. Normally, when $\overline{\text { LDAC }}$ is brought low, the DAC registers are filled with the contents of the x2 registers. However the AD5379 updates the DAC register only if the x 2 data has changed, thereby removing unnecessary digital crosstalk.

FIFO VS. NON-FIFO OPERATION

Two modes of operation are available for loading data to the AD5379 registers: operation with FIFO disabled and operation with FIFO enabled. Operation with FIFO disabled is optimum for single writes to the device. If the system requires significant data transfers to the AD5379, however, then operation with FIFO enabled is more efficient.

When FIFO is enabled, the AD5379 uses an internal FIFO memory to allow high speed successive writes in both serial and parallel modes. This optimizes the interface speed and efficiency, minimizes the total conversion time due to internal digital efficiencies, and minimizes the overhead on the master controller when managing the data transfers. The BUSY signal goes low while instructions in the state machine are being executed.

Table 10 compares operation with FIFO enabled and FIFO disabled for different data transfers to the AD5379. Operation with FIFO enabled is more efficient for all operations except single write operations. When using the FIFO, the user can continue writing new data to the AD5379 while write instructions are being executed. Up to 128 successive instructions can be written to the FIFO at maximum speed. When the FIFO is full, additional writes to the AD5379 are ignored.

BUSY INPUT FUNCTION

If required, because the BUSY pin is bidirectional and opendrain ${ }^{1}$, a second AD5379 (or other device, such as a system controller), can pull $\overline{\text { BUSY }}$ low to delay DAC update(s). This is a means of delaying any LDAC action. This feature allows synchronous updates of multiple AD5379 devices in a system, at maximum speed. As soon as the last device connected to the BUSY pin is ready, all DACs update automatically. Tying the $\overline{\text { BUSY }}$ pin of multiple devices together enables synchronous updating of all DACs without extra hardware.

POWER-ON RESET FUNCTION

The AD5379 contains a power-on reset generator and state machine. During power-on, $\overline{\text { CLR }}$ becomes active (internally), the power-on state machine resets all internal registers to their default values, and $\overline{\text { BUSY }}$ goes low. This sequence takes 8 ms (typical). The outputs, VOUT0 to VOUT39, are switched to the
externally set potential on the REFGND pin. During power-on, the parallel interface is disabled, so it is not possible to write to the part. Any transitions on $\overline{\mathrm{LDAC}}$ during the power-on period are ignored in order to reject initial $\overline{\text { LDAC }}$ pin glitching. A rising edge on $\overline{B U S Y}$ indicates that power-on is complete and that the parallel interface is enabled. All DACs remain in their power-on state until $\overline{\mathrm{LDAC}}$ is used to update the DAC outputs.

RESET INPUT FUNCTION

The AD5379 can be placed in its power-on reset state at any time by activating the $\overline{\text { RESET }}$ pin. The AD5379 state machine initiates a reset sequence to digitally reset the $\mathrm{x} 1, \mathrm{~m}, \mathrm{c}$, and x 2 registers to their default power-on values. This sequence takes $95 \mu \mathrm{~s}$ (typical), $120 \mu \mathrm{~s}$ (maximum), $70 \mu \mathrm{~s}$ (minimum). During this sequence, $\overline{\mathrm{BUSY}}$ goes low. While $\overline{\mathrm{RESET}}$ is low, any transitions on $\overline{\mathrm{LDAC}}$ are ignored. As with the $\overline{\mathrm{CLR}}$ input, while $\overline{\mathrm{RESET}}$ is low, the DAC outputs are switched to REFGND. The outputs remain at REFGND until an $\overline{\mathrm{LDAC}}$ pulse is applied. This reset function can also be implemented via the parallel interface by setting the REG0 and REG1 pins low and writing all 1s to DB13 to DB0 (see Table 16 for soft reset).

INCREMENT/DECREMENT FUNCTION

The AD5379 has a special function register that enables the user to increment or decrement the internal 14-bit input register data (x 1) in steps of 0 to 127 LSBs. The increment/decrement function is selected by setting both REG1 and REG0 pins (or bits) low. Address Pins (or Bits) A7 to A0 are used to select a DAC channel or group of channels. The amount by which the x 1 register is incremented or decremented is determined by the DB6 to DB0 bits/pins. For example, for a 1 LSB increment or decrement, DB6 to DB0 $=0000001$, while for a 7 LSB increment or decrement, DB6 to DB0 $=0000111$. DB8 determines whether the input register data is incremented ($\mathrm{DB} 8=1$) or decremented $(\mathrm{DB8}=0)$. The maximum amount by which the user is allowed to increment or decrement the data is 127 LSBs, that is, DB6 to DB0 $=1111111$. The 0 LSB step is included to facilitate software loops in the user's application. See Table 15.

The AD5379 has digital overflow and underflow detection circuitry to clamp at full scale or zero scale when the values chosen for increment or decrement mode are out of range.

[^4]
INTERFACES

The AD5379 contains a serial and a parallel interface. The active interface is selected via the SER/PAR p in.

The AD5379 uses an internal FIFO memory to allow high speed successive writes in both serial and parallel modes. The user can continue writing new data to the AD5379 while write instructions are being executed. The BUSY signal goes low while instructions in the FIFO are being executed. Up to 120 successive instructions can be written to the FIFO at maximum speed. When the FIFO is full, additional writes to the AD5379 are ignored.

To minimize both the power consumption of the device and on-chip digital noise, the active interface powers up fully only when the device is being written to, that is, on the falling edge of $\overline{W R}$ or on the falling edge of $\overline{S Y N C}$.

All digital interfaces are 2.5 V LVTTL-compatible when operating from a 2.7 V to $3.6 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ supply.

PARALLEL INTERFACE

A pull-down on the SER/ $\overline{\operatorname{PAR}}$ pin makes the parallel interface the default. If using the parallel interface, the SER $/ \overline{\mathrm{PAR}}$ pin can be left unconnected. Figure 6 shows the timing diagram for a parallel write to the AD5379. The parallel interface is controlled by the following pins.

$\overline{\mathrm{CS}}$ Pin

Active low device select pin.

$\overline{W R}$ Pin

On the rising edge of $\overline{\mathrm{WR}}$, with $\overline{\mathrm{CS}}$ low, the address values at Pin A7 to Pin A0 are latched, and data values at Pin DB13 to Pin DB0 are loaded into the selected AD5379 input registers.

REG1, REGO Pins

The REG1 and REG0 pins determine the destination register of the data being written to the AD5379. See Table 11.

Table 11. Register Selection

REG1	REG0	Register Selected
1	1	Input data register (x1)
1	0	Offset register (c)
0	1	Gain register (m)
0	0	Special function register

DB13 to DBO Pins

The AD5379 accepts a straight, 14-bit parallel word on Pin DB0 to Pin DB13, where Pin DB13 is the MSB and Pin DB0 is the LSB. See Table 12, Table 13, Table 14, Table 15, and Table 16.

A7 to AO Pins

Each of the 40 DAC channels can be individually addressed. In addition, several channel groupings enable the user to simultaneously write the same data to multiple DAC channels. Address Bits A7 to A4 are decoded to select one group or multiple groups of registers. Address Bits A3 to A0 select one of ten input data registers (x1), offset registers (c), or gain registers (m). See Table 17.

SERIAL INTERFACE

The SER $/ \overline{\mathrm{PAR}}$ pin must be tied high to enable the serial interface and disable the parallel interface. The serial interface is controlled by five pins, as follows.

SYNC, DIN, SCLK

Standard 3-wire interface pins.

DCEN

Selects standalone mode or daisy-chain mode.

SDO

Data out pin for daisy-chain mode.
Figure 4 and Figure 5 show the timing diagrams for a serial write to the AD5379 in standalone and daisy-chain modes, respectively.

The 24-bit data word format for the serial interface is shown in Figure 21.

Standalone Mode

By connecting the DCEN (daisy-chain enable) pin low, standalone mode is enabled. The serial interface works with both a continuous and a burst serial clock. The first falling edge of SYNC starts the write cycle and resets a counter that counts the number of serial clocks to ensure that the correct number of bits is shifted into the serial shift register. Additional edges on SYNC are ignored until 24 bits are shifted into the register. Once 24 bits are shifted into the serial shift register, the SCLK is ignored. In order for another serial transfer to take place, the counter must be reset by the falling edge of SYNC.

AD5379

Daisy-Chain Mode

For systems that contain several DACs, the SDO pin can be used to daisy-chain several devices together. This daisy-chain mode can be useful in system diagnostics and in reducing the number of serial interface lines.

Connecting the DCEN (daisy-chain enable) pin high enables daisy-chain mode. The first falling edge of SYNC starts the write cycle. The SCLK is continuously applied to the input shift register when $\overline{S Y N C}$ is low. If more than 24 clock pulses are applied, the data ripples out of the shift register and appears on the SDO line. This data is clocked out on the rising edge of SCLK and is valid on the falling edge. By connecting this line to the DIN input on the next device in the chain, a multidevice interface is constructed. For each AD5379 in the system, 24 clock pulses are required. Therefore, the total number of
clock cycles must equal $24 N$, where N is the total number of AD5379 devices in the chain. If fewer than 24 clocks are applied, the write sequence is ignored.

When the serial transfer to all devices has been completed, $\overline{\text { SYNC }}$ is taken high. This latches the input data in each device in the daisy chain and prevents any additional data from being clocked into the input shift register.

A continuous SCLK source can be used if $\overline{\text { SYNC }}$ is held low for the correct number of clock cycles. Alternatively, a burst clock containing the exact number of clock cycles can be used and SYNC taken high after the final clock to latch the data.

When the transfer to all input registers is complete, a common $\overline{\text { LDAC }}$ signal updates all DAC registers, and all analog outputs are simultaneously updated.

AD5379

DATA DECODING

The AD5379 contains a 14 -bit data bus, DB13 to DB0. Depending on the values of REG1 and REG0, this data is loaded into the addressed DAC input register(s), offset (c) register(s), gain (m) register(s), or the special function register.

Table 12. DAC Data Format (REG1 = 1, REG0 = 1)

DB13 to DBO	DAC Output
11111111111111	$(16383 / 16384) V_{\text {REF }}(+) \mathrm{V}$
11111111111110	$(16382 / 16384) \mathrm{V}_{\text {REF }}(+) \mathrm{V}$
10000000000001	$(8193 / 16384) \mathrm{V}_{\text {REF }}+\mathrm{V} \mathrm{V}$
10000000000000	$(8192 / 16384) \mathrm{V}_{\text {REF }}(+) \mathrm{V}$
01111111111111	$(8191 / 16384) \mathrm{V}_{\text {REF }}(+) \mathrm{V}$
00000000000001	$(1 / 16384) \mathrm{V}_{\text {REF }}(+) \mathrm{V}$
00000000000000	0 V

Table 13. Offset Data Format (REG1 $=1$, REG0 $=0$)

DB13 to DB0	Offset (LSB)	
11111111111111	+8191	
11111111111110	+8190	
10000000000001	+1	
10000000000000	+0	
01111111111111	-1	
00000000000001	-8191	
00000000000000	-8192	

Table 14. Gain Data Format (REG1 $=0$, REG0 $=1$)

DB13 to DB1	Gain
1111111111111	$8192 / 8192$
1111111111110	$8191 / 8192$
1000000000001	$4098 / 8192$
1000000000000	$4097 / 8192$
0111111111111	$4096 / 8192$
0000000000001	$2 / 8192$
0000000000000	$1 / 8192$

Table 15. Special Function Data Format (REG1 = 0, REG0 = 0)

DB13 to DB0	Increment/Decrement Step (LSB)	
00000101111111	+127	
00000100000111	+7	
00000100000001	+1	
00000×0000000	0	
00000000000001	-1	
00000000000111	-7	
00000001111111	-128	

Table 16. Soft Reset (REG1 = 0, REG0 = 0)

DB13 to DB0	DAC Output
11111111111111	REFGND

[^0]: ${ }^{1}$ Guaranteed by design and characterization, not production tested.

[^1]: ${ }^{1}$ Guaranteed by design and characterization, not production tested.
 ${ }^{2}$ All input signals are specified with $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=2 \mathrm{~ns}\left(10 \%\right.$ to 90% of $\left.\mathrm{V}_{\mathrm{cc}}\right)$, and timed from a voltage level of 1.2 V .
 ${ }^{3}$ See Figure 6.
 ${ }^{4}$ Measured with load circuit shown in Figure 2.

[^2]: ${ }^{1}$ An internal $1 \mathrm{M} \Omega$ pull-down device is located on this logic input; therefore, it can be left floating and defaults to a logic low condition.
 ${ }^{2}$ An internal $1 \mathrm{M} \Omega$ pull-up device is located on this logic input; therefore, it can be left floating and defaults to a logic high condition.
 ${ }^{3} \mathrm{~N} / \mathrm{C}$-Do not connect to this pin. Internal active pull-up device on these logic inputs. They default to a logic high condition.

[^3]: ${ }^{1}$ These serial interface signals do not require separate pins, but share parallel interface pins.

[^4]: ${ }^{1}$ For correct operation, use pull-up resistor to digital supply.

