: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Dual 8-/10-/12-Bit, High Bandwidth, Multiplying DACs with Parallel Interface

Data Sheet

AD5428/AD5440/AD5447

FEATURES

10 MHz multiplying bandwidth
INL of ± 0.25 LSB at 8 bits
20-lead and 24-lead TSSOP packages
2.5 V to 5.5 V supply operation
$\pm 10 \mathrm{~V}$ reference input
21.3 MSPS update rate

Extended temperature range: $-\mathbf{4 0}{ }^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
4-quadrant multiplication
Power-on reset
$0.5 \mu \mathrm{~A}$ typical current consumption
Guaranteed monotonic
Readback function
AD7528 upgrade (AD5428)
AD7547 upgrade (AD5447)

APPLICATIONS

Portable battery-powered applications
Waveform generators
Analog processing
Instrumentation applications
Programmable amplifiers and attenuators
Digitally controlled calibration
Programmable filters and oscillators
Composite video
Ultrasound
Gain, offset, and voltage trimming

GENERAL DESCRIPTION

The AD5428/AD5440/AD5447 ${ }^{1}$ are CMOS, 8 -, 10-, and 12-bit, dual-channel, current output digital-to-analog converters (DACs), respectively. These devices operate from a 2.5 V to 5.5 V power supply, making them suited to battery-powered and other applications.

As a result of being manufactured on a CMOS submicron process, they offer excellent 4-quadrant multiplication characteristics, with large signal multiplying bandwidths of up to 10 MHz .

The DACs use data readback, allowing the user to read the contents of the DAC register via the DB pins. On power-up, the internal register and latches are filled with 0 s , and the DAC outputs are at zero scale.
(7)he applied external reference input voltage ($\mathrm{V}_{\text {ref }}$) determines the full-scale output current. An integrated feedback resistor (R_{FB}) provides temperature tracking and full-scale voltage output when combined with an external I-to-V precision amplifier.

The AD5428 is available in a small 20-lead TSSOP package, and the AD5440/AD5447 DACs are available in small 24-lead TSSOP packages.

Figure 1.

[^0]Rev. D
Document Feedback

TABLE OF CONTENTS

Features 1
Applications 1
General Description 1
Functional Block Diagram 1
Revision History 2
Specifications 3
Timing Characteristics 5
Absolute Maximum Ratings 6
ESD Caution 6
Pin Configurations and Function Descriptions 7
Typical Performance Characteristics 10
Terminology 15
General Description 16
DAC Section 16
Circuit Operation 16
REVISION HISTORY
1/16-Rev. C. to Rev. D
Changed ADSP-21xx to ADSP-2191M Throughout
Changed ADSP-BF5xx to ADSP-BF534 Throughout
Deleted Positive Output Voltage Section and Figure 41 19
Changes to Adding Gain Section 19
Changes to Ordering Guide 30
8/11—Rev. B to Rev. C
Changes to $\overline{\mathrm{CS}}$ Pin Description, Table 6 9
3/11-Rev. A to Rev. B
Changes to Evaluation Board For the AD5447 Section 23
Changes to Figure 47 Caption 24
Changes to Figure 49 25
Change to U1 Description in Table 12 27
Change to Ordering Guide 29
7/05-Rev. 0 to Rev. A
Changed Pin DAC A/B to DAC $\overline{\mathrm{A}} / \mathrm{B}$ Universal
Changes to Features List 1
Changes to Specifications 3
Changes to Timing Characteristics 5
Change to Figure 2 5
Single-Supply Applications 19
Adding Gain 19
Divider or Programmable Gain Element 20
Reference Selection 20
Amplifier Selection 20
Parallel Interface 22
Microprocessor Interfacing. 22
PCB Layout and Power Supply Decoupling 23
Evaluation Board for the AD5447 23
Power Supplies for the Evaluation Board. 23
Bill of Materials 27
Overview of Multiplying DAC Devices 28
Outline Dimensions 29
Ordering Guide 30
Change to Absolute Maximum Ratings Section 6
Change to Figure 13, Figure 14, and Figure 18 11
Change to Figure 32 Through Figure 34 14
Changes to General Description Section 16
Changes to Figure 37 16
Changes to Single-Supply Applications Section 19
Changes to Figure 40 Through Figure 42 19
Changes to Divider or Programmable Gain Element Section 20
Changes to Figure 43 20
Changes to Table 9 Through Table 11 21
Changes to Microprocessor Interfacing Section 22
Added Figure 44 Through Figure 46 22
Added 8xC51-to-AD5428/AD5440/AD5447 Interface Section 22
Added ADSP-BF5xx-to-AD5428/AD5440/AD5447 Interface Section 22
Changes to Power Supplies for the Evaluation Board Section. 23
Changes to Table 13 28
Updated Outline Dimensions. 29
Changes to Ordering Guide 29
7/04—Revision 0: Initial Version

SPECIFICATIONS ${ }^{1}$

$\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\text {ReF }}=10 \mathrm{~V}$, $\mathrm{I}_{\text {out } 2}=0 \mathrm{~V}$. Temperature range for Y version: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. All specifications $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. DC performance is measured with OP177, and ac performance is measured with AD8038, unless otherwise noted.

Table 1.

Parameter	Min	Typ	Max	Unit	Conditions
STATIC PERFORMANCE AD5428 Resolution Relative Accuracy Differential Nonlinearity AD5440 Resolution Relative Accuracy Differential Nonlinearity AD5447 Resolution Relative Accuracy Differential Nonlinearity Gain Error Gain Error Temperature Coefficient Output Leakage Current		± 5	8 ± 0.25 ± 1 10 ± 0.5 ± 1 12 ± 1 $-1 /+2$ ± 25 ± 5 ± 15	Bits LSB LSB Bits LSB LSB Bits LSB LSB mV ppm FSR $/{ }^{\circ} \mathrm{C}$ nA nA	Guaranteed monotonic Guaranteed monotonic Guaranteed monotonic $\begin{aligned} & \text { Data }=0 \times 0000, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \text { Data }=0 \times 0000 \end{aligned}$
REFERENCE INPUT Reference Input Range $\mathrm{V}_{\text {REF }} \mathrm{A}, \mathrm{V}_{\text {REF }} \mathrm{B}$ Input Resistance $V_{\text {Ref }} A$-to- $V_{\text {ref }} B$ Input Resistance Mismatch Input Capacitance Code 0 Code 4095	8	$\begin{aligned} & \pm 10 \\ & 10 \\ & 1.6 \\ & \\ & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 13 \\ & 2.5 \end{aligned}$	V $\mathrm{k} \Omega$ \% pF pF	Input resistance $\mathrm{TC}=-50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ $\mathrm{Typ}=25^{\circ} \mathrm{C}, \max =125^{\circ} \mathrm{C}$
DIGITAL INPUTS/OUTPUT Input High Voltage, VIH Input Low Voltage, VIL Output High Voltage, Vон Output Low Voltage, Vol Input Leakage Current, IIL Input Capacitance	$\begin{aligned} & 1.7 \\ & 1.7 \\ & \\ & \\ & V_{D D}-1 \\ & V_{D D}-0.5 \end{aligned}$	4	$\begin{aligned} & 0.8 \\ & 0.7 \\ & \\ & 0.4 \\ & 0.4 \\ & 1 \\ & 10 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mu \mathrm{~A} \\ & \mathrm{pF} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=2.5 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=2.7 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=2.5 \mathrm{~V} \text { to } 2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \text {, } \mathrm{I}_{\text {SOURCE }}=200 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{DD}}=2.5 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \text {, } \mathrm{I}_{\text {SoURCE }}=200 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{DD}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \text {, } \mathrm{I}_{\text {IINK }}=200 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{DD}}=2.5 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \text {, } \mathrm{I}_{\text {IINK }}=200 \mu \mathrm{~A} \end{aligned}$
DYNAMIC PERFORMANCE Reference-Multiplying BW Output Voltage Settling Time Measured to $\pm 1 \mathrm{mV}$ of FS Measured to $\pm 4 \mathrm{mV}$ of FS Measured to $\pm 16 \mathrm{mV}$ of FS Digital Delay 10\% to 90\% Settling Time Digital-to-Analog Glitch Impulse		$\begin{aligned} & 10 \\ & 80 \\ & 80 \\ & 35 \\ & 30 \\ & 20 \\ & 15 \\ & 3 \end{aligned}$	120 70 60 40 30	MHz ns ns ns ns ns nV-sec	$V_{\text {REF }}= \pm 3.5 \mathrm{~V} p-\mathrm{p}, \mathrm{DAC}$ loaded all 1 s RLOAD $=100 \Omega, C_{\text {LOAD }}=15 \mathrm{pF}, \mathrm{V}_{\text {REF }}=10 \mathrm{~V}$ DAC latch alternately loaded with 0 s and 1 s Interface delay time Rise and fall times, $\mathrm{V}_{\text {REF }}=10 \mathrm{~V}, \mathrm{R}_{\text {LOAD }}=100 \Omega$ 1 LSB change around major carry, $\mathrm{V}_{\text {REF }}=0 \mathrm{~V}$

Parameter	Min	Typ	Max	Unit	Conditions
Multiplying Feedthrough Error			70 48	dB dB	DAC latches loaded with all $0 \mathrm{~s}, \mathrm{~V}_{\text {REF }}= \pm 3.5 \mathrm{~V}$ 1 MHz 10 MHz
Output Capacitance		12	17	pF	DAC latches loaded with all 0s
		25	30	pF	DAC latches loaded with all 1 s
Digital Feedthrough		1		n - -sec	Feedthrough to DAC output with $\overline{C S}$ high and alternate loading of all 0 s and all 1 s
Output Noise Spectral Density		25		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$	@ 1 kHz
Analog THD		81		dB	$\mathrm{V}_{\text {REF }}=3.5 \mathrm{~V} \mathrm{p}-\mathrm{p}$, all 1 s loaded, $\mathrm{f}=100 \mathrm{kHz}$
Digital THD					Clock $=10 \mathrm{MHz}, \mathrm{V}_{\text {REF }}=3.5 \mathrm{~V}$
100 kHz fout		61		dB	
50 kHz fout		66		dB	
SFDR Performance (Wide Band)					AD5447, 65 k codes, $\mathrm{V}_{\text {REF }}=3.5 \mathrm{~V}$
Clock $=10 \mathrm{MHz}$					
500 kHz fout		55		dB	
100 kHz fout		63		dB	
50 kHz fout		65		dB	
Clock $=25 \mathrm{MHz}$					
500 kHz fout		50		dB	
100 kHz fout		60		dB	
50 kHz fout		62		dB	
SFDR Performance (Narrow Band)					AD5447, 65 k codes, $\mathrm{V}_{\text {REF }}=3.5 \mathrm{~V}$
Clock $=10 \mathrm{MHz}$					
500 kHz fout		73		dB	
100 kHz fout		80		dB	
50 kHz fout		87		dB	
Clock $=25 \mathrm{MHz}$					
500 kHz fout		70		dB	
100 kHz fout		75		dB	
50 kHz fout		80		dB	
Intermodulation Distortion					AD5447, 65 k codes, $\mathrm{V}_{\text {REF }}=3.5 \mathrm{~V}$
$\mathrm{f}_{1}=40 \mathrm{kHz}, \mathrm{f}_{2}=50 \mathrm{kHz}$		72		dB	Clock $=10 \mathrm{MHz}$
$\mathrm{f}_{1}=40 \mathrm{kHz}, \mathrm{f}_{2}=50 \mathrm{kHz}$		65		dB	Clock $=25 \mathrm{MHz}$
POWER REQUIREMENTS					
Power Supply Range ldo	2.5		5.5	V	
			0.7	$\mu \mathrm{A}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, logic inputs $=0 \mathrm{~V}$ or $\mathrm{V}_{\text {D }}$
		0.5	10	$\mu \mathrm{A}$	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, logic inputs $=0 \mathrm{~V}$ or V_{DD}
Power Supply Sensitivity			0.001	\%/\%	$\Delta V_{D D}= \pm 5 \%$

[^1]
TIMING CHARACTERISTICS

All input signals are specified with $\operatorname{tr}=\mathrm{tf}=1 \mathrm{~ns}\left(10 \%\right.$ to 90% of $\left.\mathrm{V}_{\mathrm{DD}}\right)$ and timed from a voltage level of $\left(\mathrm{V}_{\mathrm{IL}}+\mathrm{V}_{\mathrm{IH}}\right) / 2 . \mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$ to 5.5 V , $\mathrm{V}_{\text {REF }}=10 \mathrm{~V}$, Iout2 $=0 \mathrm{~V}$, temperature range for Y version: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. All specifications $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$, unless otherwise noted.

Table 2.

Parameter ${ }^{1}$	Limit at $\mathrm{T}_{\text {MiN, }} \mathrm{T}_{\text {MAX }}$	Unit	Conditions/Comments
Write Mode			
t_{1}	0	ns min	$\mathrm{R} / \overline{\mathrm{W}}$ to $\overline{\mathrm{CS}}$ setup time
t_{2}	0	ns min	$\mathrm{R} / \overline{\mathrm{W}}$ to $\overline{C S}$ hold time
t_{3}	10	ns min	$\overline{\mathrm{CS}}$ low time
t_{4}	10	ns min	Address setup time
t_{5}	0	ns min	Address hold time
t_{6}	6	ns min	Data setup time
t_{7}	0	ns min	Data hold time
t_{8}	5	ns min	$\mathrm{R} / \overline{\mathrm{W}}$ high to $\overline{C S}$ low
t9	7	ns min	$\overline{\mathrm{CS}}$ min high time
Data Readback Mode			
t_{10}	0	ns typ	Address setup time
t_{11}	0	ns typ	Address hold time
t_{12}	5	ns typ	Data access time
	25	ns max	
t_{13}	5	ns typ	Bus relinquish time
	10	ns max	
Update Rate	21.3	MSPS	Consists of $\overline{C S}$ min high time, $\overline{C S}$ low time, and output voltage settling time

${ }^{1}$ Guaranteed by design and characterization, not subject to production test.

Figure 3. Load Circuit for Data Output Timing Specifications

AD5428/AD5440/AD5447

ABSOLUTE MAXIMUM RATINGS

Transient currents of up to 100 mA do not cause SCR latch-up. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Table 3.

Parameter	Rating
VDD to GND	-0.3 V to +7V
$\mathrm{V}_{\text {ReF }} A, \mathrm{~V}_{\text {geF }} B, \mathrm{R}_{\text {fb }} A, \mathrm{R}_{\text {FB }} \mathrm{B}$ to DGND	-12 V to +12 V
lout1, lout2 to DGND	-0.3 V to +7 V
Logic Inputs and Output ${ }^{1}$	-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Operating Temperature Range	
Automotive (Y Version)	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
20-lead TSSOP $\theta_{\text {JA }}$ Thermal Impedance	$143^{\circ} \mathrm{C} / \mathrm{W}$
24 -lead TSSOP θ_{JA} Thermal Impedance	$128^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature, Soldering (10 sec)	$300^{\circ} \mathrm{C}$
IR Reflow, Peak Temperature (<20 sec)	$235^{\circ} \mathrm{C}$

${ }^{1}$ Overvoltages at $\mathrm{DBx}, \overline{\mathrm{CS}}$, and $\mathrm{R} / \overline{\mathrm{W}}$ are clamped by internal diodes.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Figure 4. Pin Configuration 20-Lead TSSOP (RU-20)

Table 4. AD5428 Pin Function Descriptions

Pin No.	Mnemonic	Description
1	AGND	DAC Ground Pin. This pin should typically be tied to the analog ground of the system, but can be biased to achieve single-supply operation.
2, 20	loutA, loutB	DAC Current Outputs.
3,19	$\mathrm{R}_{\text {FB }} A, \mathrm{R}_{\text {FB }} \mathrm{B}$	DAC Feedback Resistor Pins. These pins establish voltage output for the DAC by connecting to an external amplifier output.
4,18	$\mathrm{V}_{\text {ReF }} \mathrm{A}, \mathrm{V}_{\text {ReF }} \mathrm{B}$	DAC Reference Voltage Input Terminals.
5	DGND	Digital Ground Pin.
6	DAC \bar{A} / B	Selects DAC A or DAC B. Low selects DAC A; high selects DAC B.
7 tol4	DB7 to DB0	Parallel Data Bits 7 Through 0.
15	$\overline{C S}$	Chip Select Input. Active low. Used in conjunction with R / \bar{W} to load parallel data to the input latch or to read data from the DAC register.
16	R / W	Read/Write. When low, used in conjunction with $\overline{\mathrm{CS}}$ to load parallel data. When high, used in conjunction with $\overline{\mathrm{CS}}$ to read back contents of the DAC register.
17	VDD	Positive Power Supply Input. This part can be operated from a supply of 2.5 V to 5.5 V .

Figure 5. Pin Configuration 24-Lead TSSOP (RU-24)

Table 5. AD5440 Pin Function Descriptions

Pin No.	Mnemonic	Function
1	AGND	DAC Ground Pin. This pin should typically be tied to the analog ground of the system, but can be biased to achieve single-supply operation.
2, 24	lout A , lout B	DAC Current Outputs.
3,23	$\mathrm{R}_{\text {FB }} A, \mathrm{R}_{\text {FB }} \mathrm{B}$	DAC Feedback Resistor Pins. Establish voltage output for the DAC by connecting to an external amplifier output.
4,22	$V_{\text {Ref }} A, V_{\text {gef }} B$	DAC Reference Voltage Input Terminals.
5	DGND	Digital Ground Pin.
6	DAC \bar{A} / B	Selects DAC A or DAC B. Low selects DAC A; high selects DAC B.
7 to16	DB9 to DB0	Parallel Data Bits 9 Through 0.
19	$\overline{C S}$	Chip Select Input. Active low. Used in conjunction with R / \bar{W} to load parallel data to the input latch or to read data from the DAC register.
20	R/W	Read/Write. When low, used in conjunction with $\overline{\mathrm{CS}}$ to load parallel data. When high, used in conjunction with $\overline{\mathrm{CS}}$ to read back contents of the DAC register.
21	$V_{D D}$	Positive Power Supply Input. This part can be operated from a supply of 2.5 V to 5.5 V .

Figure 6. Pin Configuration 24-Lead TSSOP (RU-24)

Table 6. AD5447 Pin Function Descriptions

Pin No.	Mnemonic	Description
1	AGND	DAC Ground Pin. This pin should typically be tied to the analog ground of the system, but can be biased to achieve single-supply operation.
2,24	Iout A , lout B	DAC Current Outputs.
3,23	$\mathrm{R}_{\text {FB }} A, \mathrm{R}_{\text {FB }} \mathrm{B}$	DAC Feedback Resistor Pins. Establish voltage output for the DAC by connecting to an external amplifier output.
4, 22	$\mathrm{V}_{\text {ref }} \mathrm{A}, \mathrm{V}_{\text {ref }} \mathrm{B}$	DAC Reference Voltage Input Terminals.
5	DGND	Digital Ground Pin.
6	DAC \bar{A} / B	Selects DAC A or DAC B. Low selects DAC A; high selects DAC B.
7 to 18	DB11 to DB0	Parallel Data Bits 11 Through 0.
19	$\overline{C S}$	Chip Select Input. Active low. Used in conjunction with R/W to load parallel data to the input latch or to read data from the DAC register.
20	R/W	Read/Write. When low, used in conjunction with $\overline{C S}$ to load parallel data. When high, used in conjunction with $\overline{C S}$ to read back the contents of the DAC register. When $\overline{C S}$ and R / \bar{W} are held low, the latches are transparent. Any changes on the data lines are reflected in the relevant DAC output.
21	$V_{D D}$	Positive Power Supply Input. This part can be operated from a supply of 2.5 V to 5.5 V.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 7. INL vs. Code (8-Bit DAC)

Figure 8. INL vs. Code (10-Bit DAC)

Figure 9. INL vs. Code (12-Bit DAC)

Figure 10. DNL vs. Code (8-Bit DAC)

Figure 11. DNL vs. Code (10-Bit DAC)

Figure 12. DNL vs. Code (12-Bit DAC)

Figure 13. INL vs. Reference Voltage

Figure 14. DNL vs. Reference Voltage

Figure 15. Gain Error vs. Temperature

Figure 16. Supply Current vs. Logic Input Voltage

Figure 17. Iout1 Leakage Current vs. Temperature

Figure 18. Supply Current vs. Temperature

Figure 19. Supply Current vs. Update Rate

Figure 20. Reference Multiplying Bandwidth vs. Frequency and Code

Figure 21. Reference Multiplying Bandwidth—All 1s Loaded

Figure 22. Reference Multiplying Bandwidth vs. Frequency and Compensation Capacitor

Figure 23. Midscale Transition, $V_{\text {REF }}=0 \mathrm{~V}$

Figure 24. Midscale Transition, $V_{\text {REF }}=3.5 \mathrm{~V}$

Figure 25. Power Supply Rejection Ratio vs. Frequency

Figure 26. THD + Noise vs. Frequency

Figure 27. Wideband SFDR vs. fout Frequency

Figure 28. Wideband SFDR vs. fout Frequency

Figure 29. Wideband SFDR, $f_{\text {OUt }}=100 \mathrm{kHz}$, Clock $=25 \mathrm{MHz}$

Figure 30. Wideband SFDR, fout $=500 \mathrm{kHz}$, Clock $=10 \mathrm{MHz}$

Figure 31. Wideband SFDR, $f_{\text {out }}=50 \mathrm{kHz}$, Clock $=10 \mathrm{MHz}$

Figure 32. Narrow-Band SFDR, fout $=500 \mathrm{kHz}$, Clock $=25 \mathrm{MHz}$

Figure 33. Narrow-Band SFDR, $f_{\text {OUT }}=100 \mathrm{kHz}$, Clock $=25 \mathrm{MHz}$

Figure 34. Narrow-Band $I M D$, fout $=90 \mathrm{kHz}, 100 \mathrm{kHz}$, Clock $=10 \mathrm{MHz}$

Figure 35. Wideband IMD, fout $=90 \mathrm{kHz}, 100 \mathrm{kHz}$, Clock $=25 \mathrm{MHz}$

Figure 36. Output Noise Spectral Density

TERMINOLOGY

Relative Accuracy (Endpoint Nonlinearity)

A measure of the maximum deviation from a straight line passing through the endpoints of the DAC transfer function. It is measured after adjusting for zero and full scale and is typically expressed in LSBs or as a percentage of the full-scale reading.

Differential Nonlinearity

The difference in the measured change and the ideal 1 LSB change between two adjacent codes. A specified differential nonlinearity of -1 LSB maximum over the operating temperature range ensures monotonicity.

Gain Error (Full-Scale Error)

A measure of the output error between an ideal DAC and the actual device output. For these DACs, ideal maximum output is $\mathrm{V}_{\text {Ref }}-1$ LSB. The gain error of the DACs is adjustable to zero with an external resistance.

Output Leakage Current

The current that flows into the DAC ladder switches when they are turned off. For the Iour 1 terminal, it can be measured by loading all 0 s to the DAC and measuring the Iour 1 current. Minimum current flows into the Iout 2 line when the DAC is loaded with all 1 s .

Output Capacitance

Capacitance from Iour 1 or Iout 2 to AGND.

Output Current Settling Time

The amount of time for the output to settle to a specified level for a full-scale input change. For these devices, it is specified with a 100Ω resistor to ground.

Digital-to-Analog Glitch Impulse

The amount of charge injected from the digital inputs to the analog output when the inputs change state. This is normally specified as the area of the glitch in either pA-sec or nV -sec, depending on whether the glitch is measured as a current or voltage signal.

Digital Feedthrough

When the device is not selected, high frequency logic activity on the device's digital inputs is capacitively coupled through the device and produces noise on the Iout pins and, subsequently, on the following circuitry. This noise is digital feedthrough.

Multiplying Feedthrough Error

The error due to capacitive feedthrough from the DAC reference input to the DAC Iout 1 terminal when all 0 s are loaded to the DAC.

Total Harmonic Distortion (THD)
The DAC is driven by an ac reference. The ratio of the rms sum of the harmonics of the DAC output to the fundamental value is the THD. Usually only the lower-order harmonics are included, such as second to fifth harmonics.

$$
T H D=20 \log \frac{\sqrt{V_{2}{ }^{2}+V_{3}{ }^{2}+V_{4}{ }^{2}+V_{5}{ }^{2}}}{V_{1}}
$$

Digital Intermodulation Distortion

Second-order intermodulation distortion (IMD) measurements are the relative magnitude of the fa and fb tones digitally generated by the DAC and the second-order products at $2 \mathrm{fa}-\mathrm{fb}$ and 2 fb - fa.

Spurious-Free Dynamic Range (SFDR)

SFDR is the usable dynamic range of a DAC before spurious noise interferes or distorts the fundamental signal. SFDR is the measure of difference in amplitude between the fundamental and the largest harmonic or nonharmonic spur from dc to full Nyquist bandwidth (half the DAC sampling rate, or $\mathrm{fs} / 2$).
Narrow-band SFDR is a measure of SFDR over an arbitrary window size, in this case 50%, of the fundamental. Digital SFDR is a measure of the usable dynamic range of the DAC when the signal is a digitally generated sine wave.

GENERAL DESCRIPTION

DAC SECTION

The AD5428/AD5440/AD5447 are CMOS 8-, 10-, and 12-bit, dual-channel, current output DACs consisting of a standard inverting R-2R ladder configuration. Figure 37 shows a simplified diagram for a single channel of the 8-bit AD5428. The feedback resistor $R_{F B} A$ has a value of R. The value of R is typically $10 \mathrm{k} \Omega$ (with a minimum of $8 \mathrm{k} \Omega$ and a maximum of $12 \mathrm{k} \Omega$). If Iout 1 and AGND are kept at the same potential, a constant current flows into each ladder leg, regardless of digital input code. Therefore, the input resistance presented at $\mathrm{V}_{\text {ref }} \mathrm{A}$ is always constant and nominally of value R . The DAC output (Iout) is code-dependent, producing various resistances and capacitances. When choosing an external amplifier, take into account the variation in impedance generated by the DAC on the amplifier's inverting input node.

Figure 37. Simplified Ladder
Access is provided to the $\mathrm{V}_{\mathrm{REF}}, \mathrm{R}_{\mathrm{FB}}$, and Iout terminals of DAC A and DAC B, making the devices extremely versatile and allowing them to be configured in several operating modes, such as unipolar output mode, 4-quadrant multiplication bipolar mode, or single-supply mode. Note that a matching switch is used in series with the internal $R_{\text {FB }} A$ feedback resistor. If users attempt to measure $R_{F B} A$, power must be applied to $V_{D D}$ to achieve continuity.

CIRCUIT OPERATION

Unipolar Mode

Using a single op amp, these devices can easily be configured to provide 2-quadrant multiplying operation or a unipolar output voltage swing, as shown in Figure 38. When an output amplifier is connected in unipolar mode, the output voltage is given by

$$
V_{\text {OUT }}=-V_{\text {REF }} \times D / 2^{n}
$$

where:
D is the fractional representation of the digital word loaded to the DAC.

$$
\begin{aligned}
D & =0 \text { to } 255(8 \text {-bit AD5428) } \\
& =0 \text { to } 1023(10-\text { bit AD5440) } \\
& =0 \text { to } 4095(12-\text { bit AD5447) }
\end{aligned}
$$

n is the resolution of the DAC.
Note that the output voltage polarity is opposite to the $V_{\text {REF }}$ polarity for dc reference voltages. These DACs are designed to operate with either negative or positive reference voltages. The V_{DD} power pin is only used by the internal digital logic to drive the on and off states of the DAC switches.

These DACs are also designed to accommodate ac reference input signals in the range of -10 V to +10 V .

With a fixed 10 V reference, the circuit in Figure 38 gives a unipolar 0 V to -10 V output voltage swing. When $\mathrm{V}_{\text {IN }}$ is an ac signal, the circuit performs 2-quadrant multiplication.
Table 7 shows the relationship between digital code and the expected output voltage for unipolar operation using the 8 -bit AD5428.

Table 7. Unipolar Code

Digital Input	Analog Output (V)
11111111	$-V_{\text {REF }}(255 / 256)$
10000000	$-V_{\text {REF }}(128 / 256)=-V_{\text {REF }} / 2$
00000001	$-V_{\text {REF }}(1 / 256)$
00000000	$-V_{\text {REF }}(0 / 256)=0$

Figure 38. Unipolar Operation

Bipolar Operation

In some applications, it may be necessary to generate full 4-quadrant multiplying operation or a bipolar output swing. This can easily be accomplished by using another external amplifier and some external resistors, as shown in Figure 39. In this circuit, the second amplifier, A2, provides a gain of 2. Biasing the external amplifier with an offset from the reference voltage results in full 4-quadrant multiplying operation. The transfer function of this circuit shows that both negative and positive output voltages are created as the input data (D) is incremented from Code 0 (Vout $=$ $\left.-\mathrm{V}_{\text {REF }}\right)$ to midscale $\left(\mathrm{V}_{\text {out }}=0 \mathrm{~V}\right)$ to full scale $\left(\mathrm{V}_{\text {OUT }}=+\mathrm{V}_{\text {REF }}\right)$. When connected in bipolar mode, the output voltage is given by

$$
V_{O U T}=\left(V_{R E F} \times D / 2^{n-1}\right)-V_{R E F}
$$

where:
D is the fractional representation of the digital word loaded to the DAC.

$$
\begin{aligned}
D & =0 \text { to } 255(\mathrm{AD} 5428) \\
& =0 \text { to } 1023(\operatorname{AD} 5440) \\
& =0 \text { to } 4095(\mathrm{AD} 5447)
\end{aligned}
$$

n is the number of bits.
When $V_{\text {IN }}$ is an ac signal, the circuit performs 4-quadrant multiplication. Table 8 shows the relationship between digital code and the expected output voltage for bipolar operation using the 8-bit AD5428.

Table 8. Bipolar Code

Digital Input	Analog Output (V)
11111111	$+V_{\text {REF }}(127 / 128)$
10000000	0
00000001	$-V_{\text {REF }}(127 / 128)$
00000000	$-V_{\text {REF }}(128 / 128)$

Stability

In the I-to- V configuration, the Iout of the DAC and the inverting node of the op amp must be connected as close as possible, and proper PCB layout techniques must be used. Because every code change corresponds to a step function, gain peaking may occur if the op amp has limited gain bandwidth product (GBP) and there is excessive parasitic capacitance at the inverting node. This parasitic capacitance introduces a pole into the open-loop response, which can cause ringing or instability in the closedloop applications circuit.

An optional compensation capacitor, C 1, can be added in parallel with $\mathrm{R}_{\mathrm{FB}} \mathrm{A}$ for stability, as shown in Figure 38 and Figure 39. Too small a value of C 1 can produce ringing at the output, whereas too large a value can adversely affect the settling time. C 1 should be found empirically, but 1 pF to 2 pF is generally adequate for the compensation.

${ }^{1}$ R1, R2 AND R3, R4 USED ONLY IF GAIN ADJUSTMENT IS REQUIRED. ADJUST R1 FOR V $V_{O U T} A=0 V$ WITH CODE 10000000 IN DAC A LATCH.
ADJUST R3 FOR V
2MATCHING AND TRACKING IS ESSENTIAL FOR RESISTOR PAIRS R6, R7 AND R9, R10.
${ }^{3} \mathrm{C} 1, \mathrm{C} 2$ PHASE COMPENSATION (1 pF TO 2pF) MAY BE REQUIRED IF A1/A3 IS A HIGH SPEED AMPLIFIER.

SINGLE-SUPPLY APPLICATIONS

Voltage-Switching Mode

Figure 40 shows the DACs operating in voltage switching mode. The reference voltage, V_{IN}, is applied to the Iout A pin, and the output voltage is available at the $V_{\text {Ref }} A$ terminal. In this configuration, a positive reference voltage results in a positive output voltage, making single-supply operation possible. The output from the DAC is voltage at constant impedance (the DAC ladder resistance). Therefore, an op amp is necessary to buffer the output voltage. The reference input no longer sees constant input impedance, but one that varies with code. Therefore, the voltage input should be driven from a low impedance source.

Note that $V_{\text {IN }}$ is limited to low voltages because the switches in the DAC ladder no longer have the same source-drain drive voltage. As a result, their on resistance differs and degrades the integral linearity of the DAC. Also, V ${ }_{\text {IN }}$ must not go negative by more than 0.3 V , or an internal diode turns on, causing the device to exceed the maximum ratings. In this type of application, the full range of multiplying capability of the DAC is lost.

NOTES

1. ADDITIONAL PINS OMITTED FOR CLARITY.
2. C1 PHASE COMPENSATION (1pF TO 2pF) MAY BE REQUIRED IF A1 IS A HIGH SPEED AMPLIFIER.

Figure 40. Single-Supply Voltage-Switching Mode

ADDING GAIN

In applications where the output voltage must be greater than $\mathrm{V}_{\text {IN }}$, gain can be added with an additional external amplifier, or it can be achieved in a single stage. Consider the effect of temperature coefficients of the thin film resistors of the DAC. Simply placing a resistor in series with the R_{FB} resistor causes mismatches in the temperature coefficients, resulting in larger gain temperature coefficient errors. Instead, the circuit in Figure 41 shows the recommended method for increasing the gain of the circuit. R1, R2, and R3 must have similar temperature coefficients, but they need not match the temperature coefficients of the DAC. This approach is recommended in circuits where gains of greater than 1 are required. Note that $\mathrm{R}_{\mathrm{FB}} \gg \mathrm{R} 2| | \mathrm{R} 3$ and a gain error percentage of $100 \times(\mathrm{R} 2| | \mathrm{R} 3) / \mathrm{R}_{\mathrm{FB}}$ must be taken into consideration.

DIVIDER OR PROGRAMMABLE GAIN ELEMENT

Current-steering DACs are very flexible and lend themselves to many applications. If this type of DAC is connected as the feedback element of an op amp and $\mathrm{R}_{\mathrm{FB}} \mathrm{A}$ is used as the input resistor, as shown in Figure 42, the output voltage is inversely proportional to the digital input fraction, D.

For $D=1-2^{-n}$, the output voltage is

$$
V_{\text {OUT }}=-V_{I N} / D=-V_{I N} /\left(1-2^{-n}\right)
$$

Figure 42. Current-Steering DAC Used as a Divider or Programmable Gain Element

As D is reduced, the output voltage increases. For small values of the digital fraction D , it is important to ensure that the amplifier does not saturate and that the required accuracy is met. For example, an 8 -bit DAC driven with the binary code 0×10 (0001 0000)-that is, 16 decimal-in the circuit of Figure 42 should cause the output voltage to be 16 times V_{IN}. However, if the DAC has a linearity specification of $\pm 0.5 \mathrm{LSB}, \mathrm{D}$ can have a weight in the range of $15.5 / 256$ to $16.5 / 256$ so that the possible output voltage is in the range of $15.5 \mathrm{~V}_{\text {IN }}$ to $16.5 \mathrm{~V}_{\text {IN }}-$ an error of 3%, even though the DAC itself has a maximum error of 0.2%.

DAC leakage current is also a potential error source in divider circuits. The leakage current must be counterbalanced by an opposite current supplied from the op amp through the DAC. Because only a fraction, D , of the current into the $\mathrm{V}_{\text {REF }}$ terminal is routed to the Iour 1 terminal, the output voltage changes as follows:
Output Error Voltage Due to DAC Leakage $=($ Leakage $\times R) / D$ where R is the DAC resistance at the $V_{\text {Ref }}$ terminal.

For a DAC leakage current of $10 \mathrm{nA}, \mathrm{R}=10 \mathrm{k} \Omega$, and a gain (that is, $1 / \mathrm{D}$) of 16 , the error voltage is 1.6 mV .

REFERENCE SELECTION

When selecting a reference for use with the AD5428/AD5440/AD5447 series of current output DACs, pay attention to the reference's output voltage temperature coefficient specification. This parameter not only affects the full-scale error, but can also affect the linearity (INL and DNL) performance. The reference temperature coefficient should be consistent with the system accuracy specifications. For example, an 8-bit system required to hold its overall specification to within 1 LSB over the temperature range 0° to $50^{\circ} \mathrm{C}$ dictates that the maximum system drift with temp-erature should be less than $78 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. A 12 -bit system with the same temperature range to overall specification within 2 LSBs requires a maximum drift of $10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. Choosing a precision reference with low output temperature coefficient minimizes this error source. Table 9 lists some references available from Analog Devices that are suitable for use with these current output DACs.

AMPLIFIER SELECTION

The primary requirement for the current-steering mode is an amplifier with low input bias currents and low input offset voltage. Because of the code-dependent output resistance of the DAC, the input offset voltage of an op amp is multiplied by the variable gain of the circuit. A change in the noise gain between two adjacent digital fractions produces a step change in the output voltage due to the amplifier's input offset voltage. This output voltage change is superimposed on the desired change in output between the two codes and gives rise to a differential linearity error, which, if large enough, could cause the DAC to be nonmonotonic. The input offset voltage should be $<1 / 4$ LSB to ensure monotonic behavior when stepping through codes.

The input bias current of an op amp also generates an offset at the voltage output as a result of the bias current flowing in the feedback resistor, $\mathrm{R}_{\text {Fb. }}$ Most op amps have input bias currents low enough to prevent significant errors in 12-bit applications.
Common-mode rejection of the op amp is important in voltageswitching circuits, because it produces a code-dependent error at the voltage output of the circuit. Most op amps have adequate common-mode rejection for use at $8-, 10-$, and 12 -bit resolution.
Provided that the DAC switches are driven from true wideband, low impedance sources ($\mathrm{V}_{\text {IN }}$ and AGND), they settle quickly. Consequently, the slew rate and settling time of a voltageswitching DAC circuit is determined largely by the output op amp. To obtain minimum settling time in this configuration, minimize capacitance at the $V_{\text {ref }}$ node (the voltage output node in this application) of the DAC by using low input capacitance buffer amplifiers and careful board design.

Most single-supply circuits include ground as part of the analog signal range, which in turns requires an amplifier that can handle rail-to-rail signals. Analog Devices offers a wide variety of singlesupply amplifiers (see Table 10 and Table 11).

Table 9. Suitable ADI Precision References

Part No.	Output Voltage (V)	Initial Tolerance (\%)	Temp Drift (ppm/ ${ }^{\circ} \mathbf{C}$)	Iss (mA)	Output Noise ($\boldsymbol{\mu} \mathbf{V} \mathbf{p - p}$)	Package
ADR01	10	0.05	3	1	20	SOIC-8
ADR01	10	0.05	9	1	20	TSOT-23, SC70
ADR02	5	0.06	3	1	10	SOIC-8
ADR02	5	0.06	9	1	10	TSOT-23, SC70
ADR03	2.5	0.10	3	6	SOIC-8	
ADR03	2.5	0.10	9	1	TSOT-23, SC70	
ADR06	3	0.10	9	1	10	SOIC-8
ADR06	3	0.10	3	0	TSOT-23, SC70	
ADR431	2.5	0.04	3	0.8	SOIC-8	
ADR435	5	0.04	9	8	SOIC-8	
ADR391	2.5	0.16	9	0.12	5	TSOT-23
ADR395	5	0.10	8	TSOT-23		

Table 10. Suitable ADI Precision Op Amps

Part No.	Supply Voltage (V)	Vos (Max) ($\mu \mathrm{V}$)	$\mathrm{I}_{\mathrm{B}}(\mathrm{Max})(\mathrm{nA})$	$\begin{aligned} & 0.1 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz} \\ & \text { Noise (} \mu \mathrm{V} \text { p-p) } \\ & \hline \end{aligned}$	Supply Current ($\mu \mathrm{A}$)	Package
OP97	± 2 to ± 20	25	0.1	0.5	600	SOIC-8
OP1177	± 2.5 to ± 15	60	2	0.4	500	MSOP, SOIC-8
AD8551	2.7 to 5	5	0.05	1	975	MSOP, SOIC-8
AD8603	1.8 to 6	50	0.001	2.3	50	TSOT
AD8628	2.7 to 6	5	0.1	0.5	850	TSOT, SOIC-8

Table 11. Suitable ADI High Speed Op Amps

Part No.	Supply Voltage (V)	BW @ ACL (MHz)	Slew Rate (V/ $\boldsymbol{\mu s})$	VOS $(\mathbf{M a x})(\boldsymbol{\mu V})$	$\mathbf{I}_{\mathbf{B}}(\mathbf{M a x})(\mathbf{n A})$	Package
AD8065	5 to 24	145	180	1,500	6,000	SOIC-8, SOT-23, MSOP
AD8021	± 2.5 to ± 12	490	120	1,000	10,500	SOIC-8, MSOP
AD8038	3 to 12	350	425	3,000	750	SOIC-8, SC70-5
AD9631	± 3 to ± 6	320	1,300	10,000	7,000	SOIC-8

PARALLEL INTERFACE

Data is loaded into the AD5428/AD5440/AD5447 in 8-, 10-, or 12-bit parallel word format. Control lines $\overline{\mathrm{CS}}$ and $\mathrm{R} / \overline{\mathrm{W}}$ allow data to be written to or read from the DAC register. A write event takes place when $\overline{\mathrm{CS}}$ and $\mathrm{R} / \overline{\mathrm{W}}$ are brought low, data available on the data lines fills the shift register, and the rising edge of $\overline{\mathrm{CS}}$ latches the data and transfers the latched data-word to the DAC register. The DAC latches are not transparent; therefore, a write sequence must consist of a falling and rising edge on $\overline{\mathrm{CS}}$ to ensure that data is loaded into the DAC register and its analog equivalent is reflected on the DAC output. A read event takes place when $\mathrm{R} / \overline{\mathrm{W}}$ is held high and $\overline{\mathrm{CS}}$ is brought low. Data is loaded from the DAC register, goes back into the input register, and is output onto the data line, where it can be read back to the controller for verification or diagnostic purposes. The input and DAC registers of these devices are not transparent; therefore, a falling and rising edge of $\overline{\mathrm{CS}}$ is required to load each data-word.

MICROPROCESSOR INTERFACING

ADSP-2191M and Family to AD5428/AD5440/AD5447 Interface

Figure 43 shows the AD5428/AD5440/AD5447 interfaced to the ADSP-2191M series of DSPs as a memory-mapped device. A single wait state may be necessary to interface the AD5428/ AD5440/AD5447 to the ADSP-2191M, depending on the clock speed of the DSP. The wait state can be programmed via the data memory wait state control register of the ADSP-2191M (see the ADSP-2191M family user manual for details).

${ }^{1}$ ADDITIONAL PINS OMITTED FOR CLARITY.
Figure 43. ADSP-2191M-to-AD5428/AD5440/AD5447 Interface

8xC51-to-AD5428/AD5440/AD5447 Interface

Figure 44 shows the interface between the AD5428/AD5440/ AD5447 and the 8 xC 51 family of DSPs. To facilitate external data memory access, the address latch enable (ALE) mode is enabled. The low byte of the address is latched with this output pulse during access to the external memory. AD0 to AD7 are the multiplexed low order addresses and data bus, and they require strong internal pull-ups when emitting 1s. During access to external memory, A8 to A15 are the high order address bytes. Because these ports are open drain, they also require strong internal pull-ups when emitting 1 s .

${ }^{1}$ ADDITIONAL PINS OMITTED FOR CLARITY.
Figure 44. 8xC51-to-AD5428/AD5440/AD5447 Interface

ADSP-BF534 to AD5428/AD5440/AD5447 Interface

Figure 45 shows a typical interface between the AD5428/ AD5440/AD5447 and the ADSP-BF534 family of DSPs. The asynchronous memory write cycle of the processor drives the digital inputs of the DAC. The $\overline{A M S} x$ line is actually four memory select lines. Internal ADDR lines are decoded into $\overline{\mathrm{AMS}}_{3-0}$, and then these lines are inserted as chip selects. The rest of the interface is a standard handshaking operation.

Figure 45. ADSP-BF534-to-AD5428/AD5440/AD5447 Interface

PCB LAYOUT AND POWER SUPPLY DECOUPLING

In any circuit where accuracy is important, careful consideration of the power supply and ground return layout helps to ensure the rated performance. The printed circuit board on which the AD5428/AD5440/AD5447 is mounted should be designed so that the analog and digital sections are separate and confined to certain areas of the board. If the DAC is in a system where multiple devices require an AGND-toDGND connection, the connection should be made at one point only. The star ground point should be established as close as possible to the device.
These DACs should have ample supply bypassing of $10 \mu \mathrm{~F}$ in parallel with $0.1 \mu \mathrm{~F}$ on the supply located as close as possible to the package, ideally right up against the device. The $0.1 \mu \mathrm{~F}$ capacitor should have low effective series resistance (ESR) and low effective series inductance (ESI), like the common ceramic types of capacitors that provide a low impedance path to ground at high frequencies, to handle transient currents due to internal logic switching. Low ESR $1 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ tantalum or electrolytic capacitors should also be applied at the supplies to minimize transient disturbance and filter out low frequency ripple.
Components, such as clocks, that produce fast-switching signals should be shielded with digital ground to avoid radiating noise to other parts of the board, and they should never be run near the reference inputs.

Avoid crossover of digital and analog signals. Traces on opposite sides of the board should run at right angles to each other. This reduces the effects of feedthrough on the board. A
microstrip technique is by far the best method, but its use is not always possible with a double-sided board. In this technique, the component side of the board is dedicated to the ground plane, and signal traces are placed on the soldered side.
It is good practice to use compact, minimum lead length PCB layout design. Leads to the input should be as short as possible to minimize IR drops and stray inductance.
The PCB metal traces between $V_{\text {REF }}$ and R_{FB} should also be matched to minimize gain error. To maximize high frequency performance, the I-to-V amplifier should be located as close as possible to the device.

EVALUATION BOARD FOR THE AD5447

The evaluation board consists of an AD5447 DAC and a current-to-voltage amplifier, the AD8065. Included on the evaluation board is a 10 V reference, the ADR01. An external reference may also be applied via an SMB input.
The evaluation kit consists of a CD-ROM with self-installing PC software to control the DAC. The software simply allows the user to write a code to the device.

POWER SUPPLIES FOR THE EVALUATION BOARD

The board requires $\pm 12 \mathrm{~V}$ and +5 V supplies. The $+12 \mathrm{~V} \mathrm{~V}_{\mathrm{DD}}$ and $-12 \mathrm{~V}_{\text {ss }}$ are used to power the output amplifier; the +5 V is used to power the DAC $\left(\mathrm{V}_{\mathrm{DDI}}\right)$ and transceivers $\left(\mathrm{V}_{\mathrm{CC}}\right)$.
Both supplies are decoupled to their respective ground plane with $10 \mu \mathrm{~F}$ tantalum and $0.1 \mu \mathrm{~F}$ ceramic capacitors.

AD5428/AD5440/AD5447 Data Sheet

Figure 47. Component-Side Artwork

[^0]: ${ }^{1}$ U.S. Patent Number 5,689,257.

[^1]: ${ }^{1}$ Guaranteed by design, not subject to production test.

