

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



### Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China











## HIGH SPEED MULTI-MODE 8/12/14-BIT 1000/640/105 MSPS A/D CONVERTER

#### **Features**

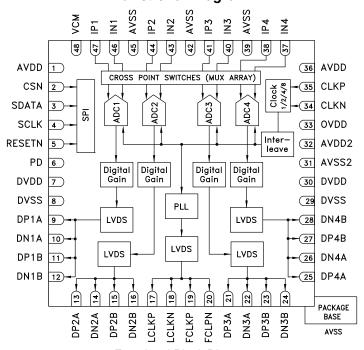
• High Speed Modes (12-bit / 8-bit)

Quad Channel Mode:  $F_{\rm Smax} = 160 / 250$  MSPS Dual Channel Mode:  $F_{\rm Smax} = 320 / 500$  MSPS Single Channel Mode:  $F_{\rm Smax} = 640 / 1000$  MSPS SNR: 70 dB, SFDR: 60/75 dB [1] (12-bit 1ch Mode)

- 8-bit Modes Described in HMCAD1511 and HMCAD1510
- Precision Mode (14-bit)
   Four channels up to 105 MSPS
   SNR: 74 dB, SFDR: 83 dB @ 70 MHz
   SNR: 72.5 dB, SFDR: 78 dB @ 140 MHz
- Integrated Cross Point Switches with instantaneous switching
- Internal low jitter programmable Clock Divider
- Ultra Low Power Dissipation
   490 mW including I/O at 12-bit 640 MSPS
- 0.5 μs start-up time from Sleep, 15 μs from Power Down
- Internal reference circuitry with no external components required
- Coarse and fine gain control

- Digital fine gain adjustment for each ADC
- Internal offset correction
- 1.8 V supply voltage
- 1.7 3.6 V CMOS logic on control interface pins
- Serial LVDS output
   12, 14, 16 and Dual 8-bit modes available
- 7 x 7 mm 48 QFN Package

[1] Including/Excluding Interleaving Spurs


### Typical Applications

- Precision Oscilloscopes
- · Spectrum Analyzers
- Diversity Receivers
- · Hi-End Ultrasound
- Communication Testing
- · Non Destructive Testing

### Pin compatible parts

HMCAD1520 is pin compatible and can be configured to operate as HMCAD1511 and HMCAD1510, with functionality and performance as described in HMCAD1511 and HMCAD1510 datasheets.

#### **Functional Diagram**



Functional Block Diagram

### **HMCAD1520\* PRODUCT PAGE QUICK LINKS**

Last Content Update: 02/23/2017

### COMPARABLE PARTS -

View a parametric search of comparable parts.

### **EVALUATION KITS**

· HMCAD1520 Evaluation Board

### **DOCUMENTATION**

#### **Data Sheet**

 HMCAD1520: High Speed Multi-Mode 8/12/14-Bit 1000/640/105 MSPS A/D Converter Data Sheet

### REFERENCE MATERIALS 🖳

#### **Quality Documentation**

Semiconductor Qualification Test Report: CMOS-C (QTR: 2013-00139)

### **DESIGN RESOURCES**

- HMCAD1520 Material Declaration
- PCN-PDN Information
- · Quality And Reliability
- Symbols and Footprints

### **DISCUSSIONS**

View all HMCAD1520 EngineerZone Discussions.

### SAMPLE AND BUY

Visit the product page to see pricing options.

### **TECHNICAL SUPPORT**

Submit a technical question or find your regional support number.

### DOCUMENT FEEDBACK 🖳

Submit feedback for this data sheet.





## HIGH SPEED MULTI-MODE 8/12/14-BIT 1000/640/105 MSPS A/D CONVERTER

#### **General Description**

The HMCAD1520 is a versatile high performance low power analog-to-digital converter (ADC), with interleaving High Speed Modes to increase sampling rate. Integrated Cross Point Switches activate the input selected by the user.

In Single Channel Mode, one of the four inputs can be selected as valid input to the single ADC channel. In Dual Channel Mode, any two of the four inputs can be selected to each ADC channel. In Quad Channel Mode and Precision Mode, any input can be assigned to any ADC channel.

An internal, low jitter and programmable clock divider makes it possible to use a single clock source for all operational modes.

The HMCAD1520 is based on a proprietary structure, and employs internal reference circuitry, a serial control interface and a serial LVDS output data. Data and frame synchronization clocks are supplied for data capture at the receiver. Internal digital fine gain can be set separately for each ADC to calibrate for gain errors.

Various modes and configuration settings can be applied to the ADC through the serial control interface (SPI). each channel can be powered down independently and output data format can be selected through this interface. A full chip idle mode can be set by a single external pin. Register settings determine the exact function of this pin.

HMCAD1520 is designed to interface easily with Field Programmable Gate Arrays (FPGAs) from several vendors.

#### Electrical Specifications

### **DC Specifications**

AVDD = DVDD = 0VDD = 1.8V,  $F_s$  = 160 MSPS, Quad Channel 12-bit High Speed Mode, 50% Clock Duty Cycle, -1 dBFS 70 MHz Input Signal, 1x / 0 dB Digital Gain (Fine and Coarse), Unless Otherwise Noted

| Parameter           | Description                                                             | Min                  | Тур                  | Max                  | Unit |
|---------------------|-------------------------------------------------------------------------|----------------------|----------------------|----------------------|------|
| DC accuracy         |                                                                         |                      |                      |                      |      |
| No missing codes    |                                                                         | Guaranteed           |                      |                      |      |
| Offset              | Offset error after internal digital offset correction                   |                      | 1                    |                      | LSB  |
| G <sub>abs</sub>    | Gain error                                                              |                      |                      | ±6                   | %FS  |
| G <sub>rel</sub>    | Gain matching between channels. ±3 sigma value at worst case conditions |                      | ±0.5                 |                      | %FS  |
| DNL                 | Differential non linearity                                              |                      | ±0.2                 |                      | LSB  |
| INL                 | Integral non linearity                                                  |                      | ±0.6                 |                      | LSB  |
| V <sub>CM,out</sub> | Common mode voltage output                                              |                      | V <sub>AVDD</sub> /2 |                      |      |
| Analog Input        |                                                                         |                      |                      |                      |      |
| V <sub>CM,in</sub>  | Analog input common mode voltage                                        | V <sub>CM</sub> -0.1 |                      | V <sub>CM</sub> +0.2 | V    |
| FSR                 | Differential input voltage full scale range                             |                      | 2                    |                      | Vpp  |
| C <sub>in,Q</sub>   | Differential input capacitance, Quad channel mode                       |                      | 5                    |                      | pF   |
| C <sub>in,D</sub>   | Differential input capacitance, Dual channel mode                       |                      | 7                    |                      | pF   |
| C <sub>in,S</sub>   | Differential input capacitance, Single channel mode                     |                      | 11                   |                      | pF   |
| Power Supply        |                                                                         |                      |                      |                      |      |
| V <sub>AVDD</sub>   | Analog Supply Voltage                                                   | 1.7                  | 1.8                  | 2                    | V    |
| V <sub>DVDD</sub>   | Digital and output driver supply voltage                                | 1.7                  | 1.8                  | 2                    | V    |
| V <sub>OVDD</sub>   | Digital CMOS Input Supply Voltage                                       | 1.7                  | 1.8                  | 3.6                  | V    |
| Temperature         |                                                                         | '                    |                      |                      |      |
| T <sub>A</sub>      | Operating free-air temperature                                          | -40                  |                      | 85                   | °C   |





# HIGH SPEED MULTI-MODE 8/12/14-BIT 1000/640/105 MSPS A/D CONVERTER

#### AC Specifications – High Speed Modes

AVDD = DVDD = 0.8V, 50% clock duty cycle, -1 dBFS 70 MHz input signal, Gain = 1X, 12-bit output, RSDS output data levels, unless otherwise noted

| Parameter             | Description                                                                                                                                                                                           | Min | Тур  | Max | Unit |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|-----|------|
| Performance           |                                                                                                                                                                                                       |     |      |     |      |
| SNR                   | Signal to Noise Ratio, excluding interleaving spurs                                                                                                                                                   |     |      |     |      |
|                       | Single Channel Mode , F <sub>S</sub> = 640 MSPS                                                                                                                                                       |     | 70   |     | dBFS |
|                       | Dual Channel Mode , F <sub>s</sub> = 320 MSPS                                                                                                                                                         |     | 70   |     | dBFS |
|                       | Quad Channel Mode , F <sub>S</sub> = 160 MSPS                                                                                                                                                         |     | 70   |     | dBFS |
| SINAD                 | Signal to Noise and Distortion Ratio, including interleaving spurs                                                                                                                                    |     |      |     |      |
|                       | Single Channel Mode , F <sub>S</sub> = 640 MSPS                                                                                                                                                       |     | 58   |     | dBFS |
|                       | Dual Channel Mode , F <sub>s</sub> = 320 MSPS                                                                                                                                                         |     | 58   |     | dBFS |
|                       | Quad Channel Mode , F <sub>S</sub> = 160 MSPS                                                                                                                                                         |     | 58   |     | dBFS |
| SINAD <sub>excl</sub> | Signal to Noise and Distortion Ratio, excluding interleaving spurs                                                                                                                                    |     |      |     |      |
|                       | Single Channel Mode , F <sub>S</sub> = 640 MSPS                                                                                                                                                       |     | 67   |     | dBFS |
|                       | Dual Channel Mode , F <sub>s</sub> = 320 MSPS                                                                                                                                                         |     | 68   |     | dBFS |
|                       | Quad Channel Mode , F <sub>S</sub> = 160 MSPS                                                                                                                                                         |     | 68   |     | dBFS |
| SFDR <sub>incl</sub>  | Spurious Free Dynamic Range, including interleaving spurs                                                                                                                                             |     |      |     |      |
|                       | Single Channel Mode , F <sub>S</sub> = 640 MSPS                                                                                                                                                       |     | 60   |     | dBc  |
|                       | Dual Channel Mode , F <sub>s</sub> = 320 MSPS                                                                                                                                                         |     | 60   |     | dBc  |
|                       | Quad Channel Mode , F <sub>s</sub> = 160 MSPS                                                                                                                                                         |     | 60   |     | dBc  |
| SFDR <sub>excl</sub>  | Spurious Free Dynamic Range, excluding interleaving spurs                                                                                                                                             |     |      |     |      |
|                       | Single Channel Mode , F <sub>s</sub> = 640 MSPS                                                                                                                                                       |     | 75   |     | dBc  |
|                       | Dual Channel Mode , F <sub>s</sub> = 320 MSPS                                                                                                                                                         |     | 77   |     | dBc  |
|                       | Quad Channel Mode , F <sub>S</sub> = 160 MSPS                                                                                                                                                         |     | 78   |     | dBc  |
| HD2/3                 | Worst of HD2/HD3                                                                                                                                                                                      |     |      |     |      |
|                       | Single Channel Mode , F <sub>S</sub> = 640 MSPS                                                                                                                                                       |     | 75   |     | dBc  |
|                       | Dual Channel Mode , F <sub>s</sub> = 320 MSPS                                                                                                                                                         |     | 77   |     | dBc  |
|                       | Quad Channel Mode , F <sub>S</sub> = 160 MSPS                                                                                                                                                         |     | 78   |     | dBc  |
| ENOB                  | Effective number of Bits                                                                                                                                                                              |     |      |     |      |
|                       | Single Channel Mode , F <sub>S</sub> = 640 MSPS                                                                                                                                                       |     | 10.8 |     | bits |
|                       | Dual Channel Mode , F <sub>s</sub> = 320 MSPS                                                                                                                                                         |     | 11.0 |     | bits |
|                       | Quad Channel Mode , F <sub>S</sub> = 160 MSPS                                                                                                                                                         |     | 11.0 |     | bits |
| X <sub>tlk,HS2</sub>  | CrossTalk Dual Ch Mode. Signal applied to 1 channel ( $F_{INO}$ ). Measurement taken on one channel with full scale at $F_{INI}$ , $F_{INI} = 71$ MHz, $F_{INO} = 70$ MHz                             |     | 70   |     | dBc  |
| X <sub>Ilk,HS4</sub>  | CrossTalk Quad Ch Mode. Signal applied to 1 channel ( $F_{\text{INO}}$ ). Measurement taken on one channel with full scale at $F_{\text{IN1}}$ . $F_{\text{IN1}} = 71$ MHz, $F_{\text{IN0}} = 70$ MHz |     | 70   |     | dBc  |
| Power Supply          | Single Ch: $F_s$ = 640 MSPS, Dual Ch: $F_s$ = 320 MSPS, Quad Ch: $F_s$ = 160 MSPS.                                                                                                                    |     |      |     |      |
| I <sub>AVDD</sub>     | Analog Supply Current                                                                                                                                                                                 |     | 190  |     | mA   |
| I <sub>DVDD</sub>     | Digital and output driver Supply Current                                                                                                                                                              |     | 82   |     | mA   |
| P <sub>AVDD</sub>     | Analog Power                                                                                                                                                                                          |     | 342  |     | mW   |





# HIGH SPEED MULTI-MODE 8/12/14-BIT 1000/640/105 MSPS A/D CONVERTER

### AC Specifications - High Speed Modes

AVDD = DVDD = 0.8V, 50% clock duty cycle, -1 dBFS 70 MHz input signal, Gain = 1X, 12-bit output, RSDS output data levels, unless otherwise noted

| Parameter              | Description                                                             | Min     | Тур | Max    | Unit |
|------------------------|-------------------------------------------------------------------------|---------|-----|--------|------|
| P <sub>DVDD</sub>      | Digital Power                                                           |         | 148 |        | mW   |
| Ртот                   | Total Power Dissipation                                                 |         | 490 |        | mW   |
| P <sub>PD</sub>        | Power Down Mode Dissipation                                             |         | 15  |        | μW   |
| P <sub>SLP</sub>       | Deep Sleep Mode Power Dissipation                                       |         | 66  |        | mW   |
| P <sub>SLPCH</sub>     | Power Dissipation with all channels in sleep channel mode (Light Sleep) |         | 121 |        | mW   |
| P <sub>SLPCH_SAV</sub> | Power Dissipation savings per channel off                               |         | 92  |        | mW   |
| Analog Input           |                                                                         |         |     |        |      |
| FPBW                   | Full Power Bandwidth                                                    |         | 700 |        | MHz  |
| Clock Inputs           |                                                                         |         |     | ,      | ,    |
|                        | Max. Conversion Rate in Modes:                                          |         |     |        |      |
| F <sub>Smax</sub>      | Single / Dual                                                           | 640/320 |     |        | MSPS |
|                        | Quad Channel                                                            | 160     |     |        |      |
|                        | Min. Conversion Rate in Modes:                                          |         |     |        |      |
| F <sub>Smin</sub>      | Single / Dual                                                           |         |     | 120/60 | MSPS |
|                        | Quad Channel                                                            |         |     | 30     |      |

### AC Specifications - Precision Mode

AVDD = DVDD = 0.8V, FS = 105 MHz, 50% clock duty cycle, -1 dBFS 70 MHz input signal, Gain = 1X, dual 8-bit output, RSDS output data levels, unless otherwise noted

| Parameter   | Description                                           | Min      | Тур  | Max | Unit |
|-------------|-------------------------------------------------------|----------|------|-----|------|
| Performance |                                                       | <u>'</u> | '    |     | ,    |
| SNR         | Signal to Noise Ratio                                 |          |      |     |      |
|             | F <sub>S</sub> = 80 MSPS                              |          | 75   |     | dBFS |
|             | F <sub>s</sub> = 105 MSPS                             |          | 74   |     | dBFS |
|             | $F_{\rm S}$ = 105 MSPS, $F_{\rm in}$ = 105 MSPS       |          | 72.5 |     | dBFS |
| SINAD       | Signal to Noise and Distortion Ratio                  |          |      |     |      |
|             | F <sub>S</sub> = 80 MSPS                              |          | 73   |     | dBFS |
|             | F <sub>s</sub> = 105 MSPS                             |          | 72.5 |     | dBFS |
|             | $F_{\rm S}$ = 105 MSPS, $F_{\rm in}$ = 105 MSPS       |          | 71   |     | dBFS |
| SFDR        | Spurious Free Dynamic Range                           |          |      |     |      |
|             | F <sub>S</sub> = 80 MSPS                              |          | 85   |     | dBc  |
|             | F <sub>s</sub> = 105 MSPS                             |          | 83   |     | dBc  |
|             | $F_{\rm S}$ = 105 MSPS, $F_{\rm in}$ = 105 MSPS       |          | 78   |     | dBc  |
| HD2         | Second order harmonic spur                            |          |      |     |      |
|             | F <sub>s</sub> = 80 MSPS                              |          | 90   |     | dBc  |
|             | F <sub>s</sub> = 105 MSPS                             |          | 90   |     | dBc  |
|             | F <sub>S</sub> = 105 MSPS, F <sub>in</sub> = 105 MSPS |          | 80   |     | dBc  |
| HD3         | Third order harmonic spur                             |          |      |     |      |





# HIGH SPEED MULTI-MODE 8/12/14-BIT 1000/640/105 MSPS A/D CONVERTER

#### AC Specifications - Precision Mode

AVDD = DVDD = 0VDD = 1.8V, FS = 105 MHz, 50% clock duty cycle, -1 dBFS 70 MHz input signal, Gain = 1X, dual 8-bit output, RSDS output data levels, unless otherwise noted

| Parameter              | Description                                                                                                                                                  | Min | Тур  | Max | Unit |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|-----|------|
|                        | F <sub>s</sub> = 80 MSPS                                                                                                                                     |     | 85   |     | dBc  |
|                        | F <sub>S</sub> = 105 MSPS                                                                                                                                    |     | 83   |     | dBc  |
|                        | F <sub>s</sub> = 105 MSPS, F <sub>in</sub> = 105 MSPS                                                                                                        |     | 78   |     | dBc  |
| ENOB                   | Effective number of Bits                                                                                                                                     |     |      |     |      |
|                        | F <sub>s</sub> = 80 MSPS                                                                                                                                     |     | 11.8 |     | bits |
|                        | F <sub>S</sub> = 105 MSPS                                                                                                                                    |     | 11.8 |     | bits |
|                        | F <sub>s</sub> = 105 MSPS, F <sub>in</sub> = 105 MSPS                                                                                                        |     | 11.5 |     | bits |
| X <sub>tlk</sub>       | CrossTalk. Signal applied to 1 channel ( $F_{INO}$ ). Measurement taken on one channel with full scale at $F_{IN1}$ . $F_{IN1}$ = 71 MHz, $F_{INO}$ = 70 MHz |     | 70   |     | dBc  |
| Power Supply           |                                                                                                                                                              |     |      | •   | •    |
| I <sub>AVDD</sub>      | Analog Supply Current                                                                                                                                        |     | 229  |     | mA   |
| I <sub>DVDD</sub>      | Digital and output driver Supply Current                                                                                                                     |     | 106  |     | mA   |
| P <sub>AVDD</sub>      | Analog Power                                                                                                                                                 |     | 412  |     | mW   |
| P <sub>DVDD</sub>      | Digital Power                                                                                                                                                |     | 191  |     | mW   |
| Ртот                   | Total Power Dissipation                                                                                                                                      |     | 603  |     | mW   |
| P <sub>PD</sub>        | Power Down Mode Dissipation                                                                                                                                  |     | 15   |     | μW   |
| P <sub>SLP</sub>       | Deep Sleep Mode Power Dissipation                                                                                                                            |     | 66   |     | mW   |
| P <sub>SLPCH</sub>     | Power Dissipation with all channels in sleep channel mode (Light Sleep)                                                                                      |     | 131  |     | mW   |
| P <sub>SLPCH_SAV</sub> | Power Dissipation savings per channel off                                                                                                                    |     | 118  |     | mW   |
| Analog Input           |                                                                                                                                                              |     |      |     |      |
| FPBW                   | Full Power Bandwidth                                                                                                                                         |     | 700  |     | MHz  |
| Clock Inputs           |                                                                                                                                                              |     |      |     |      |
| F <sub>Smax</sub>      | Max. Conversion Rate                                                                                                                                         | 105 |      |     | MSPS |
| F <sub>Smin</sub>      | Min. Conversion Rate                                                                                                                                         |     |      | 15  | MSPS |

#### Digital and Switching Specifications

AVDD = DVDD = OVDD = 1.8V, RSDS output data levels, unless otherwise noted.

| Parameter            | Description                                                                | Min     | Тур               | Max                    | Unit   |
|----------------------|----------------------------------------------------------------------------|---------|-------------------|------------------------|--------|
| Clock Inputs         |                                                                            |         |                   |                        |        |
| DC                   | Duty Cycle, High speed modes                                               | 40      |                   | 60                     | % high |
| DC                   | Duty Cycle, Precision mode                                                 | 30      |                   | 70                     | % high |
| Compliance           | LVDS supported up to 700 Mbps                                              | LVPECL, | Sine wave, CM     | IOS, LVDS              |        |
| V <sub>CK,sine</sub> | Differential input voltage swing, sine wave clock input                    | 1500    |                   |                        | mVpp   |
| V <sub>CK,CMOS</sub> | Voltage input range CMOS (CLKN connected to ground)                        |         | V <sub>OVDD</sub> |                        |        |
| V <sub>CM,CK</sub>   | Input common mode voltage. Keep voltages within ground and voltage of OVDD | 0.3     |                   | V <sub>OVDD</sub> -0.3 | V      |
| C <sub>CK</sub>      | Differential Input capacitance                                             |         | 3                 |                        | pF     |
| Logic inputs (CM     | los)                                                                       |         |                   |                        |        |

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

0 - 6



v04.1015



# HIGH SPEED MULTI-MODE 8/12/14-BIT 1000/640/105 MSPS A/D CONVERTER

### Digital and Switching Specifications

AVDD = DVDD = OVDD = 1.8V, RSDS output data levels, unless otherwise noted.

| Parameter            | Description                                                                                                             | Min                      | Тур                      | Max                      | Unit         |
|----------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------|--------------------------|--------------|
| V <sub>HI</sub>      | High Level Input Voltage. V <sub>OVDD</sub> ≥ 3.0V                                                                      | 2                        |                          |                          | V            |
| V <sub>HI</sub>      | High Level Input Voltage. V <sub>OVDD</sub> = 1.7V − 3.0V                                                               | 0.8 ·V <sub>OVDD</sub>   |                          |                          | V            |
| V <sub>LI</sub>      | Low Level Input Voltage. V <sub>OVDD</sub> ≥ 3.0V                                                                       | 0                        |                          | 0.8                      | V            |
| V <sub>LI</sub>      | Low Level Input Voltage. V <sub>OVDD</sub> = 1.7V - 3.0V                                                                | 0                        |                          | 0.2 ·V <sub>OVDD</sub>   | V            |
| I <sub>HI</sub>      | High Level Input leakage Current                                                                                        |                          |                          | +/-10                    | μА           |
| I                    | Low Level Input leakage Current                                                                                         |                          |                          | +/-10                    | μΑ           |
| C,                   | Input Capacitance                                                                                                       |                          | 3                        |                          | pF           |
| Data outputs         |                                                                                                                         |                          |                          |                          | ,            |
| Compliance           |                                                                                                                         |                          | LVDS / RSDS              |                          |              |
| V <sub>OUT</sub>     | Differential output voltage, LVDS                                                                                       |                          | 350                      |                          | mV           |
| V <sub>out</sub>     | Differential output voltage, RSDS                                                                                       |                          | 150                      |                          | mV           |
| V <sub>CM</sub>      | Output common mode voltage                                                                                              |                          | 1.2                      |                          | V            |
| Output coding        | Default/optional                                                                                                        | Offset                   | Binary/ 2's com          | plement                  |              |
| Timing Characte      | eristics                                                                                                                |                          |                          |                          |              |
| t <sub>A,HS</sub>    | Aperture delay, High speed modes                                                                                        |                          | 1.5                      |                          | ns           |
| t <sub>A,PM</sub>    | Aperture delay, Precision mode                                                                                          |                          | 1.4                      |                          | ns           |
| t <sub>j,HS</sub>    | Aperture jitter, all bits set to '1' in jitter_ctrl<7:0>, High speed modes                                              |                          | 120                      |                          | fsrms        |
| t <sub>j,HS</sub>    | Aperture jitter, one bit set to '1' in jitter_ctrl<7:0>, High speed modes                                               |                          | 160                      |                          | fsrms        |
| t <sub>j,PM</sub>    | Aperture jitter, all bits set to '1' in jitter_ctrl<7:0>, Precision modes                                               |                          | 75                       |                          | fsrms        |
| t <sub>j,PM</sub>    | Aperture jitter, one bit set to '1' in jitter_ctrl<7:0>, Precision modes                                                |                          | 130                      |                          | fsrms        |
| T <sub>skew</sub>    | Timing skew between ADC channels, High speed modes                                                                      |                          | 2.5                      |                          | psrms        |
| T <sub>SU</sub>      | Start up time from Power Down Mode and Deep Sleep Mode to Active Mode in µs. See section "Clock Frequency" for details. |                          | 15                       |                          | μs           |
| T <sub>SLPCH</sub>   | Start up time from Sleep Channel Mode to Active Mode                                                                    |                          | 0.5                      |                          | μs           |
| T <sub>ovr</sub>     | Out of range recovery time                                                                                              |                          | 1                        |                          | clock cycles |
| T <sub>LATPM</sub>   | Pipeline delay, Precision Speed Mode                                                                                    |                          | 15                       |                          | clock cycles |
| T <sub>LATHSMQ</sub> | Pipeline delay, Quad High Speed Mode                                                                                    |                          | 32                       |                          | clock cycles |
| T <sub>LATHSMD</sub> | Pipeline delay, Dual High Speed Mode                                                                                    |                          | 64                       |                          | clock cycles |
| T <sub>LATHSMS</sub> | Pipeline delay, Single High Speed Mode                                                                                  |                          | 128                      |                          | clock cycles |
| LVDS Output Ti       | ming Characteristics                                                                                                    |                          |                          |                          |              |
| t <sub>data</sub>    | LCLK to data delay time (excluding programmable phase shift)                                                            |                          | 50                       |                          | ps           |
| T <sub>PROP</sub>    | Clock propagation delay.                                                                                                | 6*T <sub>LVDS</sub> +2.2 | 7*T <sub>LVDS</sub> +3.5 | 7*T <sub>LVDS</sub> +5.0 | ns           |
|                      | LVDS bit-clock duty-cycle                                                                                               | 45                       |                          | 55                       | % LCLK cycle |
|                      | Frame clock cycle-to-cycle jitter                                                                                       |                          |                          | 2.5                      | % LCLK cycle |
| T <sub>EDGE</sub>    | Data rise- and fall time 20% to 80%                                                                                     |                          | 0.7                      |                          | ns           |
| T <sub>CLKEDGE</sub> | Clock rise- and fall time 20% to 80%                                                                                    |                          | 0.7                      |                          | ns           |





# HIGH SPEED MULTI-MODE 8/12/14-BIT 1000/640/105 MSPS A/D CONVERTER

### **Absolute Maximum Ratings**

Applying voltages to the pins beyond those specified in Table 1 could cause permanent damage to the circuit.

Table 1: Maximum voltage ratings

| Pin                       | Reference pin | Rating         |
|---------------------------|---------------|----------------|
| AVDD                      | AVSS          | -0.3V to +2.3V |
| DVDD                      | DVSS          | -0.3V to +2.3V |
| OVDD                      | AVSS          | -0.3V to +3.9V |
| AVSS / DVSS               | DVSS / AVSS   | -0.3V to +0.3V |
| Analog inputs and outputs | AVSS          | -0.3V to +2.3V |
| CLKx                      | AVSS          | -0.3V to +3.9V |
| LVDS outputs              | DVSS          | -0.3V to +2.3V |
| Digital inputs            | DVSS          | -0.3V to +3.9V |

Table 2 shows the maximum external temperature ratings.

**Table 2: Maximum Temperature Ratings** 

| Operating Temperature           | -40 to +85 ºC  |
|---------------------------------|----------------|
| Storage Temperature             | -60 to +150 °C |
| Maximum Junction Temperature    | 110 ºC         |
| Thermal Resistance (Rth)        | 29 ºC/W        |
| Soldering Profile Qualification | J-STD-020      |
| ESD Sensivity HBM               | Class 1C       |
| ESD Sensivity CDM               | Class III      |



### ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.





# HIGH SPEED MULTI-MODE 8/12/14-BIT 1000/640/105 MSPS A/D CONVERTER

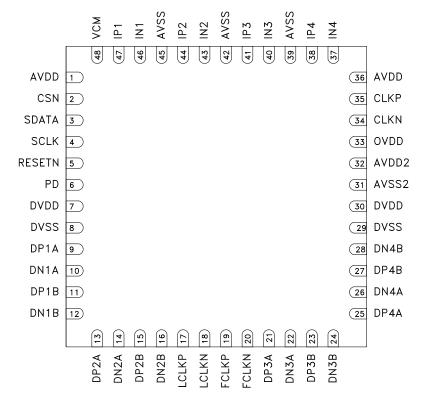



Figure 1: Pin Diagram

**Table 3: Pin Descriptions** 

| Pin name | Description                                                                                                                            | Pin Number | # of Pins |
|----------|----------------------------------------------------------------------------------------------------------------------------------------|------------|-----------|
| AVDD     | Analog power supply, 1.8V                                                                                                              | 1, 36      | 2         |
| CSN      | Chip select enable. Active low                                                                                                         | 2          | 1         |
| SDATA    | Serial data input                                                                                                                      | 3          | 1         |
| SCLK     | Serial clock input                                                                                                                     | 4          | 1         |
| RESETN   | Reset SPI interface. Active low                                                                                                        | 5          | 1         |
| PD       | Power-down input. Activate after applying power in order to initialize the ADC correctly. Alternatively use the SPI power down feature | 6          | 1         |
| DVDD     | Digital and I/O power supply, 1.8V                                                                                                     | 7, 30      | 2         |
| DVSS     | Digital ground                                                                                                                         | 8, 29      | 2         |
| DP1A     | LVDS channel 1A, positive output                                                                                                       | 9          | 1         |
| DN1A     | LVDS channel 1A, negative output                                                                                                       | 10         | 1         |
| DP1B     | LVDS channel 1B, positive output                                                                                                       | 11         | 1         |
| DN1B     | LVDS channel 1B, negative output                                                                                                       | 12         | 1         |
| DP2A     | LVDS channel 2A, positive output                                                                                                       | 13         | 1         |
| DN2A     | LVDS channel 2A, negative output                                                                                                       | 14         | 1         |
| DP2B     | LVDS channel 2B, positive output                                                                                                       | 15         | 1         |
| DN2B     | LVDS channel 2B, negative output                                                                                                       | 16         | 1         |





# HIGH SPEED MULTI-MODE 8/12/14-BIT 1000/640/105 MSPS A/D CONVERTER

#### Table 3: Pin Descriptions

| Pin name | Description                                   | Pin Number | # of Pins |
|----------|-----------------------------------------------|------------|-----------|
| LCLKP    | LVDS bit clock, positive output               | 17         | 1         |
| LCLKN    | LVDS bit clock, negative output               | 18         | 1         |
| FCLKP    | LVDS frame clock (1X), positive output        | 19         | 1         |
| FCLKN    | LVDS frame clock (1X), negative output        | 20         | 1         |
| DP3A     | LVDS channel 3A, positive output              | 21         | 1         |
| DN3A     | LVDS channel 3A, negative output              | 22         | 1         |
| DP3B     | LVDS channel 3B, positive output              | 23         | 1         |
| DN3B     | LVDS channel 3B, negative output              | 24         | 1         |
| DP4A     | LVDS channel 4A, positive output              | 25         | 1         |
| DN4A     | LVDS channel 4A, negative output              | 26         | 1         |
| DP4B     | LVDS channel 4B, positive output              | 27         | 1         |
| DN4B     | LVDS channel 4B, negative output              | 28         | 1         |
| AVSS2    | Analog ground domain 2                        | 31         | 1         |
| AVDD2    | Analog power supply domain 2, 1.8V            | 32         | 1         |
| OVDD     | Digital CMOS Inputs supply voltage            | 33         | 1         |
| CLKN     | Negative differential input clock.            | 34         | 1         |
| CLKP     | Positive differential input clock             | 35         | 1         |
| IN4      | Negative differential input signal, channel 4 | 37         | 1         |
| IP4      | Positive differential input signal, channel 4 | 38         | 1         |
| AVSS     | Analog ground                                 | 39, 42, 45 | 3         |
| IN3      | Negative differential input signal, channel 3 | 40         | 1         |
| IP3      | Positive differential input signal, channel 3 | 41         | 1         |
| IN2      | Negative differential input signal, channel 2 | 43         | 1         |
| IP2      | Positive differential input signal, channel 2 | 44         | 1         |
| IN1      | Negative differential input signal, channel 1 | 46         | 1         |
| IP1      | Positive differential input signal, channel 1 | 47         | 1         |
| VCM      | Common mode output pin, 0.5*AVDD              | 48         | 1         |

#### Start up Initialization

As part of the HMCAD1520 power-on sequence both a reset and a power down cycle have to be applied to ensure correct start-up initialization. Reset can be done in one of two ways:

- By applying a low-going pulse (minimum 20 ns) on the RESETN pin (asynchronous).
- 2. By using the serial interface to set the 'rst' bit high. Internal registers are reset to default values when this bit is set. The 'rst' bit is self-reset to zero. When using this method, do not apply any low-going pulse on the RESETN pin.

Power down cycling can be done in one of two ways:

- 1. By applying a high-going pulse (minimum 20 ns) on the PD pin (asynchronous).
- 2. By cycling the 'pd' bit in register 0Fhex to high (reg value '0200'hex) and then low (reg value '0000'hex).

0 - 10



v04.1015



# HIGH SPEED MULTI-MODE 8/12/14-BIT 1000/640/105 MSPS A/D CONVERTER

#### Register Initialization

To set the HMCAD1520 in Precision Mode, the following registers must be changed from the default value. Suggested values are:

| Address | Data   | Function                                                |
|---------|--------|---------------------------------------------------------|
| 0x31    | 0x0008 | Sets HMCAD1520 in precision mode,<br>Clock divider to 1 |
| 0x53    | 0x0004 | Sets the LVDS output in dual 8 bit mode                 |

#### Serial Interface

The HMCAD1520 configuration registers can be accessed through a serial interface formed by the pins SDATA (serial interface data), SCLK (serial interface clock) and CSN (chip select, active low). The following occurs when CSN is set low:

- · Serial data are shifted into the chip
- · At every rising edge of SCLK, the value present at SDATA is latched
- · SDATA is loaded into the register every 24th rising edge of SCLK

Multiples of 24-bit words data can be loaded within a single active CSN pulse. If more than 24 bits are loaded into SDATA during one active CSN pulse, only the first 24 bits are kept. The excess bits are ignored. Every 24-bit word is divided into two parts:

- The first eight bits form the register address
- · The remaining 16 bits form the register data

Acceptable SCLK frequencies are from 20MHz down to a few hertz. Duty-cycle does not have to be tightly controlled.

#### **Timing Diagram**

Figure 2 shows the timing of the serial port interface. Table 4 explains the timing variables used in figure 2.

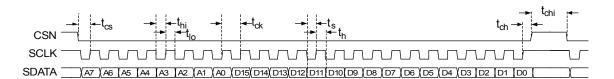



Figure 2: Serial Port Interface timing

Table 4: Serial Port Interface Timing Definitions

| Parameter       | Description                     | Minimum value | Unit |
|-----------------|---------------------------------|---------------|------|
| t <sub>cs</sub> | Setup time between CSN and SCLK | 8             | ns   |
| t <sub>ch</sub> | Hold time between CSN and SCLK  | 8             | ns   |
| t <sub>hi</sub> | SCLK high time                  | 20            | ns   |
| t <sub>lo</sub> | SCLK low time                   | 20            | ns   |
| t <sub>ck</sub> | SCLK period                     | 50            | ns   |
| t <sub>s</sub>  | Data setup time                 | 5             | ns   |
| t <sub>h</sub>  | Data hold time                  | 5             | ns   |





# HIGH SPEED MULTI-MODE 8/12/14-BIT 1000/640/105 MSPS A/D CONVERTER

### **Timing Diagrams**

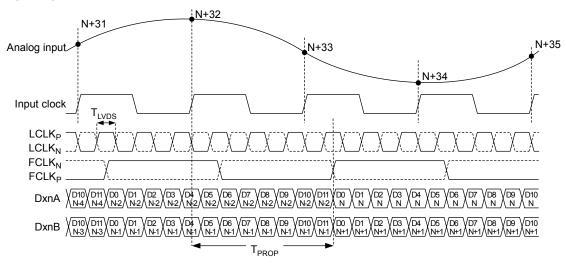



Figure 3: Quad channel - LVDS timing 12-bit output

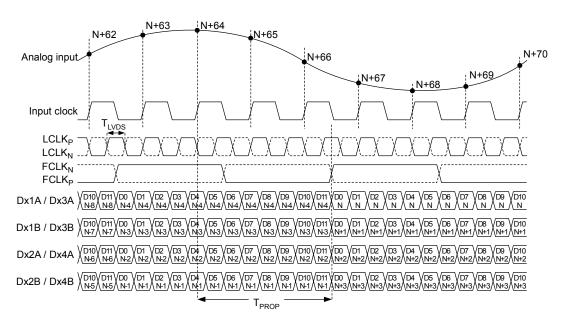



Figure 4: Dual channel - LVDS timing 12-bit output

0 - 12



v04.1015



# HIGH SPEED MULTI-MODE 8/12/14-BIT 1000/640/105 MSPS A/D CONVERTER

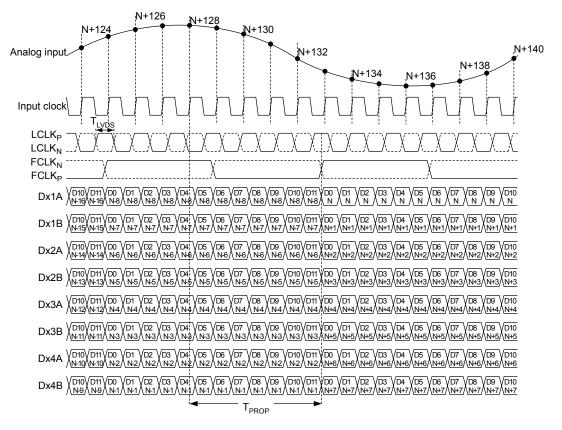



Figure 5: Single channel - LVDS timing 12-bit output

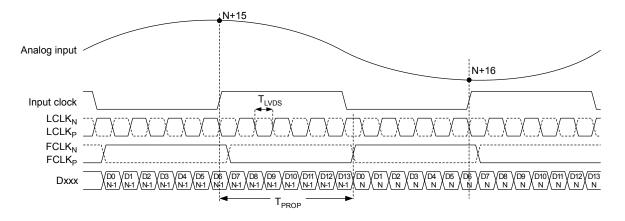



Figure 6: Precision - LVDS timing 14-bit output





# HIGH SPEED MULTI-MODE 8/12/14-BIT 1000/640/105 MSPS A/D CONVERTER

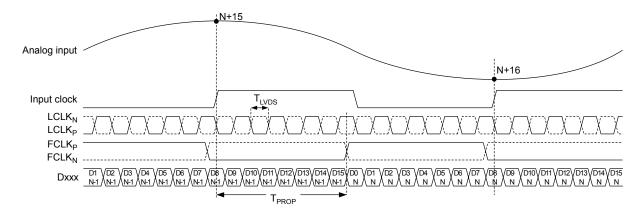



Figure 7: Precision - LVDS timing 16-bit output

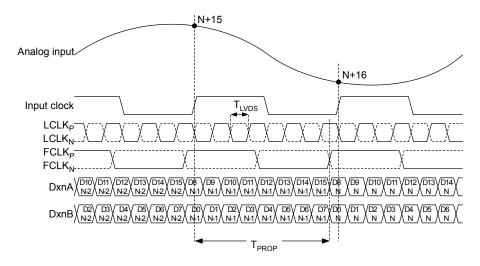



Figure 8: Precision - LVDS timing Dual 8-bit output

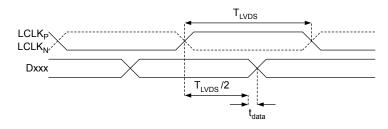



Figure 9: LVDS data timing





# HIGH SPEED MULTI-MODE 8/12/14-BIT 1000/640/105 MSPS A/D CONVERTER

### Table 5: Register Map

| Name                   | Description                                                                                           | Default                                     | D15 | D14 | D13 | D12 | D11 | D10 | D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | Hex<br>Address |
|------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------|-----|-----|-----|-----|-----|-----|----|----|----|----|----|----|----|----|----|----|----------------|
| rst *                  | Self-clearing software reset.                                                                         | Inactive                                    |     |     |     |     |     |     |    |    |    |    |    |    |    |    |    | х  | 0x00           |
| sleep4_ch<br><4:1>     | Channel-specific sleep<br>mode for a Quad<br>Channel setup.                                           | Inactive                                    |     |     |     |     |     |     |    |    |    |    |    |    | х  | х  | х  | х  |                |
| sleep2_ch<br><2:1>     | Channel-specific<br>sleep mode for a Dual<br>Channel setup.                                           | Inactive                                    |     |     |     |     |     |     |    |    |    |    | х  | х  |    |    |    |    |                |
| sleep1_ch1             | Channel-specific sleep<br>mode for a Single<br>Channel setup.                                         | Inactive                                    |     |     |     |     |     |     |    |    |    | х  |    |    |    |    |    |    | 0x0F           |
| sleep                  | Go to sleep-mode.                                                                                     | Inactive                                    |     |     |     |     |     |     |    | Х  |    |    |    |    |    |    |    |    |                |
| pd                     | Go to power-down.                                                                                     | Inactive                                    |     |     |     |     |     |     | Х  |    |    |    |    |    |    |    |    |    |                |
| pd_pin_cfg<br><1:0>    | Configures the PD pin function.                                                                       | PD pin configured<br>for power-down<br>mode |     |     |     |     | х   | х   |    |    |    |    |    |    |    |    |    |    |                |
| ilvds_lclk<br><2:0>    | LVDS current drive programmability for LCLKP and LCLKN pins.                                          | 3.5 mA drive                                |     |     |     |     |     |     |    |    |    |    |    |    |    | х  | х  | х  |                |
| ilvds_frame<br><2:0>   | LVDS current drive programmability for FCLKP and FCLKN pins.                                          | 3.5 mA drive                                |     |     |     |     |     |     |    |    |    | х  | х  | х  |    |    |    |    | 0x11           |
| ilvds_dat<br><2:0>     | LVDS current drive<br>programmability for<br>output data pins.                                        | 3.5 mA drive                                |     |     |     |     |     | х   | х  | х  |    |    |    |    |    |    |    |    |                |
| en_lvds_<br>term       | Enables internal termination for LVDS buffers.                                                        | Termination<br>disabled                     |     | х   |     |     |     |     |    |    |    |    |    |    |    |    |    |    |                |
| term_lclk<br><2:0>     | Programmable termination for LCLKN and LCLKP buffers.                                                 | Termination<br>disabled                     |     | 1   |     |     |     |     |    |    |    |    |    |    |    | х  | х  | х  | 0x12           |
| term_frame<br><2:0>    | Programmable termination for FCLKN and FCLKP buffers.                                                 | Termination<br>disabled                     |     | 1   |     |     |     |     |    |    |    | х  | х  | х  |    |    |    |    | UXIZ           |
| term_dat<br><2:0>      | Programmable termination for output data buffers.                                                     | Termination<br>disabled                     |     | 1   |     |     |     | х   | х  | х  |    |    |    |    |    |    |    |    |                |
| invert4_ch<br><4:1>    | Channel specific<br>swapping of the analog<br>input signal for a Quad<br>Channel setup.               | IPx is positive input                       |     |     |     |     |     |     |    |    |    |    |    |    | х  | x  | x  | х  |                |
| invert2_ch<br><2:1>    | Channel specific<br>swapping of the analog<br>input signal for a Dual<br>Channel setup.               | IPx is positive input                       |     |     |     |     |     |     |    |    |    |    | х  | х  |    |    |    |    | 0x24           |
| invert1_ch1            | Channel specific<br>swapping of the analog<br>input signal for a Single<br>Channel setup.             | IPx is positive input                       |     |     |     |     |     |     |    |    |    | x  |    |    |    |    |    |    |                |
| en_ramp                | Enables a repeating full-scale ramp pattern on the outputs.                                           | Inactive                                    |     |     |     |     |     |     |    |    |    | х  | 0  | 0  |    |    |    |    |                |
| dual_<br>custom_pat    | Enable the mode<br>wherein the output<br>toggles between two<br>defined codes.                        | Inactive                                    |     |     |     |     |     |     |    |    |    | 0  | х  | 0  |    |    |    |    | 0x25           |
| single_<br>custom_pat  | Enables the mode wherein the output is a constant specified code.                                     | Inactive                                    |     |     |     |     |     |     |    |    |    | 0  | 0  | х  |    |    |    |    |                |
| bits_custom1<br><15:0> | Bits for the single custom pattern and for the first code of the dual custom pattern. <0> is the LSB. | 0x0000                                      | x   | х   | x   | x   | x   | ×   | х  | x  | x  | x  | х  | ×  | x  | x  | x  | ×  | 0x26           |



### **HIGH SPEED MULTI-MODE 8/12/14-BIT** 1000/640/105 MSPS A/D CONVERTER

#### Table 5: Register Map

| Name                           | Description                                                       | Default                           | D15 | D14 | D13 | D12 | D11 | D10 | D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | Hex<br>Address |
|--------------------------------|-------------------------------------------------------------------|-----------------------------------|-----|-----|-----|-----|-----|-----|----|----|----|----|----|----|----|----|----|----|----------------|
| bits_custom2<br><15:0>         | Bits for the second code of the dual custom pattern.              | 0x0000                            | х   | х   | х   | х   | х   | х   | х  | х  | х  | х  | х  | х  | х  | х  | х  | х  | 0x27           |
| cgain4_ch1<br><3:0>            | Programmable coarse gain channel 1 in a Quad Channel setup.       | 1x gain                           |     |     |     |     |     |     |    |    |    |    |    |    | х  | х  | х  | х  |                |
| cgain4_ch2<br><3:0>            | Programmable coarse<br>gain channel 2 in a<br>Quad Channel setup. | 1x gain                           |     |     |     |     |     |     |    |    | х  | х  | х  | х  |    |    |    |    |                |
| cgain4_ch3<br><3:0>            | Programmable coarse<br>gain channel 3 in a<br>Quad Channel setup. | 1x gain                           |     |     |     |     | х   | х   | х  | х  |    |    |    |    |    |    |    |    | 0x2A           |
| cgain4_ch4<br><3:0>            | Programmable coarse<br>gain channel 4 in a<br>Quad Channel setup. | 1x gain                           | х   | х   | х   | х   |     |     |    |    |    |    |    |    |    |    |    |    |                |
| cgain2_ch1<br><3:0>            | Programmable coarse gain channel 1 in a Dual Channel setup.       | 1x gain                           |     |     |     |     |     |     |    |    |    |    |    |    | х  | х  | х  | х  |                |
| cgain2_ch2<br><3:0>            | Programmable coarse gain channel 2 in a Dual Channel setup.       | 1x gain                           |     |     |     |     |     |     |    |    | х  | х  | х  | х  |    |    |    |    | 0x2B           |
| cgain1_ch1<br><3:0>            | Programmable coarse gain channel 1 in a Single Channel setup.     | 1x gain                           |     |     |     |     | х   | х   | х  | х  |    |    |    |    |    |    |    |    |                |
| jitter_ctrl<br><7:0>           | Clock jitter adjustment.                                          | 160 fsrms                         |     |     |     |     |     |     |    |    | х  | х  | х  | х  | х  | х  | х  | х  | 0x30           |
| precision_<br>mode *           | Enable Quad Channel<br>14 bits precision mode.                    | Inactive                          |     |     |     |     |     |     |    |    |    |    |    |    | х  |    |    |    |                |
| high_speed_<br>mode *<br><2:0> | Enable high speed<br>mode, Single, Dual or<br>Quad channel.       | High speed mode –<br>Quad Channel |     |     |     |     |     |     |    |    |    |    |    |    |    | х  | х  | х  | 0x31           |
| clk_divide<br><1:0> *          | Define clock divider factor: 1, 2, 4 or 8                         | Divide by 1                       |     |     |     |     |     |     | х  | Х  |    |    |    |    |    |    |    |    |                |
| coarse_<br>gain_cfg            | Configures the coarse gain setting                                | x-gain enabled                    |     |     |     |     |     |     |    |    |    |    |    |    |    |    |    | х  | 0x33           |
| fine_gain_en                   | Enable use of fine gain.                                          | Disabled                          |     |     |     |     |     |     |    |    |    |    |    |    |    |    | х  |    | UNOU           |
| fgain_<br>branch1<br><6:0>     | Programmable fine gain for branch1.                               | 1x / 0dB gain                     |     |     |     |     |     |     |    |    |    | х  | х  | х  | х  | х  | х  | х  | 0,04           |
| fgain_<br>branch2<br><6:0>     | Programmable fine gain for branch 2.                              | 1x / 0dB gain                     |     | х   | х   | х   | х   | х   | х  | х  |    |    |    |    |    |    |    |    | 0x34           |
| fgain_<br>branch3<br><6:0>     | Programmable fine gain for branch 3.                              | 1x / 0dB gain                     |     |     |     |     |     |     |    |    |    | х  | х  | х  | х  | х  | х  | х  | 0x35           |
| fgain_<br>branch4<br><6:0>     | Programmable fine gain for branch 4.                              | 1x / 0dB gain                     |     | Х   | х   | х   | х   | х   | х  | х  |    |    |    |    |    |    |    |    | 0.000          |
| fgain_<br>branch5<br><6:0>     | Programmable fine gain for branch 5.                              | 1x / 0dB gain                     |     |     |     |     |     |     |    |    |    | х  | х  | х  | х  | х  | х  | х  | 000            |
| fgain_<br>branch6<br><6:0>     | Programmable fine gain for branch 6.                              | 1x / 0dB gain                     |     | х   | х   | х   | х   | х   | х  | х  |    |    |    |    |    |    |    |    | 0x36           |
| fgain_<br>branch7<br><6:0>     | Programmable fine gain for branch 7.                              | 1x / 0dB gain                     |     |     |     |     |     |     |    |    |    | х  | х  | х  | х  | х  | х  | х  | 0.07           |
| fgain_<br>branch8<br><6:0>     | Programmable fine gain for branch 8.                              | 1x / 0dB gain                     |     | х   | х   | х   | х   | х   | х  | х  |    |    |    |    |    |    |    |    | 0x37           |
| inp_sel_adc1<br><4:0>          | Input select for adc 1.                                           | Signal input: IP1/<br>IN1         |     |     |     |     |     |     |    |    |    |    |    | х  | х  | х  | х  | Х  | 0x3A           |
| inp_sel_adc2<br><4:0>          | Input select for adc 2.                                           | Signal input: IP2/<br>IN2         |     |     |     | Х   | х   | х   | х  | х  |    |    |    |    |    |    |    |    | 0,00           |

0 - 16



v04.1015



# HIGH SPEED MULTI-MODE 8/12/14-BIT 1000/640/105 MSPS A/D CONVERTER

#### Table 5: Register Map

| Name                            | Description                                                   | Default                   | D15 | D14 | D13 | D12 | D11 | D10 | D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | Hex<br>Address |
|---------------------------------|---------------------------------------------------------------|---------------------------|-----|-----|-----|-----|-----|-----|----|----|----|----|----|----|----|----|----|----|----------------|
| inp_sel_adc3<br><4:0>           | Input select for adc 3.                                       | Signal input: IP3/<br>IN3 |     |     |     |     |     |     |    |    |    |    |    | Х  | х  | х  | Х  | Х  | 0x3B           |
| inp_sel_adc4<br><4:0>           | Input select for adc 4.                                       | Signal input: IP4/<br>IN4 |     |     |     | Х   | х   | х   | Х  | х  |    |    |    |    |    |    |    |    | UXSB           |
| phase_ddr<br><1:0>              | Controls the phase of the LCLK output relative to data.       | 90 degrees                |     |     |     |     |     |     |    |    |    | Х  | Х  |    |    |    |    |    | 0x42           |
| pat_deskew                      | Enable deskew pattern mode.                                   | Inactive                  |     |     |     |     |     |     |    |    |    |    |    |    |    |    | 0  | Х  | 0x45           |
| pat_sync                        | Enable sync pattern mode.                                     | Inactive                  |     |     |     |     |     |     |    |    |    |    |    |    |    |    | х  | 0  | UX45           |
| btc_mode                        | Binary two's complement format for ADC output data.           | Straight offset binary    |     |     |     |     |     |     |    |    |    |    |    |    |    | х  |    |    | 0x46           |
| msb_first                       | Serialized ADC output data comes out with MSB first.          | LSB first                 |     |     |     |     |     |     |    |    |    |    |    |    | х  |    |    |    | UX46           |
| adc_curr<br><2:0>               | ADC current scaling.                                          | Nominal                   |     |     |     |     |     |     |    |    |    |    |    |    |    | х  | Х  | Х  | 0x50           |
| ext_vcm_bc<br><1:0>             | VCM buffer driving strength control.                          | Nominal                   |     |     |     |     |     |     |    |    |    |    | Х  | Х  |    |    |    |    | 0.30           |
| lvds_pd_<br>mode                | Controls LVDS power down mode                                 | High z-mode               |     |     |     |     |     |     |    |    |    |    |    |    |    |    |    | Х  | 0x52           |
| lvds_output_<br>mode<br><2:0> * | Sets the number of LVDS output bits.                          | 12 bit                    |     |     |     |     |     |     |    |    |    |    |    |    |    | х  | х  | х  |                |
| low_clk_<br>freq *              | Low clock frequency used.                                     | Inactive                  |     |     |     |     |     |     |    |    |    |    |    |    | х  |    |    |    |                |
| lvds_<br>advance                | Advance LVDS data bits and frame clock by one clock cycle     | Inactive                  |     |     |     |     |     |     |    |    |    |    | 0  | х  |    |    |    |    | 0x53           |
| lvds_delay                      | Delay LVDS data bits<br>and frame clock by one<br>clock cycle | Inactive                  |     |     |     |     |     |     |    |    |    |    | х  | 0  |    |    |    |    |                |
| fs_cntrl<br><5:0>               | Fine adjust ADC full scale range                              | 0% change                 |     |     |     |     |     |     |    |    |    |    | Х  | Х  | х  | х  | Х  | Х  | 0x55           |
| startup_ctrl<br><2:0> *         | Controls start-up time.                                       | '000'                     |     |     |     |     |     |     |    |    |    |    |    |    |    | х  | Х  | Х  | 0x56           |

Undefined register addresses must not be written to; incorrect behavior may be the result.

Unused register bits (blank table cells) must be set to '0' when programming the registers.

All registers can be written to while the chip is in power down.

\* These registers requires a power down cycle when written to (See Start up Initialization).





## HIGH SPEED MULTI-MODE 8/12/14-BIT 1000/640/105 MSPS A/D CONVERTER

#### **Register Description**

#### Software Reset

| Name | Description                   | Default  | D15 | D14 | D13 | D12 | D11 | D10 | D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | Hex<br>Address |
|------|-------------------------------|----------|-----|-----|-----|-----|-----|-----|----|----|----|----|----|----|----|----|----|----|----------------|
| rst  | Self-clearing software reset. | Inactive |     |     |     |     |     |     |    |    |    |    |    |    |    |    |    | Х  | 0x00           |

Setting the rst register bit to '1', restores the default value of all the internal registers including the rst register bit itself.

### Modes of Operation

| Name                      | Description                                                 | Default                              | D15 | D14 | D13 | D12 | D11 | D10 | D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | Hex<br>Address |
|---------------------------|-------------------------------------------------------------|--------------------------------------|-----|-----|-----|-----|-----|-----|----|----|----|----|----|----|----|----|----|----|----------------|
| precision_mode            | Enable Quad Channel 14 bits precision mode.                 | Inactive                             |     |     |     |     |     |     |    |    |    |    |    |    | Х  |    |    |    |                |
| high_speed_<br>mode <2:0> | Enable high speed<br>mode, Single, Dual or<br>Quad channel. | High speed<br>mode – Quad<br>Channel |     |     |     |     |     |     |    |    |    |    |    |    |    | х  | х  | х  | 0x31           |
| clk_divide<1:0>           | Define clock divider factor: 1, 2, 4 or 8                   | Divide by 1                          |     |     |     |     |     |     | х  | х  |    |    |    |    |    |    |    |    |                |

The HMCAD1520 has four main operating modes controlled by the register bits precision\_mode and high\_speed\_mode as defined in table 6. Power down mode, as described in section 'Startup Initialization', must be activated after or during a change of operating mode to ensure correct operation. The high speed modes all utilize interleaving to achieve high sampling speed. Quad channel mode interleaves 2 ADC branches, dual channel mode interleaves 4 ADC branches, while single channel mode interleave all 8 ADC branches. In precision mode interleaving is not required and each ADC channel uses one ADC branch only.

**Table 6: Modes of Operation** 

| precision_<br>mode | hi | gh_speed_mo<br><2:0> | de | Mode of operation                      | Description                                                                                                 |
|--------------------|----|----------------------|----|----------------------------------------|-------------------------------------------------------------------------------------------------------------|
| 0                  | 0  | 0                    | 1  | Single channel 12-bit high speed mode  | Single channel by interleaving ADC1to ADC4                                                                  |
| 0                  | 0  | 1                    | 0  | Dual channel 12-bit<br>high speed mode | Dual channel where channel 1 is made by interleaving ADC1 and ADC2, channel 2 by interleaving ADC3 and ADC4 |
| 0                  | 1  | 0                    | 0  | Quad channel 12-bit<br>high speed mode | Quad channel where channel 1 corresponds to ADC1, channel2 to ADC2, channel3 to ADC3 and channel 4 to ADC4  |
| 1                  | 0  | 0                    | 0  | Quad channel 14-bit precision mode     | Quad channel where channel 1 corresponds to ADC1, channel2 to ADC2, channel3 to ADC3 and channel 4 to ADC4  |

Only one of the 4 bits should be activated at the same time.

clk\_divide<1:0> allows the user to apply an input clock frequency higher than the sampling rate. The clock divider will divide the input clock frequency by a factor of 1, 2, 4, or 8, defined by the clk\_divide<1:0> register. By setting the clk\_divide<1:0> value relative to the channel\_num<2:0> value, the same input clock frequency can be used for all settings on number of channels. e.g. When increasing the number of channels from 1 to 4, the maximum sampling rate is reduced by a factor of 4. By letting clk\_divide<1:0> follow the channel\_num<2:0> value, and change it from 1 to 4, the internal clock divider will provide the reduction of the sampling rate without changing the input clock frequency.





# HIGH SPEED MULTI-MODE 8/12/14-BIT 1000/640/105 MSPS A/D CONVERTER

**Table 7: Clock Divider Factor** 

| clk_divide<1:0> | Clock Divider Factor | Sampling rate (FS)        |
|-----------------|----------------------|---------------------------|
| 00 (default)    | 1                    | Input clock frequency / 1 |
| 01              | 2                    | Input clock frequency / 2 |
| 10              | 4                    | Input clock frequency / 4 |
| 11              | 8                    | Input clock frequency / 8 |

#### **Input Select**

| Name                  | Description             | Default                  | D15 | D14 | D13 | D12 | D11 | D10 | D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | Hex<br>Address |
|-----------------------|-------------------------|--------------------------|-----|-----|-----|-----|-----|-----|----|----|----|----|----|----|----|----|----|----|----------------|
| inp_sel_adc1<br><4:0> | Input select for adc 1. | Signal input:<br>IP1/IN1 |     |     |     |     |     |     |    |    |    |    |    | Х  | Х  | х  | X  | 0  | 0x3A           |
| inp_sel_adc2<br><4:0> | Input select for adc 2. | Signal input:<br>IP2/IN2 |     |     |     | х   | х   | х   | х  | 0  |    |    |    |    |    |    |    |    | UX3A           |
| inp_sel_adc3<br><4:0> | Input select for adc 3. | Signal input:<br>IP3/IN3 |     |     |     |     |     |     |    |    |    |    |    | х  | х  | х  | х  | 0  | Ov2D           |
| inp_sel_adc4<br><4:0> | Input select for adc 4. | Signal input:<br>IP4/IN4 |     |     |     | х   | х   | х   | х  | 0  |    |    |    |    |    |    |    |    | 0x3B           |

Each ADC is connected to the four input signals via a full flexible cross point switch, set up by inp\_sel\_adcx. In single channel mode, any one of the four inputs can be selected as valid input to the single ADC channel. In dual channel mode, any two of the four inputs can be selected to each ADC channel. In quad channel mode and precision mode, any input can be assigned to any ADC channel. The switching of inputs can be done during normal operation, and no additional actions are needed. The switching will occur instantaneously at the end of each SPI command.

**Table 8: ADC Input Select** 

| inp_sel_adcx<4:0> | Selected input |
|-------------------|----------------|
| 0001 0            | IP1/IN1        |
| 0010 0            | IP2/IN2        |
| 0100 0            | IP3/IN3        |
| 1000 0            | IP4/IN4        |
| other             | Do not use     |

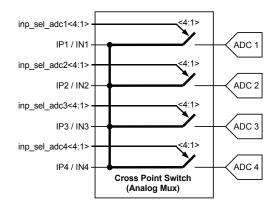



Figure 10: ADC input signals through Cross Point Switch





## HIGH SPEED MULTI-MODE 8/12/14-BIT 1000/640/105 MSPS A/D CONVERTER

#### **Full-Scale Control**

| Name              | Description                      | Default      | D15 | D14 | D13 | D12 | D11 | D10 | D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | Hex<br>Address |
|-------------------|----------------------------------|--------------|-----|-----|-----|-----|-----|-----|----|----|----|----|----|----|----|----|----|----|----------------|
| fs_cntrl<br><5:0> | Fine adjust ADC full scale range | 0%<br>change |     |     |     |     |     |     |    |    |    |    | Х  | х  | х  | х  | х  | х  | 0x55           |

The full-scale voltage range of HMCAD1520 can be adjusted using an internal 6-bit DAC controlled by the fs\_cntrl register. Changing the value in the register by one step, adjusts the full-scale range by approximately 0.3%. This leads to a maximum range of  $\pm 10\%$  adjustment. Table 9 shows how the register settings correspond to the full-scale range. Note that the values for full-scale range adjustment are approximate. The DAC is, however, guaranteed to be monotonous.

The full-scale control and the programmable gain features differ in two major ways:

- 1. The full-scale control function is an analog, whereas the programmable gain is a digital function.
- The programmable gain function has much coarser gain steps and larger range compared to the full-scale control function.

Table 9: Register Values with Corresponding Change in Full-Scale Range

| Full-scale range adjustment |
|-----------------------------|
| 9.7 %                       |
| 9.4 %                       |
|                             |
| 0.3 %                       |
| 0%                          |
| -0.3 %                      |
|                             |
| -9,7%                       |
| -10,0%                      |
|                             |

#### **Current Control**

| Name                | Description                         | Default | D15 | D14 | D13 | D12 | D11 | D10 | D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | Hex<br>Address |
|---------------------|-------------------------------------|---------|-----|-----|-----|-----|-----|-----|----|----|----|----|----|----|----|----|----|----|----------------|
| adc_curr<br><2:0>   | ADC current scaling.                | Nominal |     |     |     |     |     |     |    |    |    |    |    |    |    | Х  | х  | Х  |                |
| ext_vcm_bc<br><1:0> | VCM buffer driving strength control | Nominal |     |     |     |     |     |     |    |    |    |    | х  | х  |    |    |    |    | 0x50           |

There are two registers that impact performance and power dissipation.

The *adc\_curr* register scales the current consumption in the ADC core. The performance is guaranteed at the nominal setting. Lower power consumption can be achieved by reducing the adc\_curr value, see table 10. The impact on performance will depend on the ADC sampling rate.





## HIGH SPEED MULTI-MODE 8/12/14-BIT 1000/640/105 MSPS A/D CONVERTER

**Table 10: ADC Current Control Settings** 

| adc_curr<2:0> | ADC core current |
|---------------|------------------|
| 100           | -40%             |
| 101           | -30%             |
| 110           | -20%             |
| 111           | -10%             |
| 000 (default) | Nominal          |
| 001           | Do not use       |
| 010           | Do not use       |
| 011           | Do not use       |

The ext\_vcm\_bc register controls the driving strength in the buffer supplying the voltage on the VCM pin. If this pin is not in use, the buffer can be switched off. If current is drawn from the VCM pin, the driving strength can be increased to keep the voltage on this pin at the correct level.

Table 11: External Common

Mode Voltage Buffer Driving Strength

| ext_vcm_bc<1:0> | VCM buffer driving strength [μA] Max<br>current sinked/sourced from VCM pin with<br>< 20 mV voltage change. |
|-----------------|-------------------------------------------------------------------------------------------------------------|
| 00              | Off (VCM floating)                                                                                          |
| 01 (default)    | ±20                                                                                                         |
| 10              | ±400                                                                                                        |
| 11              | ±700                                                                                                        |

#### Start-up and Clock Jitter Control

| Name                  | Description                | Default      | D15 | D14 | D13 | D12 | D11 | D10 | D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | Hex<br>Address |
|-----------------------|----------------------------|--------------|-----|-----|-----|-----|-----|-----|----|----|----|----|----|----|----|----|----|----|----------------|
| startup_ctrl<br><2:0> | Controls start-up time     | '000'        |     |     |     |     |     |     |    |    |    |    |    |    |    | х  | х  | х  | 0x56           |
| jitter_ctrl<br><7:0>  | Clock jitter<br>adjustment | 160<br>fsrms |     |     |     |     |     |     |    |    | х  | х  | х  | Х  | х  | Х  | х  | х  | 0x30           |

To optimize start up time, a register is provided where the start-up time in clock cycles can be set. Some internal circuitry have start up times that are clock frequency independent. Default counter values are set to accommodate these start up times at the maximum clock frequency (sampling rate). This will lead to increased start up times at low clock frequencies. Setting the value of this register to the nearest higher clock frequency will reduce the count values of the internal counters, to better fit the actual start up time, such that the start up time will be reduced. The start up times from power down and sleep modes are changed by this register setting. If the clock divider is used (set to other than 1), the input clock frequency must be divided by the divider factor to find the correct clock frequency range (see table 7).



# HIGH SPEED MULTI-MODE 8/12/14-BIT 1000/640/105 MSPS A/D CONVERTER

#### Table 12: Start-Up Time Control Settings

|                       | Precisio                             | n mode                          |                       |
|-----------------------|--------------------------------------|---------------------------------|-----------------------|
| startup_<br>ctrl<2:0> | Clock fre-<br>quency range<br>[MSPS] | Startup delay<br>[clock cycles] | Startup delay<br>[µs] |
| 100                   | 80 - 125                             | 1536                            | 12.3 - 19.2           |
| 000                   | 50 - 80                              | 992                             | 12.4 - 19.8           |
| 001                   | 32,5 - 50                            | 640                             | 12.8 - 19.7           |
| 010                   | 20 - 32,5                            | 420                             | 12.9 - 21             |
| 011                   | 15 - 20                              | 260                             | 13 - 17.3             |
| other                 | Do not use                           | -                               | -                     |

|                       | Quad channel                         | - High speed                    |                       |
|-----------------------|--------------------------------------|---------------------------------|-----------------------|
| startup_<br>ctrl<2:0> | Clock fre-<br>quency range<br>[MSPS] | Startup delay<br>[clock cycles] | Startup delay<br>[µs] |
| 100                   | 160 - 250                            | 3072                            | 12.3 – 19.2           |
| 000                   | 100 - 160                            | 1984                            | 12.4 - 19.8           |
| 001                   | 65 - 100                             | 1280                            | 12.8 - 19.7           |
| 010                   | 40 - 65                              | 840                             | 12.9 - 21             |
| 011                   | 30 - 40                              | 520                             | 13 - 17.3             |
| other                 | Do not use                           | -                               | -                     |

|                       | Dual channel – High speed            |                                 |                       |  |  |  |  |  |  |  |
|-----------------------|--------------------------------------|---------------------------------|-----------------------|--|--|--|--|--|--|--|
| startup_<br>ctrl<2:0> | Clock fre-<br>quency range<br>[MSPS] | Startup delay<br>[clock cycles] | Startup delay<br>[µs] |  |  |  |  |  |  |  |
| 100                   | 320 - 500                            | 6144                            | 12.3 – 19.2           |  |  |  |  |  |  |  |
| 000                   | 200 - 320                            | 3968                            | 12.4 - 19.8           |  |  |  |  |  |  |  |
| 001                   | 130 – 200                            | 2560                            | 12.8 - 19.7           |  |  |  |  |  |  |  |
| 010                   | 80 - 130                             | 1680                            | 12.9 - 21             |  |  |  |  |  |  |  |
| 011                   | 60 – 80                              | 1040                            | 13 - 17.3             |  |  |  |  |  |  |  |
| other                 | Do not use                           | -                               | -                     |  |  |  |  |  |  |  |

|                       | Single channe                        | l – High speed                  |                       |
|-----------------------|--------------------------------------|---------------------------------|-----------------------|
| startup_<br>ctrl<2:0> | Clock fre-<br>quency range<br>[MSPS] | Startup delay<br>[clock cycles] | Startup delay<br>[µs] |
| 100                   | 640 - 1000                           | 12288                           | 12.3 – 19.2           |
| 000                   | 400 - 640                            | 7936                            | 12.4 - 19.8           |
| 001                   | 260 - 400                            | 5120                            | 12.8 - 19.7           |
| 010                   | 160 - 260                            | 3360                            | 12.9 - 21             |
| 011                   | 120 - 160                            | 2080                            | 13 - 17.3             |
| other                 | Do not use                           | -                               | -                     |

jitter\_ctrl<7:0> allows the user to set a trade-off between power consumption and clock jitter. If all bits in the register is set low, the clock signal is stopped. The clock jitter depends on the number of bits set to '1' in the jitter\_ctrl<7:0> register. which bits are set high does not affect the result.

**Table 13: Clock Jitter Performance** 

| Number of bits to '1' in jitter_ctrl<7:0> | Clock jitter performance<br>Precision mode<br>[fsrms] | Clock jitter performance<br>High speed modes<br>[fsrms] | Module current consumption [mA] |
|-------------------------------------------|-------------------------------------------------------|---------------------------------------------------------|---------------------------------|
| 1                                         | 130                                                   | 160                                                     | 1                               |
| 2                                         | 100                                                   | 150                                                     | 2                               |
| 3                                         | 92                                                    | 136                                                     | 3                               |
| 4                                         | 85                                                    | 130                                                     | 4                               |
| 5                                         | 82                                                    | 126                                                     | 5                               |
| 6                                         | 80                                                    | 124                                                     | 6                               |
| 7                                         | 77                                                    | 122                                                     | 7                               |
| 8                                         | 75                                                    | 120                                                     | 8                               |
| 0                                         | Clock stopped                                         | Clock stopped                                           |                                 |





# HIGH SPEED MULTI-MODE 8/12/14-BIT 1000/640/105 MSPS A/D CONVERTER

#### LVDS Output Configuration and Control

| Name                       | Description                                                   | Default                      | D15 | D14 | D13 | D12 | D11 | D10 | D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | Hex<br>Address |
|----------------------------|---------------------------------------------------------------|------------------------------|-----|-----|-----|-----|-----|-----|----|----|----|----|----|----|----|----|----|----|----------------|
| lvds_output_<br>mode <2:0> | Sets the number of LVDS output bits.                          | 12 bit                       |     |     |     |     |     |     |    |    |    |    |    |    |    | х  | х  | х  |                |
| low_clk_freq               | Low clock frequency used.                                     | Inactive                     |     |     |     |     |     |     |    |    |    |    |    |    | х  |    |    |    |                |
| lvds_<br>advance           | Advance LVDS data bits and frame clock by one clock cycle     | Inactive                     |     |     |     |     |     |     |    |    |    |    | 0  | х  |    |    |    |    | 0x53           |
| lvds_delay                 | Delay LVDS data bits<br>and frame clock by<br>one clock cycle | Inactive                     |     |     |     |     |     |     |    |    |    |    | х  | 0  |    |    |    |    |                |
| phase_<br>ddr<1:0>         | Controls the phase of the LCLK output relative to data.       | 90<br>degrees                |     |     |     |     |     |     |    |    |    | х  | х  |    |    |    |    |    | 0x42           |
| btc_mode                   | Binary two's complement format for ADC output data.           | Straight<br>offset<br>binary |     |     |     |     |     |     |    |    |    |    |    |    |    | х  |    |    | 0x46           |
| msb_first                  | Serialized ADC output data comes out with MSB first.          | LSB first                    |     |     |     |     |     |     |    |    |    |    |    |    | х  |    |    |    | UX40           |

The HMCAD1520 serial LVDS output has four different modes selected by the register lvds\_output\_mode as defined in table 14. Power down mode, as described in section 'Startup Initialization', must be activated after or during a change in the number of output bits to ensure correct behavior.

Table 14: Number of Bits in LVDS Output

| lvds_output_mode <2:0> | Number of Bits | Comment                                            |
|------------------------|----------------|----------------------------------------------------|
| 000                    | 8 bit          | 8 bit mode, up to 1 GSPS (See HMCAD1511 datasheet) |
| 001                    | 12 bit         | Recommended setting for High Speed Modes (Default) |
| 101                    | 14 bit         | Recommended setting up to 70 MSPS (Precision mode) |
| 011                    | 16 bit         |                                                    |
| 100                    | Dual 8 bit     | Recommended setting above 70 MSPS (Precision mode) |
| Other                  | Do not use     |                                                    |

12-bit LVDS mode is default for all operational modes. If another LVDS mode is to be used, the *lvds\_output\_mode* register setting must be changed accordingly.

When 8-bit LVDS mode is used, the LSBs are truncated and the data output will have 8-bit resolution. See HMCAD1511 and HMCAD1510 for detailed description.

When 14 or 16 bit LVDS output mode is selected the output data will be a 13 bit left justified word filled up with '0's on the LSB side. The different high speed modes uses the LVDS outputs as defined by table 15.





# HIGH SPEED MULTI-MODE 8/12/14-BIT 1000/640/105 MSPS A/D CONVERTER

Table 15: High Speed Modes and Use of LVDS Outputs

| High speed modes/ channels | LVDS outputs used                      |
|----------------------------|----------------------------------------|
| Single channel             | D1A, D1B, D2A, D2B, D3A, D3B, D4A, D4B |
| Dual channel, channel 1    | D1A, D1B, D2A, D2B                     |
| Dual channel, channel 2    | D3A, D3B, D4A, D4B                     |
| Quad channel, channel 1    | D1A, D1B                               |
| Quad channel, channel 2    | D2A, D2B                               |
| Quad channel, channel 3    | D3A, D3B                               |
| Quad channel, channel 4    | D4A, D4B                               |

For the 14-bit precision mode 14, 16 or dual 8-bit LVDS mode should be used. If the default 12-bit LVDS mode is used, the data output will be truncated to 12 bit. If the 16-bit LVDS mode is used the data output will be a 14-bit left justified word filled up with '00' on the LSB side. If the dual 8-bit output mode is used the 8 most significant bit of the 14 bit data word will be available on the LVDS 'A' output and the remaining 6 bit will be left justified and filled up with '00' on the LVDS 'B' output, see table 16.

Table 16: Precision Mode and Use of LVDS Outputs

| Precision mode                    | LVDS outputs used                        |
|-----------------------------------|------------------------------------------|
| Channel 1 - 12, 14, 16-bit output | D1A (D1B will be in power down – high Z) |
| Channel 1 - Dual 8-bit output     | D1A, D1B                                 |
| Channel 2 - 12, 14, 16-bit output | D2A (D2B will be in power down – high Z) |
| Channel 2 - Dual 8-bit output     | D2A, D2B                                 |
| Channel 3 - 12, 14, 16-bit output | D3A (D3B will be in power down – high Z) |
| Channel 3 - Dual 8-bit output     | D3A, D3B                                 |
| Channel 4 - 12, 14, 16-bit output | D4A (D4B will be in power down – high Z) |
| Channel 4 - Dual 8-bit output     | D4A, D4B                                 |

Maximum data output bit-rate for the HMCAD1520 is 1 Gb/s. The maximum sampling rate for the different configurations is given by table 17. The sampling rate is set by the frequency of the input clock (FS). The frame-rate, i.e. the frequency of the FCLK signal on the LVDS outputs, depends on the selected mode and the sampling frequency (FS) as defined in table 18.

Table 17: Maximum Sampling Rate vs Number of Output Bits for Different HMCAD1520 Configurations

| Number of bits | Single Channel<br>High Speed<br>[MSPS] | Dual Channel<br>High Speed<br>[MSPS] | Quad Channel<br>High Speed<br>[MSPS] | Quad Channel<br>Precision<br>[MSPS] |
|----------------|----------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------|
| 8              | 1000                                   | 500                                  | 250                                  | -                                   |
| 12             | 660                                    | 330                                  | 165                                  | 82.5                                |
| 14             | 560                                    | 280                                  | 140                                  | 70                                  |
| 16             | 500                                    | 250                                  | 125                                  | 62.5                                |
| Dual 8         | -                                      | -                                    | -                                    | 125                                 |

0 - 24



v04.1015



# HIGH SPEED MULTI-MODE 8/12/14-BIT 1000/640/105 MSPS A/D CONVERTER

**Table 18: Output Data Frame Rate** 

| Mode of operation          | Frame-rate (FCLK frequency) |
|----------------------------|-----------------------------|
| High speed, single channel | F <sub>s</sub> /8           |
| High speed, dual channel   | F <sub>s</sub> / 4          |
| High speed, quad channel   | F <sub>s</sub> /2           |
| Precision mode             | F <sub>s</sub>              |

If the HMCAD1520 device is used at a low sampling rate the register bit low\_clk\_freq has to be set to '1'. See table 19 for when to use this register bit for the different modes of operation.

Table 19: Use of Register Bit low clk freq

| Mode of operation          | Limit when low_clk_freq should be activated |
|----------------------------|---------------------------------------------|
| High speed, single channel | F <sub>s</sub> < 240 MHz                    |
| High speed, dual channel   | F <sub>s</sub> < 120 MHz                    |
| High speed, quad channel   | F <sub>s</sub> < 60 MHz                     |
| Precision mode             | F <sub>s</sub> < 30 MHz                     |

To ease timing in the receiver when using multiple HMCAD1520, the device has the option to adjust the timing of the output data and the frame clock. The propagation delay with respect to the ADC input clock can be moved one LVDS clock cycle forward or backward, by using *lvds\_delay* and *lvds\_advance*, respectively. See figure 11 for details. Note that LCLK is not affected by *lvds\_delay* or *lvds\_advance* settings.

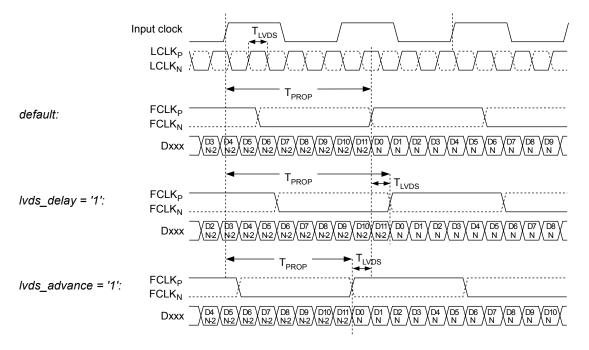



Figure 11: LVDS output timing adjustment