

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Version 2.0, August 2003

Application Note

AN-EVALSF2-ICE2A0565Z-2

CoolSET[™]
10W 5.0V Evaluation Board with ICE2A0565Z

Author: Rainer Kling

Published by Infineon Technologies AG

 $\underline{\text{http://www.infineon.com/CoolSET/}}$

Power Management & Supply

Table of Contents

TABLE OF CONTENTS	1
INTRODUCTION	2
APPLICATION.	2
LIST OF FEATURES	3
POWER SUPPLY SPECIFICATION	3
SCHEMATIC	4
PCB COMPONENT LEGEND	5
TABLE OF CONTENTS. INTRODUCTION APPLICATION. COOLSET™ LIST OF FEATURES POWER SUPPLY SPECIFICATION. SCHEMATIC PCB COMPONENT LEGEND. PCB LAYOUT DESCRIPTION Introduction Line Input. Startup. Operation Mode. Softstart Snubber Network Limitation of primary current. Output Voltage Regulation BILL OF MATERIAL TRANSFORMER CONSTRUCTION DOCUMENTATION PERFORMANCE DATA EFFICIENCY NO-LOAD INPUT POWER (STANDBY). REGULATION AND POWER LIMITING WAVEFORMS AND SCOPE PLOTS Startup Q Low and High AC Line Input Voltage and Nominal Load Drain Source Voltage and Current During Normal Operation Load Transient Response (Loadjump from 10% Load until 100% Load) AC Output Ripple during Nommal Load and Normal Operation Load Transient Response (Loadjump from 10% Load until 100% Load) AC Output Ripple during Nommal Load and Normal Operation Load Transient Response (Loadjump from 10% Load until 100% Load) AC Output Ripple during Nommal Load and Normal Operation Load Transient Response (Loadjump from 10% Load until 100% Load) AC Output Ripple during Nommal Load and Normal Operation Load Transient Response (Loadjump from 10% Load until 100% Load) INPUT CAPACITOR IMPROVEMENT – SLOPE COMPENSATION	5
DESCRIPTION	6
Introduction	6
-	
PERFORMANCE DATA	9
EFFICIENCY	9
WAVEFORMS AND SCOPE PLOTS	12
Drain Source Voltage and Current During Normal Operation	12
Input Capacitor Improvement	
REFERENCES	16

Introduction

Application

This document is an engineering report that describes an universal input power supply designed in a typical off line flyback converter topology that utilizes the ICE2A0565Z CoolSET™. The application operates in discontinuous current mode using the **frequency reduction** during standby condition. The board has one output voltage with secondary regulation.

This board was designed to demonstrate the basic performance, the features and the power capability of the smallest CoolSET™ device ICE2A0565Z of the second generation of CoolSET™ in a DIP7 package with extended creepage distance for higher electrical strength.

CoolSET™

CoolSET™ is a current mode PWM control IC and the power MOSFET CoolMOS™ within one package designed for low cost switch mode power supplies (SMPS). CoolSET™ combines the superior technology of CoolMOS™ and the optimized technology of the control IC with enhanced protection features and improved standby power concept. The integrated propagation delay compensation (patented by Infineon Technologies) prevents a current overshoot, the result is a reduced electrical stress on the MOSFET, the transformer and the output diode. The 650V / 800V high avalanche rugged CoolMOS™ eliminates or reduces the need for a heat sink and permits a SMPS design with a simply RCD snubber and a low cost standard transformer design. The lowest area specific Rdson leads to a high efficiency and an operation at high ambient temperature. CoolSET™ permits always a safety operation during any error cases due to the integrated protection features.

Figure 1- EVALSF2-ICE2A0565Z

This document contains the list of features, the power supply specification, schematic, bill of material and the transformer construction documentation. Typical operating characteristics are presented at the rear of the report and consist of performance curves and scope waveforms.

Note:

Design calculations for the components and the transformer were performed in accordance with the application note "AN–SMPS–ICE2AXXX for OFF – Line Switch Mode Power Supplies" and FlyCal, a EXCEL based design software according to the application note AN-SMPS-ICE2AXXX. The application note and FlyCal are available on the Internet: www.Infineon.com/CoolSET

List of Features

Feature
CoolSET™ Device ICE2A0565Z
External Sense
Adjustable Soft start
Modulated Gate drive
Over Load Protection with auto restart
Over Current Protection with auto restart
Over Temperature Shut Down with auto restart
Open Loop Protection with auto restart
Under Voltage Lock Out with auto restart
Drain Source Voltage 650V ¹
Frequency Reduction
Internal Leading Edge Blanking
100 kHz working frequency
DIP7 Package with extended Creepage Distance
Standby Power according to European Commission

Table 1 - List of Features

Power Supply Specification

Description	Symbol	Min	Тур	Max	Units	
	Input Section					
Input Voltage	V_{ACIN}	85	115/230	270	V_{AC}	
Line Regulation (85270V)			< 1		%	
Input Frequency	f	47	50/60	64	Hz	
No Load Input Power (90V _{AC}) ²			0.18		W	
No Load Input Power (230V _{AC}) ²			0.41		W	
	Output S	ection				
Output Voltage	V_{OUT}	4.90	5.0	5.1	V_{DC}	
AC Output Voltage Ripple	V_{Ripple}		<50		mV_{P-P}	
Output Current	I_{OUT}	1.90	2.0	2.1	A_DC	
Output Power Nominal	P _{OUT}		10		W	
Peak Power	P _{OUTmax}		16		W	
Total Regulation			±2		%	
Efficiency (90V _{AC})	η		78		%	
Efficiency (270V _{AC})	η		79		%	
Environmental						
Conducted EMI					EN55022B	
Ambient Temperature	T_A	0	50	75	°C	
Thermal Consideration						
Transformer			40		°C	
CoolSET			60		°C	
Output Diode			70		°C	
Output Capacitors			20		°C	

Table 2 – Power Supply Specification

¹ V_{DSBR} at Tj = 110°C ² Frequency Reduction Mode (f_{Standby} = 21 kHz) and P_{OUT} = 0W

Schematic

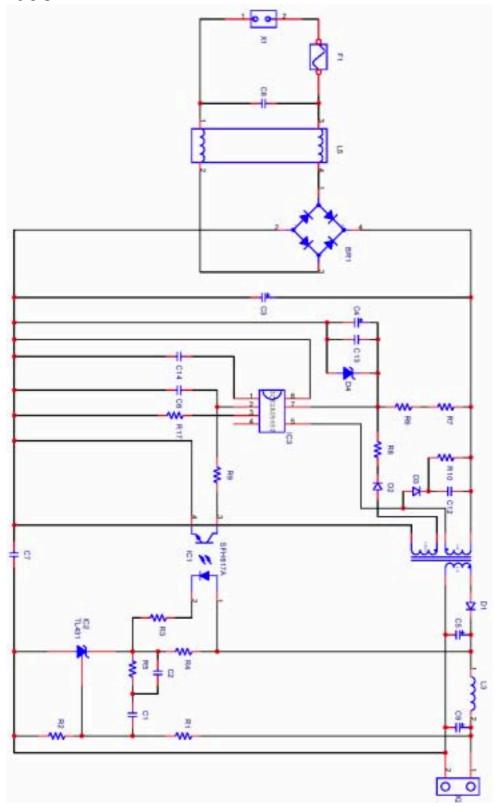


Figure 2 10W 5.0V ICE2A0565Z Power Supply Schematic

PCB Component Legend

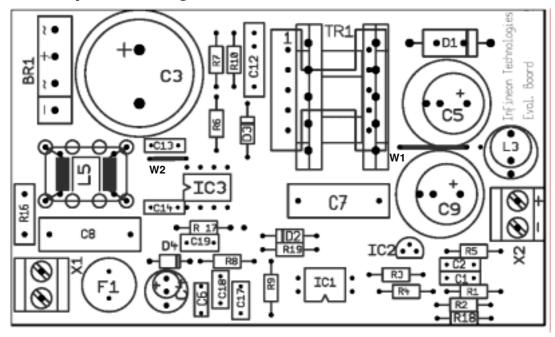


Figure 3 Component Legend

PCB Layout

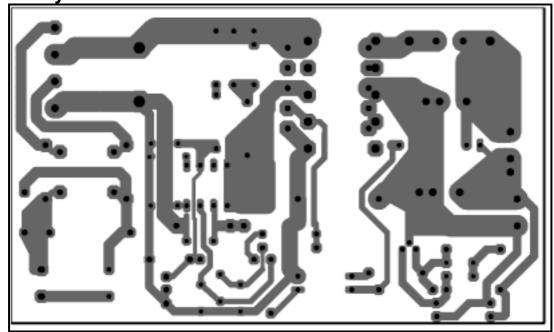


Figure 4 Board Layout - Component Side

Description

Introduction

The EVALSF2-ICE2A0565Z demoboard is a low cost off line flyback switch mode power supply (SMPS) using the ICE2A0565Z system IC from the CoolSETTM-F2 family. The circuit, shown in Figure 2, details a 5.0V, 10W power supply that operates from an AC line input voltage range of 85 to 265V_{AC}, suitable for applications requiring either an open frame supply or an enclosed adapter.

Line Input

The AC line input side comprises of an input fuse F1 as line input over current protection as well as choke L5 and the X2 capacitor C8 as radio interference suppressors. After the bridge rectifier BR1 and input capacitor C3, a voltage from 120 to 380 V_{DC} is present. Due to the extended duty cycle D_{MAX} of the ICE-F2-family there is the possibility to replace the 47μF input capacitor with a 22μF (2.2μF/W)

Startup

From this voltage, the chip starting the current supply is derived using resistors R6 and R7. Because of the very low start up current of typically 27µA, a high-value resistor can be used.

Operation Mode

During operation, the V_{CC} pin is supplied via a separate transformer winding with associated rectification D2 and buffering C4, C13. Resistor R8 is used for current limiting during the charging of C4. In order not to exceed the maximum voltage at V_{CC} pin an external zener diode D4 limits this voltage. During light or no load condition, the switching frequency is automatically and continuously reduced down to 21kHz⁴ in order to reduce the switching losses.

Softstart

The Soft-Start function is realized by an internal resistor and the adjustable external capacitor C14.

Snubber Network

The network R10, C12 and D3 clamp the DRAIN voltage spike caused by transformer leakage inductance to a safe value below the drain source break down voltage $V_{DSBB} = 650V^5$ maximum.

Limitation of primary current

The CoolMOS™ drain source current is sensed via external shunt resistors R17. An accurate value of the shunt improves the peak power limitation shown in the curve peak power limitation in the rear of this report.

Output Voltage

Power is coupled out on the secondary side via a fast-acting diode D1 with low forward voltage. Capacitor C5 performs energy buffering, a following LC - filter C9 and inductor L3 considerably reduces the output voltage ripple. Storage output capacitor C5 is designed to exhibit a very low ESR in order to minimize the output voltage ripple caused by the triangular 100kHz current characteristic. The output voltage is set with resistors R1 and R2.

Regulation

The output voltage is controlled using a type TL431 reference diode (IC2). This device incorporates the voltage reference as well as the error amplifier and a driver stage. Compensation network C1, C2, R1, R5 constitutes the external circuitry of the error amplifier of IC2. This circuitry allows the feedback to be precisely matched to dynamically varying load conditions, thereby providing stable control. The maximum current through the optocoupler diode and the voltage reference is set by using resistors R3, R4. Optocoupler IC1 is used for floating transmission of the control signal to the "Feedback" input via resistor R9 and capacitor C6 of the ICE2A0565Z control device. The optocoupler used meets DIN VDE 884 requirements for a wider creepage distance.

³ Slope Compensation is needed due to Current Mode Control and Dnom > 50% see description in the rear of the report

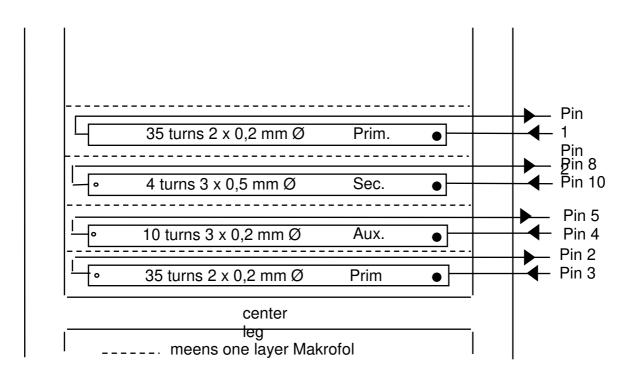
⁴ Without audible noise

 $^{^{5}}$ V_{DSBR} = 650V @ Tj = 110°C

Bill of Material

ICE2A0565Z Evaluation Board 5.0V/ 10W

Pos.	Part	Туре	Number	Values	Others
1	BR1	B500 C1500	1		
2	C1 [nF]	470	1		X7R
3	C2 [nF]	10	1	50V	X7R
4	C3 [μF]	47	1	400V	B43504-A9476-M
5	C4 [μF]	22	1	63V	
6	C5 [μF]	1000	1		Low ESR – B41886
7	C6 [nF]	2.2	1	50V	X7R
8	C7 [nF]	2.2	1		Y1 Cap
9	C8 [μF]	0.1	1	275V	X2 Cap
10	C9 [μF]	470	1	25V	Low ESR – B41886
11	C12 [nF]	1.0	1	400V	MKT
12	C13 [nF]	100	1	50V	X7R
13	C14 [nF]	100	1	50V	X7R
14	D1	MUR540	1	400V	
15	D2	1N4148	1		
16	D3	1N4937	1		
17	D4	ZPD18	1	18V	
18	F1	Microfuse 3.15A	1	3.15A	
19	IC1	SFH617A-3X016	1		
20	IC2	TL431CLP	1		
21	IC3	ICE2A0565Z	1		
22	L3 [μH]	1.0	1	6A	262LYF-0074M
23	L5 [μH]	2*27mH / 0.9A	1	0.9A	
24	R1 [kOhm]	3.3	1		
25	R2 [kOhm]	3.3	1		
26	R3 [kOhm]	0,082	1		
27	R4 [kOhm]	1.2	1		
28	R5 [kOhm]	2,7	1		
29	R6 [kOhm]	360	1		
30	R7 [kOhm]	360	1		
31	R8 [Ohm]	4.3	1		
32	R9 [Ohm]	22	1		
33	R10 [kOhm]	100	1		
34	R17 [Ohm]	1.1	1		1%
35	TR1	E20/10/6	1	0.50	Mm
36	W1	Wire	1		
37	W2	Wire	1		
38	X1	Connector 2pol.	1		
39	X2	Connector 2pol.	1		


Transformer Construction Documentation

Core Material: E20/10/6; N87

Frequency: 100 kHz

gap: 0.5mm Al = 103nH Lp = 503μH

Coil former: horizontal version

Top view:

Pin 1	•	•	Pin 10
Pin 2	•	•	Pin 9
Pin 3	•	•	Pin 8
Pin 4	•	•	Pin 7
Pin 5	•	•	Pin 6

Performance Data

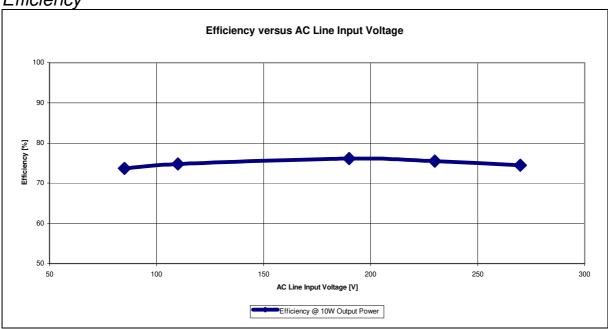


Figure 5 Efficiency vs. AC Line Input Voltage

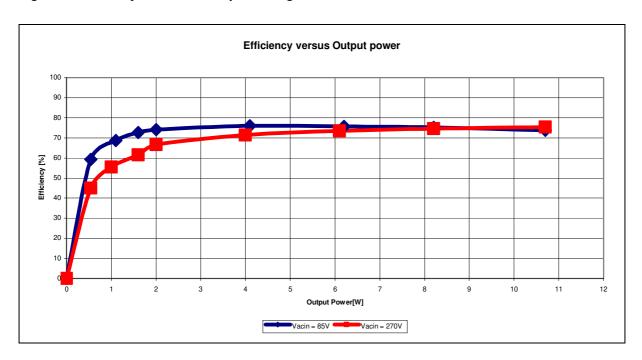


Figure 6 Efficiency vs. Output Power @ Low and High Line 50Hz

No-Load Input Power (Standby)

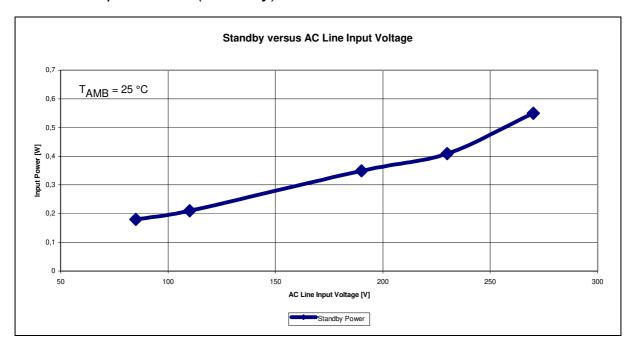


Figure 7 No Load Input Power (Standby) vs. AC Line Input Voltage @ Pout = 0W

Regulation and Power Limiting

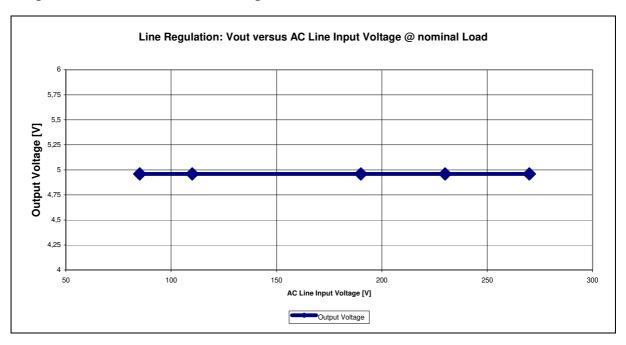
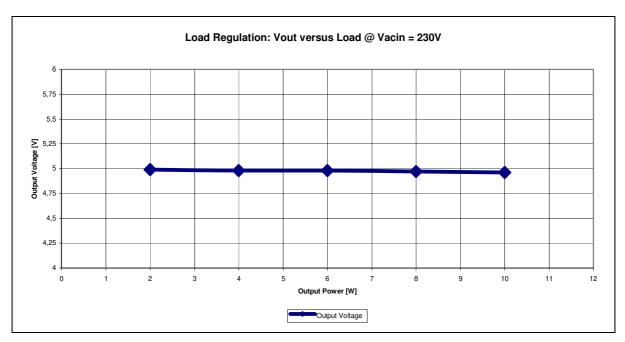



Figure 8 Line Regulation vs. AC Line Input Voltage

Figure 9 Load Regulation

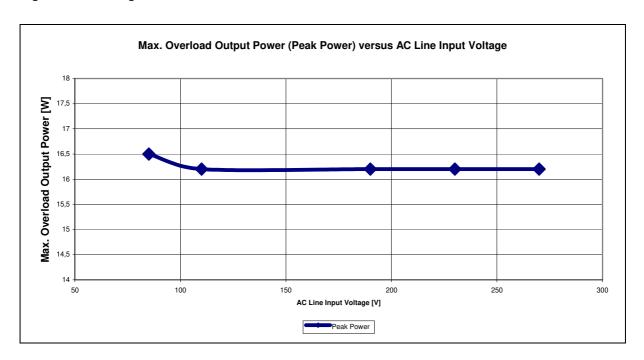
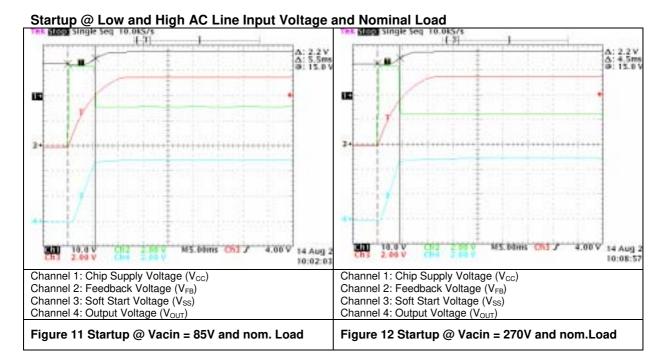
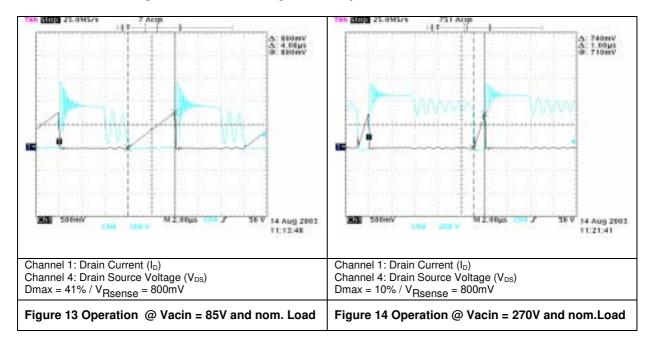
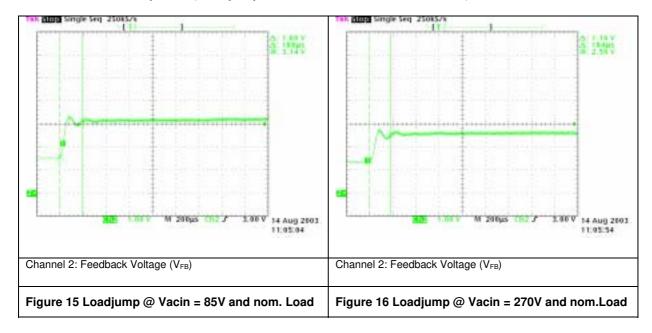



Figure 10 Overload Output Power (Over Current Shut Off Threshold) vs. Line Input Voltage

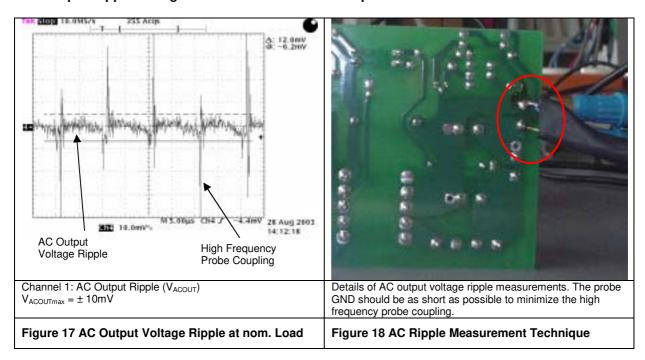


Waveforms and Scope Plots

All waveforms and scope plots where recorded with a Tectronix TDS 745D

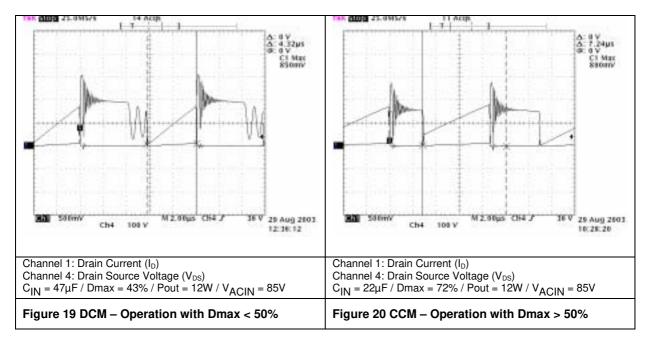


Drain Source Voltage and Current During Normal Operation



Load Transient Response (Loadjump from 10% Load until 100% Load)

AC Output Ripple during Nominal Load and Normal Operation


Input Capacitor Improvement - Slope Compensation

Input Capacitor Improvement

In case you are using a smaller input capacitor ($22\mu F$ instead of $47\mu F$), the maximum duty cycle increases. To make sure, that the board is not working in the continuous conduction mode, a different transformer is necessary; otherwise, you have to assemble slope compensation on board.

Slope Compensation

Any kind of current mode controller needs to have slope compensation in case the application is designed for the continuous conduction mode (CCM) and the maximum duty cycle exceeds the 50% threshold. Below you see the impact on the system in case of an input capacitor reduction; with the 47 μ F bulk works the board in the discontinuous conduction mode (DCM) and a D_{max} < 50%; with the smaller 22 μ F bulk, the board is running in the continuous conduction mode (CCM) and D_{max} > 50%.

To prevents an instability of the regulation loop, in case of CCM and $D_{max} > 50\%$, assemble just three more components (2 ceramic capacitors C17 / C18 and one resistor R19) as shown in the circuit diagram below.

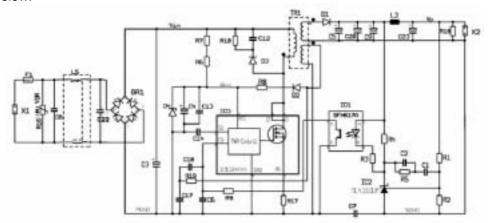


Figure 21 Circuit Diagram Switch Mode Power Supply with Slope Compensation

More information regarding how to calculate the additional components, see in the application note AN SMPS ICE2xXXX – available on the internet: www.infineon.com/CoolSET CoolSET F2.

www.Infineon.com/CoolSET Page 14 of 16 EVALSF2-ICE2A0565Z V2.00

Note:

The built-in transformer does **not** comply with EN60950 safety requirements in respect of electrical isolation.

Change service

Issue status	Changes	Date
1.0	First issue	02.05.2002
1.2	Replace Device ICE2A165 with ICE2A0565Z	Aug. 2002
2.0	Update: → Board → BOM → Transformer construction Additional: → Performance Data → Slope Compensation	Aug. 2003

References

- [1] ICE2AXXX for OFF-Line Switch Mode Power Supplies Application Note, Infineon Technologies
- [2] CoolSET -II
 Off-line SMPS Current Mode Controller with High Voltage CoolMOS on Board
 Datasheet, Infineon Technologies

	Revision History					
Application Note AN-EVALSF2-ICE2A0565Z-01						
Actual Release: 2.0 Date: 2003-08-09 Previous Release: V1.0						
Page of actual Rel.	Page of prev. Rel.	Subjects changed since last	release			
		See change service				
		_				