: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Features

Programmable PLL synthesizer
- 8-channel preconfigured or fully programmable SPI mode
\square Double super-heterodyne receiver architecture with $2^{\text {nd }}$ mixer as image rejection mixer
\square Reception of FSK, FM and ASK modulated signals
- Low shut-down and operating currents
\square AGC - automatic gain control
\square On-chip IF filter
\square Fully integrated FSK/FM demodulator
- RSSI for level indication and ASK detection
$\square \quad 2^{\text {nd }}$ order low-pass data filter
ㅁ Positive and negative peak detectors
\square Data slicer (with averaging or peak-detector adaptive threshold)
- 32-pin Quad Flat No-Lead Package (QFN)
\square EVB programming software is available on Melexis web site

Ordering Information

Part No. (see paragraph 6)

EVB71122-315-C	EVB71122-868-C
EVB71122-433-C	EVB71122-915-C

*SPI mode is default population, $A B C$ mode according to paragraph 5
${ }^{* *} E V B 71122-X X X-C$ with $X X X=$ Reception frequency (315 or 433.92 or 868.3 or 915 MHz).
${ }^{* * *}$ The evaluation board is supplied with a SMA connector.

Application Examples

- General digital and analog RF receivers at 300 to 930 MHz
\square Tire pressure monitoring systems (TPMS)
\square Remote keyless entry (RKE)
\square Low power telemetry systems
- Alarm and security systems
- Active RFID tags

ㅁ Remote controls

- Garage door openers
\square Home and building automation

Evaluation Board Example

General Description

The MLX71122 is a multi-channel RF receiver IC based on a double-conversion super-heterodyne architecture. It is designed to receive FSK and ASK modulated RF signals either in 8 predefined frequency channels or frequency programmable via a 3-wire serial programming interface (SPI).
The IC is designed for a variety of applications, for example in the European bands at 433 MHz and 868 MHz or for the use in North America or Asia, e.g. at $315 \mathrm{MHz}, 447 \mathrm{MHz}$ or 915 MHz .

Document Content

1 Theory of Operation 4
1.1 General. 4
1.2 EVB Data Overview 4
1.3 Block Diagram 5
1.4 Enable/Disable in ABC Mode 6
1.5 Demodulation Selection in ABC Mode 6
1.6 Programming Modes 6
1.7 Preconfigured Frequencies in ABC Mode 6
2 Functional Description 7
2.1 Frequency Planning 7
2.2 Calculation of Counter Settings 8
2.2.1 Calculation of LO1 and IF1 frequency for Low Frequency Bands 8
2.2.2 Calculation of LO1 and IF1 frequency for High Frequency Bands 9
2.2.3 Counter Setting Examples for SPI Mode 9
2.2.4 Counter Settings in ABC Mode - 8+1 Preconfigured Channels. 10
2.2.5 PLL Counter Ranges 11
2.3 SPI Description 11
2.3.1 General 11
2.3.2 Read / Write Sequences 12
2.3.3 Serial Programming Interface Timing 12
3 Register Description 13
3.1 Register Overview 13
3.1.1 Control Word RO 15
3.1.2 Control Word R1 16
3.1.3 Control Word R2 17
3.1.4 Control Word R3 17
3.1.5 Control Word R4 18
3.1.6 Control Word R5 18
3.1.7 Control Word R6 18
3.1.8 Control Word R7 (Read-only Register) 19
4 Application Circuits for SPI Mode. 20
4.1 Averaging Data Slicer Configured for Bi-Phase Codes 20
4.2 Peak Detector Data Slicer Configured for NRZ Codes 22
4.2.1 Board Component Values List (SPI mode) 24
5 Application for 8-Channel Preconfigured (ABC) Mode 25
5.1 Averaging Data Slicer Configured for Bi-Phase Codes 25
5.1.1 Board Component Values List (ABC mode) 27
6 Evaluation Board Layouts 28
7 Package Description 29
7.1 Soldering Information 29
8 Reliability Information 30
9 ESD Precautions 30
10 Disclaimer 32

1 Theory of Operation

1.1 General

The MLX71122 receiver architecture is based on a double-conversion super-heterodyne approach. The two LO signals are derived from an on-chip integer-N PLL frequency synthesizer. The PLL reference frequency is derived from a crystal (XTAL). The PLL synthesizer consists of an integrated voltage-controlled oscillator with external inductor, a programmable feedback divider chain, a programmable reference divider, a phasefrequency detector with a charge pump and an external loop filter.

In the receiver's down-conversion chain, two mixers MIX1 and MIX2 are driven by the internal local oscillator signals LO1 and LO2, respectively. The second mixer MIX2 is an image-reject mixer. As the first intermediate frequency (IF1) is very high (typically above 100 MHz), a reasonably high degree of image rejection is provided even without using an RF front-end filter. At applications asking for very high image rejections, cost-efficient RF front-end filtering can be realized by using a SAW filter in front of the LNA.

The receiver signal chain is set up by a low noise amplifier (LNA), two down-conversion mixers (MIX1 and MIX2), an on-chip IF filter (IFF) as well as an IF amplifier (IFA). By choosing the required modulation via an FSK/ASK switch (at pin MODSEL), either the on-chip FSK demodulator (FSK DEMOD) or the RSSI-based ASK detector is selected. A second order data filter (OA1) and a data slicer (OA2) follow the demodulator. The data slicer threshold can be generated from the mean-value of the data stream or by means of the positive and negative peak detectors (PKDET+/-).

In general the MLX71122 can be set to shut-down mode, where all receiver functions are completely turned off, and to several other operating modes. There are two global operating modes that are selectable via the logic level at pin SPISEL:

- 8-channel preconfigured mode (ABC mode)
- fully programmable mode (SPI mode).

In ABC mode the number of frequency channels is limited to eight but no microcontroller programming is required. In this case the three lines of the serial programming interface (SPI) are used to select one of the eight predefined frequency channels via simple 3-bit parallel programming. Pins ENRX and MODSEL are used to enable/disable the receiver and to select FSK or ASK demodulation, respectively.

SPI mode is recommended for full programming flexibility. In this case the three lines of the SPI are configured as a standard 3 -wire bus (SDEN, SDTA and SCLK). This allows changing many parameters of the receiver, for example more operating modes, channels, frequency resolutions, gains, demodulation types, data slicer settings and more. The pin MODSEL has no effect in this mode.

1.2 EVB Data Overview

\square Input frequency ranges: 300 to 930 MHz

- Power supply range: 3.0 to 5.5 V
- Temperature range: -40 to $+105^{\circ} \mathrm{C}$

ㅁ Shutdown current: 50nA
\square Operating current: 12mA (typ.)

- Internal IF2: 2 MHz with 230 kHz 3 dB bandwidth
- Maximum data rate: 100kbps NRZ code, 50kbps bi-phase code
\square Minimum frequency resolution: 10 kHz
\square Total image rejection: > 65dB (with external RF front-end filter)
- FSK/FM deviation range: ± 2 to $\pm 50 \mathrm{kHz}$

ㅁ Spurious emission: <-70dBm

- Linear RSSI range: > 50dB
\square FSK input frequency acceptance range: 180 kHz (3dB)
ㅁ Crystal reference frequency: 10 MHz

\square Input Sensitivity: at $4 \mathrm{kbps} \mathrm{NRZ}, \mathrm{BER}=3 \cdot 10^{-3}$				
Frequency	315 MHZ	433 MHz	868 MHz	915 MHz
FSK: $\pm 20 \mathrm{kHz}$ deviation	-106 dBm	-104 dBm	-101 dBm	-101 dBm
ASK	-108 dBm	-108 dBm	-106 dBm	-106 dBm

1.3 Block Diagram

Fig. 1: MLX71122 block diagram

The MLX71122 receiver IC consists of the following building blocks:

- PLL synthesizer (PLL SYNTH) to generate the first and second local oscillator signals LO1 and LO2, parts of the PLL SYNTH are the voltage-controlled oscillator (VCO), the feedback dividers N/A and R, the phase-frequency detector (PFD), the charge pump (CP) and the crystal-based reference oscillator (RO)
- Low-noise amplifier (LNA) for high-sensitivity RF signal reception
- First mixer (MIX1) for down-conversion of the RF signal to the first IF (intermediate frequency)
- Second mixer (MIX2) with image rejection for down-conversion from the first to the second IF
- IF Filter (IFF) with a 2 MHz center frequency and a 230 kHz 3 dB bandwidth
- IF amplifier (IFA) to provide a large amount of voltage gain and an RSSI signal output
- FSK demodulator (FSK DEMOD)
- Operational amplifiers OA1 and OA2 for low-pass filtering and data slicing, respectively
- Positive (PKDET+) and negative (PKDET-) peak detectors
- Switches SW1 to select between FSK and ASK as well as SW2 to chose between averaging or peak detector data slicer
- Control logic with 3-wire bus serial programming interface (SPI)
- Biasing circuit with modes control

For more detailed information, please refer to the latest MLX71122 data sheet revision.

1.4 Enable/Disable in ABC Mode

ENRX	Description
0	Shutdown mode
1	Receive mode

Pin ENRX is pulled down internally. Device is in shutdown by default, after power supply on.
If ENRX $=0$ and SPISEL = 1 then operating modes according to OPMODE bit (refer to control word R0).
If $E N R X=1$ then OPMODE bit has no effect (hardwired receive mode).

1.5 Demodulation Selection in ABC Mode

MODSEL	Description
0	FSK demodulation
1	ASK demodulation

Pin MODSEL has no effect in SPI mode (SPISEL = 1). We recommend connecting it to ground to avoid a floating CMOS gate.

1.6 Programming Modes

SPISEL	Description
0	ABC mode (8 channels preconfigured)
1	SPI mode (programming via 3-wire bus)

1.7 Preconfigured Frequencies in ABC Mode

A	B	C	Receive Frequency
0	0	0	FSK1: 369.5 MHz
0	1	0	FSK5: 388.3 MHz
1	0	0	FSK2: 371.1 MHz
1	1	0	FSK4: 376.9 MHz
0	0	1	FSK3: 375.3 MHz
0	1	1	FSK7: 394.3 MHz
1	0	1	FSK6: 391.5 MHz
1	1	1	FSK8: 395.9 MHz

As all pins, pins A, B, and C are equipped with ESD protection diodes that are tied to VCC and to VEE. Therefore these pins should not be directly connected to positive supply (a logic " 1 ") before the supply voltage is applied to the IC. Otherwise the IC will be supplied through these control lines and it may enter into an unpredictable mode. In case the user wants to apply a positive supply voltage to these pins before the supply voltage is applied to the IC, a protection resistor should be inserted in each control line.

2 Functional Description

2.1 Frequency Planning

Because of the double conversion architecture that employs two mixers and two IF signals, there are four different combinations for injecting the LO1 and LO2 signals:

- LO1 high side and LO2 high side:
- LO1 high side and LO2 low side:
- LO1 low side and LO2 high side:
- LO1 low side and LO2 low side:
receiving at $f_{\text {RF }}$ (high-high)
receiving at f_{RF} (high-low)
receiving at $f_{\text {RF }}$ (low-high)
receiving at f_{RF} (low-low)

As a result, four different radio frequencies (RFs) could yield one and the same second IF (IF2). Fig. 2 shows this for the case of receiving at $f_{R F}$ (high-high). In the example of Fig. 2, the image signals at $f_{R F}$ (lowhigh) and $f_{\text {RF }}$ (low-low) are suppressed by the bandpass characteristic provided by the RF front-end. The bandpass shape can be achieved either with a SAW filter (featuring just a couple of MHz bandwidth), or by the tank circuits at the LNA input and output (this typically yields 30 to 60 MHz bandwidth). In any case, the high value of the first IF (IF1) helps to suppress the image signals at $f_{R F}$ (low-high) and $f_{R F}$ (low-low).

The two remaining signals at IF1 resulting from $f_{R F}$ (high-high) and $f_{R F}$ (high-low) are entering the second mixer MIX2. This mixer features image rejection with so-called single-sideband (SSB) selection. This means either the upper or lower sideband of IF1 can be selected. In the example of Fig. 2, LO2 high-side injection has been chosen to select the IF2 signal resulting from $f_{\text {RF }}$ (high-high).

Fig. 2: The four receiving frequencies in a double conversion superhet receiver

It can be seen from the block diagram of Fig. 1 that there is a fixed relationship between the LO1 signal frequency $f_{\text {LO1 }}$ and the LO 2 signal frequency $\mathrm{f}_{\mathrm{LO} 2}$.

$$
\begin{equation*}
\mathrm{LO} 2 \mathrm{DIV}=\mathrm{N}_{\mathrm{LO} 2}=\frac{\mathrm{f}_{\mathrm{LO} 1}}{\mathrm{f}_{\mathrm{LO} 2}} \tag{1}
\end{equation*}
$$

The LO1 signal frequency $f_{L O 1}$ is directly synthesized from the crystal reference oscillator frequency $f_{R O}$ by means of an integer-N PLL synthesizer. The PLL consists of a dual-modulus prescaler (P/P+1), a program counter N and a swallow counter A .

$$
\begin{equation*}
\mathrm{f}_{\mathrm{LO} 1}=\frac{\mathrm{f}_{\mathrm{RO}}}{\mathrm{R}}(\mathrm{~N} \cdot \mathrm{P}+\mathrm{A})=\mathrm{f}_{\mathrm{PFD}}(\mathrm{~N} \cdot \mathrm{P}+\mathrm{A})=\mathrm{f}_{\mathrm{PFD}} \cdot \mathrm{~N}_{\mathrm{tot}} \tag{2}
\end{equation*}
$$

Due to the double superhet receiver architecture, the channel frequency step size $f_{C H}$ is not equal to the phase-frequency detector (PFD) frequency $f_{\text {PFD }}$. For high-side injection, the channel step size $f_{C H}$ is given by:

$$
\begin{equation*}
\mathrm{f}_{\mathrm{CH}}=\frac{\mathrm{f}_{\mathrm{RO}}}{\mathrm{R}} \frac{\mathrm{~N}_{\mathrm{LO} 2}-1}{\mathrm{~N}_{\mathrm{LO} 2}}=\mathrm{f}_{\mathrm{PFD}} \frac{\mathrm{~N}_{\mathrm{LO} 2}-1}{\mathrm{~N}_{\mathrm{LO} 2}} \tag{3}
\end{equation*}
$$

While the following equation is valid for low-side injection:

$$
\begin{equation*}
\mathrm{f}_{\mathrm{CH}}=\frac{\mathrm{f}_{\mathrm{RO}}}{\mathrm{R}} \frac{\mathrm{~N}_{\mathrm{LO} 2}+1}{\mathrm{~N}_{\mathrm{LO} 2}}=\mathrm{f}_{\mathrm{PFD}} \frac{\mathrm{~N}_{\mathrm{LO} 2}+1}{\mathrm{~N}_{\mathrm{LO} 2}} \tag{4}
\end{equation*}
$$

2.2 Calculation of Counter Settings

Frequency planning and the selection of the MLX71122's PLL counter settings are straightforward and can be laid out on the following procedure.

Usually the receive frequency $f_{R F}$ and the channel step size $f_{C H}$ are given by system requirements. The N and A counter settings can be derived from $N_{\text {tot }}$ or $f_{\text {LO1 }}$ and $f_{\text {PFD }}$ by using the following equations.

$$
\begin{equation*}
\mathrm{N}=\text { floor }\left(\frac{\mathrm{N}_{\text {tot }}}{\mathrm{P}}\right)=\text { floor }\left(\frac{\mathrm{N}_{\text {tot }}}{32}\right) ; \mathrm{A}=\mathrm{N}_{\text {tot }}-\mathrm{N} \cdot \mathrm{P}=\mathrm{N}_{\text {tot }}-\mathrm{N} \cdot 32 \tag{5}
\end{equation*}
$$

2.2.1 Calculation of LO1 and IF1 frequency for Low Frequency Bands

High-high injection must be used for the low frequency bands. First of all choose a PFD frequency $f_{\text {PFD }}$ according to below table. The R counter values are valid for a 10 MHz crystal reference frequency $f_{\text {Ro }}$. The PFD frequency is given by $f_{P F D}=f_{R O} / R$.

Injection Type	$\mathbf{f}_{\mathbf{C H}}[\mathbf{k H z}]$	$\mathbf{f}_{\text {PFD }}[\mathbf{k H z}]$	\mathbf{R}
h-h	10	13.3	750
h-h	12.5	16.7	600
h-h	20	26.7	375
h-h	25	33.3	300
h-h	50	66.7	150
h-h	100	133.3	75
h-h	250	333.3	30

The second step is to calculate the missing parameters $\mathrm{f}_{\mathrm{LO} 1}, \mathrm{f}_{\mathrm{IF} 1}, \mathrm{~N}_{\text {tot }}, \mathrm{N}$ and A . While the second $\mathrm{IF}\left(\mathrm{f}_{\mathrm{FF}}\right)$, the $\mathrm{N}_{\mathrm{LO} 2}$ divider ratio and the prescaler divider ratio P are bound to $\mathrm{f}_{\mathrm{IF} 2}=2 \mathrm{MHz}, \mathrm{N}_{\mathrm{LO} 2}=4$ (or 8) and $\mathrm{P}=32$.

$$
\begin{array}{ll}
\mathrm{f}_{\mathrm{LO} 1}=\frac{\mathrm{N}_{\mathrm{LO} 2}}{\mathrm{~N}_{\mathrm{LO} 2}-1}\left(\mathrm{f}_{\mathrm{RF}}-\mathrm{f}_{\mathrm{IF} 2}\right) & \mathrm{f}_{\mathrm{LO} 1}=\frac{4}{3}\left(\mathrm{f}_{\mathrm{RF}}-2 \mathrm{MHz}\right) \\
\mathrm{f}_{\mathrm{IF} 1}=\frac{\mathrm{f}_{\mathrm{RF}}-\mathrm{N}_{\mathrm{LO} 2} \mathrm{f}_{\mathrm{IF} 2}}{\mathrm{~N}_{\mathrm{LO} 2}-1} & \mathrm{f}_{\mathrm{IF} 1}=\frac{\mathrm{f}_{\mathrm{RF}}-8 \mathrm{MHz}}{3} \tag{7}
\end{array}
$$

Finally N and A can be calculated with formula (5).

Microelectronic Integrated Systems

2.2.2 Calculation of LO1 and IF1 frequency for High Frequency Bands

Typical ISM band operating frequencies like 868.3 and 915 MHz can be covered without changing the crystal nor the VCO inductor.
Low-low injection should be used for the high frequency bands. First of all choose a PFD frequency $f_{\text {PFD }}$ according to below table. The R counter values are valid for a 10 MHz crystal reference. The PFD frequency is given by $f_{\text {PFD }}=f_{R O} / R$.

Injection Type	$\mathbf{f}_{\mathbf{C H}}[\mathbf{k H z}]$	$\mathbf{f}_{\text {PFD }}[\mathrm{kHz}]$	\mathbf{R}
I-I	20	16	625
I-I	25	20	500
I-I	50	40	250
I-I	100	80	125
I-I	250	200	50
I-I	500	400	25

The second step is to calculate the missing parameters $f_{\text {LO1 }}, f_{\mathrm{IFF}_{1}}, \mathrm{~N}_{\text {tot }}, \mathrm{N}$ and A . While the second $\mathrm{IF}\left(\mathrm{f}_{\mathrm{FF} 2}\right)$, the $\mathrm{N}_{\mathrm{LO} 2}$ divider ratio and the prescaler divider ratio P are bound to $\mathrm{f}_{\mathrm{IF} 2}=2 \mathrm{MHz}, \mathrm{N}_{\mathrm{Lo} 2}=4$ (or 8) and $\mathrm{P}=32$.

$$
\begin{array}{ll}
\mathrm{f}_{\mathrm{LO} 1}=\frac{\mathrm{N}_{\mathrm{LO} 2}}{\mathrm{~N}_{\mathrm{LO} 2}+1}\left(\mathrm{f}_{\mathrm{RF}}-\mathrm{f}_{\mathrm{IF} 2}\right) & \mathrm{f}_{\mathrm{LO} 1}=\frac{4}{5}\left(\mathrm{f}_{\mathrm{RF}}-2 \mathrm{MHz}\right) \\
\mathrm{f}_{\mathrm{IF} 1}=\frac{\mathrm{f}_{\mathrm{RF}}+\mathrm{N}_{\mathrm{LO} 2} \mathrm{f}_{\mathrm{IF} 2}}{\mathrm{~N}_{\mathrm{LO} 2}+1} & \mathrm{f}_{\mathrm{IF} 1}=\frac{\mathrm{f}_{\mathrm{RF}}+8 \mathrm{MHz}}{5} \tag{9}
\end{array}
$$

Finally N and A can be calculated with formula (5).

2.2.3 Counter Setting Examples for SPI Mode

To provide some examples, the following table shows some counter settings for the reception of the wellknown ISM and SRD frequency bands. The channel spacing is assumed to be $f_{C H}=100 \mathrm{kHz}$. In below table all frequency units are in MHz .

Inj	$\mathbf{f}_{\text {RF }}$	$\mathbf{f}_{\text {IF1 }}$	$\mathbf{f}_{\text {LO1 }}$	$\mathbf{N}_{\text {tot }}$	\mathbf{N}	\mathbf{P}	\mathbf{A}	$\mathbf{f}_{\text {PFD }}$	\mathbf{R}	$\mathbf{f}_{\text {REF }}$	$\mathbf{f}_{\text {LO2 }}$	$\mathbf{f}_{\text {IF2 }}$
h-h	300	97.3	397.3	2980	93	32	4	0.133	75	10	99.3	2
h-h	315	102.3	417.3	3130	97	32	26	0.133	75	10	104.3	2
h-h	434	142	576	4320	135	32	0	0.133	75	10	144	2
h-h	470	154	624	4680	146	32	8	0.133	75	10	156	2
I-I	850	171.6	678.4	8480	256	32	0	0.08	125	10	169.6	2
I-I	868	175.2	692.8	8660	270	32	20	0.08	125	10	173.2	2
I-I	915	184.6	730.4	9130	285	32	10	0.08	125	10	182.6	2
I-I	930	187.6	742.4	9280	290	32	0	0.08	125	10	185.6	2

Microelectronic Integrated Systems

2.2.4 Counter Settings in ABC Mode - 8+1 Preconfigured Channels

In ABC mode (SPISEL=0), the counter settings are hard-wired. In below table all frequency units are in MHz.

$\mathbf{C H}$	$\mathbf{I n j}$	$\mathbf{f}_{\text {RF }}$	$\mathbf{f}_{\text {IF1 }}$	$\mathbf{f}_{\text {LO1 }}$	$\mathbf{N}_{\text {tot }}$	\mathbf{N}	\mathbf{P}	\mathbf{A}	$\mathbf{f}_{\text {PFD }}$	\mathbf{R}	$\mathbf{f}_{\text {REF }}$	$\mathbf{f}_{\text {LO2 }}$	$\mathbf{f}_{\text {IF2 }}$
$\mathbf{1}$	h-I	369.5	125.8	495.3	3715	116	32	3	0.133	75	10	123.8	2
2	h-I	371.1	126.4	497.5	3731	116	32	19	0.133	75	10	124.4	2
3	h-I	375.3	127.8	503.1	3773	117	32	29	0.133	75	10	125.8	2
4	h-I	376.9	128.3	505.2	3789	118	32	13	0.133	75	10	126.3	2
5	h-I	384.0	130.7	514.7	3860	120	32	20	0.133	75	10	128.7	2
6	h-I	388.3	132.1	520.4	3903	121	32	31	0.133	75	10	130.1	2
7	h-I	391.5	133.2	524.7	3935	122	32	31	0.133	75	10	131.2	2
8	h-I	394.3	134.1	528.4	3963	123	32	27	0.133	75	10	132.1	2
9	h-I	395.9	134.6	530.5	3979	124	32	11	0.133	75	10	132.6	2

List of Mathematical Acronyms	
A	divider ratio of the swallow counter (part of feedback divider)
f_{FB}	frequency at the feedback divider output
floor (x)	The floor function gives the largest integer less than or equal to x. For example, floor(5.4) gives 5, floor(-6.3) gives -7 .
$\mathrm{f}_{\text {PFD }}$	PFD frequency in locked state
$\frac{\mathrm{f}_{\mathrm{RO}}}{\mathrm{R}}=\mathrm{f}_{\mathrm{R}}$	reference frequency of the PLL
f_{RO}	frequency of the crystal reference oscillator
$\mathrm{f}_{\mathrm{vCO}}$	frequency of the VCO (equals the LO1 signal of the first mixer)
$\mathrm{N}_{\text {tot }}=\mathrm{N} \cdot \mathrm{P}+\mathrm{A}$	total divider ratio of the PLL feedback path
N	divider ratio of the program counter (part of feedback divider)
$\mathrm{N}_{\mathrm{LO} 2}$	LO2DIV divider ratio, to derive the LO2 signal from LO1 ($\mathrm{N}_{1}=4$ or 8)
P	divider ratio of the prescaler (part of feedback divider)
R	divider ratio of the reference divider R

Microelectronic Integrated Systems

2.2.5 PLL Counter Ranges

In order to cover the frequency range of about 300 to 930 MHz the following counter values are implemented in the receiver:

PLL Counter Ranges				
A	\mathbf{N}	\mathbf{R}	\mathbf{P}	
0 to 31 (5bit)	3 to 2047 (11bit)	3 to 2047 (11bit)	32	

Therefore the minimum and maximum divider ratios of the PLL feedback divider are given by:

$$
\mathrm{N}_{\text {totmin }}=32 \cdot 32=1024 \quad \mathrm{~N}_{\text {totmax }}=2047 \cdot 32+31=65535
$$

2.3 SPI Description

2.3.1 General

Serial programming interface (SPI) mode can be activated by choosing SPISEL $=1$ (e.g. at positive supply voltage $\mathrm{V}_{\text {cc }}$). In this mode, the input pins 17, 18 and 19 are used as a 3 -wire unidirectional serial bus interface (SDEN, SDTA, SCLK). The internal latches contain all user programmable variables including counter settings, mode bits etc.

In addition the MFO pin can be programmed as an output (see section 3.1.4) in order to read data from the internal latches and it can be used as an output for different test modes as well.

At each rising edge of the SCLK signal, the logic value at the SDTA terminal is written into a shift register. The programming information is taken over into internal latches with the rising edge of SDEN. Additional leading bits are ignored, only the last bits are serially clocked into the shift register. A normal write operation shifts 16 bits into the SPI, a normal read operation shifts 4 bits into the SPI and reads additional 12 bits from the MFO pin. If less than 12 data bits are shifted into SDTA during the write operation then the control register may contain invalid information.

In general a control word has the following format. Bit 0 is the Read/Write bit that determines whether it is a read ($\mathrm{R} / \mathrm{W}=1$) or a write ($\mathrm{R} / \mathrm{W}=0$) sequence. The R/W bit is preceding the latch address and the corresponding data bits.

Control Word Format															
MSB											LSB	MSB		LSB	Bit 0
Data												Latch Address			Mode
D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	A2	A2	A0	R/W

There are two control word formats for read and for write operation. Data bits are only needed in write mode. Read operations require only a latch address and a R/W bit.

Due to the static CMOS design, the serial interface consumes virtually no current. The SPI is a fully separate building block and can therefore be programmed in every operational mode.

2.3.2 Read / Write Sequences

Fig. 6 Typical write sequence diagram

Fig. 7 Typical read sequence diagram

2.3.3 Serial Programming Interface Timing

Fig. 8 SPI timing diagram

3 Register Description

The following tables are to describe the functionality of the registers.
Sec. 3.1 provides a register overview with all the control words R0 to R7. The subsequent sections. 3.1.1 to 3.1.8 show the content of the control words in more detail.

Programming the registers requires SPI mode (SPISEL = 1). Default settings are for ABC mode.

3.1 Register Overview

Microelectronic Integrated Systems

CONTROL WORD	DATA												LATCH ADDRESS		
	MSB LSB														
Bit No．	11	10	9	8	7	6	5	4	3	2	1	0	MSB LSB		
default	0	0	0	0	0	1	0	0	1	0	1	1	1	0	0
R4	山 O O U U	$\begin{array}{r} \square \\ \propto \\ \hdashline 0 \\ \hline \end{array}$											read／ write		
Bit No．	11	10	9	8	7	6	5	4	3	2	1	0	MSB		LSB
default	0	0	1	0	1	0	1	0	1	1	0	0	1	0	1
R5	$\begin{aligned} & \text { 山 } \\ & 0 \\ & 0 \\ & \end{aligned}$												read／ write		
Bit No．	11	10	9	8	7	6	5	4	3	2	1	0	MSB		LSB
default	1	1	1	0	1	0	0	0	0	1	0	1	1	1	0
86			$\xrightarrow{\text { 凹 }}$										read／ write		
Bit No．	11	10	9	8	7	6	5	4	3	2	1	0	MSB		LSB
default													1	1	1
$R 7$	$\begin{aligned} & \text { エ } \\ & \text { © } \\ & \text { § } \end{aligned}$												read－ only		

Note：\quad＊depends on bit 11 in R4， $0=$ RSSIL， 1 ＝LD

Microelectronic Integrated Systems

3.1.1 Control Word RO

Name	Bits	Description			
		operation mode			
OPMODE	[1:0]	$\begin{aligned} & 00 \\ & 01 \\ & 10 \\ & 11 \\ & \hline \end{aligned}$	shutdown receive mode reference oscillator \& BIAS only synthesizer only		\#default
LNAGAIN	[3:2]	LNA gain			
		$\begin{aligned} & 00 \\ & 01 \\ & 10 \\ & 11 \end{aligned}$	lowest gain low gain high gain highest gain	$\begin{aligned} & \text { (default - 20dB) } \\ & \text { (default - 6dB) } \\ & \text { (default - 2dB) } \\ & \text { (default - 0dB) } \end{aligned}$	\#default
		gain values are relative to gain at default			
MIX1GAIN	[4]	$1{ }^{\text {st }}$ Mixer gain			
		$\begin{aligned} & 0 \\ & 1 \end{aligned}$	high gain low gain	$\begin{aligned} & (14 \mathrm{~dB}) \\ & (0 \mathrm{~dB}) \\ & \hline \end{aligned}$	\#default
MIX2GAIN	[5]	$2^{\text {nd }}$ Mixer gain			
		$\begin{aligned} & 0 \\ & 1 \end{aligned}$	high gain low gain	$\begin{aligned} & (9 \mathrm{~dB}) \\ & (-2 \mathrm{~dB}) \end{aligned}$	\#default
IFFGAIN	[7:6]	intermediate frequency filter gain			\#default
		$\begin{aligned} & 00 \\ & 01 \\ & 10 \\ & 11 \\ & \hline \end{aligned}$	lowest gain low gain high gain highest gain	$\begin{aligned} & (-14 \mathrm{~dB}) \\ & (-6 \mathrm{~dB}) \\ & (0 \mathrm{~dB}) \\ & (+6 d B) \\ & \hline \end{aligned}$	
DEMGAIN	[8]	demodulator gain			\#default
		$\begin{aligned} & 0 \\ & 1 \end{aligned}$	low gain high gain	$\begin{aligned} & (\sim 12 \mathrm{mV} / \mathrm{kHz}) \\ & (\sim 14.5 \mathrm{mV} / \mathrm{kHz}) \end{aligned}$	
SSBSEL	[9]	single side band selection			\#default
		$\begin{aligned} & 0 \\ & 1 \end{aligned}$	upper side band lower side band	LO2 low-side inj. (IF1 = LO2 + IF2) LO2 high-side inj. (IF1 = LO2 - IF2)	
			Internal IF2 $=2 \mathrm{MHz}$		
SLCSEL	[10]	slicer mode select			\#default
		$\begin{aligned} & 0 \\ & 1 \end{aligned}$	averaging Data Slicer mode peak detector Data Slicer mode		
DTAPOL	[11]	data output polarity OA2			
		0	inverted		\#default
			' 1 ' for space at ASK or	in at FSK, '0' for mark at ASK or $\mathrm{f}_{\text {max }}$ at FSK	
		1	normal		
			'0' for space at ASK or	${ }_{\text {in }}$ at FSK, '1' for mark at ASK or $\mathrm{f}_{\text {max }}$ at FSK	

Microelectronic Integrated Systems

3.1.2 Control Word R1

Microelectronic Integrated Systems

EVB71122
 300 to 930 MHz Receiver Evaluation Board Description

3.1.3 Control Word R2

Name	Bits	Description		
A	[4:0]	swallow counter value		
		10100	value is $\mathbf{2 0}$	\#default
		swallow counter range: 0 to 31		
N	[11:5]	program counter value (bits $0-6$)		
		00001111000	N value is 120	\#default
			N counter range: 3 to 2047	

3.1.4 Control Word R3

N	[3:0]	program counter range (bits 7 - 10)			
		00001111000		N value is $\mathbf{1 2 0}$	\#default
		N counter range: 3 to 2047			
LO2DIV	[4]	LO2 divider ratio			
		$\begin{aligned} & 0 \\ & 1 \end{aligned}$	divide by 4 divide by 8		\#default
AGCEN	[5]	AGC enable mode			
		$\begin{aligned} & 0 \\ & 1 \end{aligned}$	disable enabled		\#default
AGCDEL	[7:6]	AGC delay settings			
		$\begin{aligned} & 00 \\ & 01 \\ & 10 \\ & 11 \end{aligned}$	no delay 3/fiff 15/fiff 31/IIFF		\#default
			$\mathrm{f}_{\text {fF }}$ is the reference oscillator frequency $\mathrm{f}_{\text {fo }}$ divided by RIFF, see section 3.1 .6 (R6)		
MFO	[11:8]		-	multi function	\#default
		0000 0001 0010 0011 0100 0101 1000	MFO is in Z state MFO is SPI read-out MFO $=0$ MFO $=1$ MFO is analog RO output MFO is IFF output MFO is lock detector output		

Microelectronic Integrated Systems

EVB71122
 300 to 930 MHz Receiver Evaluation Board Description

3.1.5 Control Word R4

Name	Bits	Description			
R	[10:0]	reference divider range			
		00001001011		value is 75	\#default
		R counter range: 3 to 2047			
AGCMODE	[11]	AGC delay mode			
		0	gain decrease and increase with delay gain decrease without delay, gain increase with delay		\#default
		selects AGC delay mode in combination with AGCDEL bits, see section 3.1.4 (R3)			

3.1.6 Control Word R5

Name	Bits	Description			
RIFF	[10:0]	reference divider value for IFF adjustment			
		01010101100		value is 684	\#default
		IFF counter range: 4 to 2047			
MODSEL	[11]	demodulation selection			
		0	FSK de ASK de	odulation modulation	\#default
			selects m	dulation type when	

3.1.7 Control Word R6

Name	Bits	Description			
IFFPRES	[7:0]	IFF preset value			
		01011011		value is 91	\#default
		IFF DAC preset at start of automatic tuning			
IFFHLT	[8]	IFF halt			
		$\begin{aligned} & 0 \\ & 1 \end{aligned}$	auto t auto t	ing running ing halted	\#default
			suspend	FF automatic tuning	
IFFTUNE	[9]	IFF tuning			
		$\begin{aligned} & 0 \\ & 1 \end{aligned}$	disable and load DAC with IFFPRES enable		\#default
ROCUR	[11:10]	reference Oscillator core current			
		00 01 10 11			\#default

Microelectronic Integrated Systems

3.1.8 Control Word R7 (Read-only Register)

Name	Bits		Description
IFFVAL	[7:0]	IFF adjustment value	
		see also IFFPRES in section 3.1.7 (R6)	
IFFSTATE	[9:8]	IFF automatic tuning state	
		$\begin{aligned} & 00 \\ & 01 \\ & 10 \\ & 11 \\ & \hline \end{aligned}$	filter tuned or auto-tuning disabled tuning up the filter frequency tuning down the filter frequency master oscillator of filter does not work
LDRSSIL	[10]	lock detector or RSSI low flag	
		0	PLL not locked or RSSI value in lower region PLL locked or RSSI value above lower region
		depends on SHOWLD in section 3.1.2 (R1)	
RSSIH	[11]	RSSI high flag	
		0	RSSI value below upper region RSSI value in upper region

4 Application Circuits for SPI Mode

4.1 Averaging Data Slicer Configured for Bi-Phase Codes

Fig. 6: Application circuit for SPI Mode (averaging data slicer option)

Note

- EVB71122 default population is SPI mode

Board size is $49 \mathrm{~mm} \times 35.6 \mathrm{~mm}$

Fig. 7: PCB Top-side view (averaging data slicer option)

4.2 Peak Detector Data Slicer Configured for NRZ Codes

Fig. 8: Application circuit for SPI Mode (peak detector option)

Note

- EVB71122 default population is SPI mode

Board size is $49 \mathrm{~mm} \times 35.6 \mathrm{~mm}$

Fig. 9: PCB Top-side view (peak detector option)

Microelectronic Integrated Systems

EVB71122
 300 to 930MHz Receiver

 Evaluation Board Description
4.2.1 Board Component Values List (SPI mode)

Below table is for the application circuits show in Figures 6 and 8

Part	Size	Value @ 315 MHz	$\begin{gathered} \text { Value @ } \\ \text { 433.9 MHz } \end{gathered}$	Value @ 868.3 MHz	Value @ 915 MHz	Tol.	Description
C1	0603	NIP	NIP	3.3 pF	NIP	$\pm 5 \%$	matching capacitor
C2	0603	NIP	NIP	NIP	NIP	$\pm 5 \%$	matching capacitor
C4	0603	4.7 pF	3.3 pF	2.7 pF	2.2 pF	$\pm 5 \%$	LNA output tank capacitor
C5	0603	100 pF	100 pF	100 pF	100 pF	$\pm 5 \%$	MIX1 negative input matching capacitor
C6	0603	100 pF	100 pF	100 pF	100 pF	$\pm 5 \%$	MIX1 negative input matching capacitor
C7	0603	1 nF	1 nF	1 nF	1 nF	$\pm 10 \%$	RSSI output low pass capacitor, this value for data rate of 4 kbps NRZ
C8	0603	220 pF	220 pF	220 pF	220 pF	$\pm 10 \%$	data low-pass filter capacitor, this value for data rate of 4 kbps NRZ
C9	0603	150 pF	150 pF	150 pF	150 pF	$\pm 10 \%$	data low-pass filter capacitor, this value for data rate of 4 kbps NRZ
C10	0603	33 nF	33 nF not required	Figure 8	33 nF	$\pm 10 \%$	data slicer capacitor, this value for data rate of 4 kbps NRZ
C11	0603	33 nF	$33 \mathrm{nF}$ not required	$33 n F$ Figures 6	33 nF	$\pm 10 \%$	peak detector positive filtering capacitor
C12	0603	33 nF	33 nF not required	33 nF Figures 6	33 nF	$\pm 10 \%$	peak detector negative filtering capacitor
CB0	1210	$10 \mu \mathrm{~F}$	$10 \mu \mathrm{~F}$	$10 \mu \mathrm{~F}$	$10 \mu \mathrm{~F}$	$\pm 10 \%$	decoupling capacitor, low-noise power supply recommended
CB1	0603	470 pF	470 pF	470 pF	470 pF	$\pm 10 \%$	decoupling capacitor
CB2	0603	33 nF	33 nF	33 nF	33 nF	$\pm 10 \%$	decoupling capacitor
CB3	0603	33 nF	33 nF	33 nF	33 nF	$\pm 10 \%$	decoupling capacitor
CF1	0603	2.2 nF	2.2 nF	2.2 nF	2.2 nF	$\pm 5 \%$	loop filter capacitor
CF2	0603	220 pF	220 pF	220 pF	220 pF	$\pm 5 \%$	loop filter capacitor
CX	0603	27 pF	27 pF	27 pF	27 pF	$\pm 5 \%$	crystal series capacitor
RB0	0603	10Ω	10Ω	10Ω	10Ω	$\pm 5 \%$	protection resistor
RF	0603	$27 \mathrm{k} \Omega$	$27 \mathrm{k} \Omega$	$47 \mathrm{k} \Omega$	$47 \mathrm{k} \Omega$	$\pm 5 \%$	loop filter resistor
RBS	0603	$30 \mathrm{k} \Omega$	$30 \mathrm{k} \Omega$	$30 \mathrm{k} \Omega$	$30 \mathrm{k} \Omega$	$\pm 2 \%$	reference bias resistor
RS1...RS3		$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	$\pm 5 \%$	protection resistor
L0	0603	33 nH	15 nH	8.2 nH	8.2 nH	$\pm 5 \%$	VCO tank inductor
L1	0603	0Ω	56 nH	22 nH	0Ω	$\pm 5 \%$	matching inductor
L2	0603	82 nH	82 nH	22 nH	8.2 nH	$\pm 5 \%$	matching inductor
L3	0603	33 nH	22 nH	5.6 nH	5.6 nH	$\pm 5 \%$	LNA output tank inductor
XTAL	$\begin{aligned} & \hline \text { SMD } \\ & 5 \times 3.2 \end{aligned}$		0.00000 MHz / \pm	0ppm cal., $\pm 30 \mathrm{p}$	mm temp.		fundamental-mode crystal
$\begin{gathered} \text { SAW } \\ \text { FIL } \end{gathered}$	$\begin{gathered} \text { SMD } \\ 3 \times 3 \end{gathered}$	SAFDC315MS MOT00 (315 MHz)	$\begin{gathered} \text { SAFCC433MB } \\ \text { L0X00 } \\ (433.92 \mathrm{MHz}) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { SAFCC868MS } \\ \text { L0X00 } \\ (868.3 \mathrm{MHz}) \\ \hline \hline \end{gathered}$	$\begin{gathered} \hline \text { SAFCH915MA } \\ \text { LON00 } \\ \text { (915 MHz) } \\ \hline \end{gathered}$		Iow-loss SAW filter from Murata or equivalent part

Note: - NIP - not in place, may be used optionally

5 Application for 8-Channel Preconfigured (ABC) Mode

5.1 Averaging Data Slicer Configured for Bi-Phase Codes

Fig. 10: Application circuit for ABC Mode

Note

- ABC mode population can be easily modified from default SPI mode population by changing the connection at SPISEL from VCC to ground.

