

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

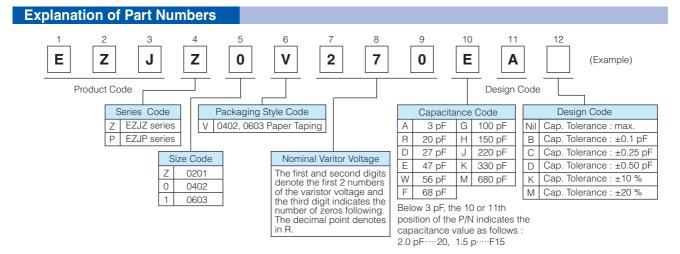
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

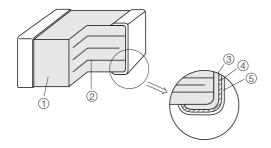
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Multilayer Varistor for ESD pulse [DC voltage lines/High speed signal lines]

Series: EZJZ, EZJP

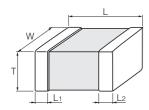


Features


- Excellent ESD suppression due to original advanced material technology
- Having large electrostatic resistance meeting IEC61000-4-2, Level 4 standard
- Having no polarity (bipolar) facilitated replacing Zener Diodes. Capable of replacing 2 Zener Diodes and 1 Capacitor.
- Lead-free plating terminal electrodes enabling great solderability
- Wide range of products is available by adopting multilayer structure, meeting various needs.
- Low capacitance versions for DC voltage lines of high speed busses
- Ultra low capacitance for high speed signal line
- Applicable to high-speed signal lines, such as interfaces (e.g. USB 2.0, IEEE1394, HDMI, and so on), due to our original ultra-low capacitance technology.
- RoHS compliant

■ As for Packaging Methods, Handling Precautions

Please see Data Files



Construction

No.	Name					
1	Semiconductive Ceramics					
2	Internal e	electrode				
3		Substrate electrode				
4	Terminal electrode	Intermediate electrode				
(5)		External electrode				

Dimensions in mm (not to scale)

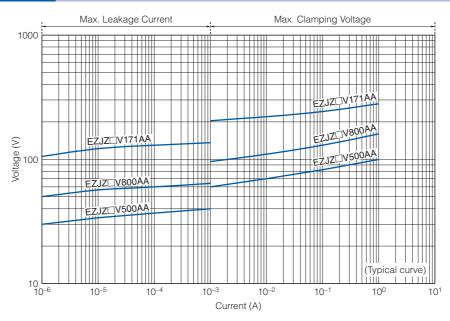
Size Code	Size(inch)	L	W	T	L1, L2
Z	0201	0.60±0.03	0.30±0.03	0.30±0.03	0.15±0.05
0	0402	1.00±0.05	0.50±0.05	0.50±0.05	0.2±0.1
1	0603	1.6±0.1	0.8±0.1	0.8±0.1	0.3±0.2

Multilayer Varistor, Low Capacitance Type [High speed signal lines]

Features

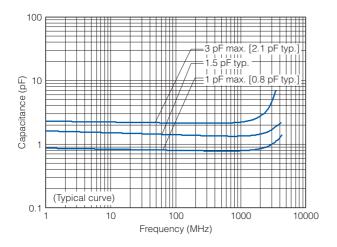
- Multilayer monolithic ceramic construction for high speed signal lines
- Ideal for USB 2.0, IEEE1394, and HDMI high speed data busses
- Applicable to high-speed signal lines, such as interfaces (e.g. USB 2.0, IEEE1394, HDMI, and so on), due to our original material technology and multilayer technology.
- Capacitance: 0.8 to 2.1 pF typ.

Recommended Applications

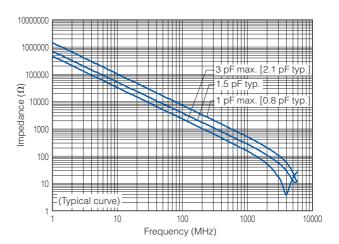

Mobile phone	Antenna circuit, External IF
DSC, DVC	USB2.0, IEEE1394
PC, PDA	USB2.0, IEEE1394, LAN1000BASE
TV, DVD	USB2.0, IEEE1394, HDMI
Game console	Controller, External IF

Ratings and Characteristics

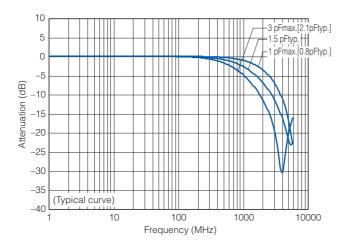
Size	Part No.	Maximum allowable voltage DC (V)	Nominal varistor voltage at 1mA (V)	Capacitance (pF) at 1MHz	Maximum ESD IEC61000-4-2		
	EZJZ0V80010	10	80	1 max. [0.8 typ.]			
	EZJZ0V80015D	5	80	1.5±0.5			
0402	EZJZ0V500AA	5	50	3 max. [2.1 typ.]			
	EZJZ0V800AA	18	80	3 max. [2.1 typ.]			
	EZJZ0V171AA	18	170	3 max. [2.1 typ.]	Contact discharge: 8kV		
	EZJZ1V80010	10	80	1 max. [0.8 typ.]			
0603	EZJZ1V500AA	5	50	3 max. [2.1 typ.]			
0003	EZJZ1V800AA	18	80	3 max. [2.1 typ.]			
	EZJZ1V171AA	18	170	3 max. [2.1 typ.]			


- Operating Temperature Range: -40 to 85 °C
- * Recommend soldering method : Reflow soldering

Voltage vs. Current

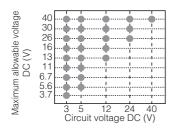


Panasonic


Capacitance vs. Frequency

Impedance vs. Frequency

Attenuation vs. Frequency



Multilayer Varistor, Low Voltage Type (Standard Type) [DC voltage lines/Low speed signal lines]

Features

Wide variety of products is available by adopting multilayer construction, which achieved wide range of usage, such as application to DC voltage lines and signal lines.

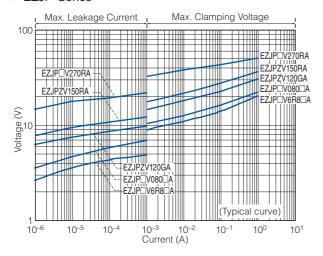
Circuit voltage

Varistor voltage: 6.8 to 65 V [at 1 mA]Capacitance: 8.5 to 420 pF typ. [at 1 MHz]

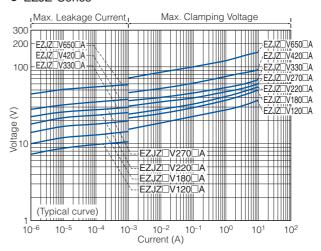
Recommended Applications					
Mobile phone	SW, LCD, LED, Audio terminal, Battery pack, Memory card, External IF				
DSC, DVC	SW, LCD, LED, USB				
PC, PDA	SW, LCD, LED, USB				
TV, DVD	Audio, Video terminal				
Audio	Audio terminal, Microphone, Receiver				
Game console	Controller, External IF				

Ratings and Characteristics

Size	Part No.	Maximum allowable voltage	Nominal varistor voltage	Capacitance (p	,	Maximum peak current at 8/20µs, 2times	Maximum ESD IEC61000-4-2	
		DC (V)	at 1mA (V)	at 1MHz at 1kHz		(A)		
	EZJPZV6R8JA	3.7	6.8	220 max. [180 typ.]	175 typ.	5		
	EZJPZV6R8GA	3.7	6.8	100 max. [85 typ.]	100 typ.	5		
	EZJPZV080GA	5.6	8	100 max. [85 typ.]	100 typ.	5		
	EZJPZV120GA	7.5	12	100 max. [85 typ.]	100 typ.	5		
0201	EZJPZV120DA	7.5	12	27 max. [22 typ.]	33 typ.	1		
	EZJPZV120RA	7.5	12	20 max. [15 typ.]	18 typ.	1		
	EZJPZV150RA	9	15	20 max. [15 typ.]	18 typ.	1		
	EZJPZV270RA	16	27	20 max. [15 typ.]	16.5 typ.	1		
	EZJPZV270BA	16	27	10 max. [8.5 typ.]	10 typ.	1		
	EZJP0V6R8MA	3.7	6.8	680 max. [420 typ.]	650 typ.	20		
	EZJP0V6R8GA 3		6.8	100 max. [85 typ.]	100 typ.	3		
	EZJP0V080MA	5.6	8	680 max. [420 typ.]	650 typ.	20		
	EZJP0V080KA	5.6	8	330 max. [290 typ.]	480 typ.	15		
	EZJP0V080GA	5.6	8	100 max. [65 typ.]	100 typ.	3		
	EZJP0V080DA	5.6	8	27 max. [22 typ.]	33 typ.	1	Contact discharge	
0402	EZJP0V120JA	6.7	12	220 max. [150 typ.]	175 typ.	10	8 kV	
	EZJZ0V180HA	11	18	150 max. [120 typ.]	140 typ.	10		
	EZJZ0V220HA	13	22	150 max. [100 typ.]	116 typ.	10		
	EZJP0V270EA	16	27	47 max. [33 typ.]	37 typ.	4		
	EZJP0V270RA	16	27	20 max. [15 typ.]	16.5 typ.	1		
	EZJZ0V420WA	30	42	56 max. [40 typ.]	45 typ.	10		
	EZJZ0V650DA	40	65	27 max. [22 typ.]	33 typ.	5		
	EZJP1V120KA	6.7	12	330 max. [250 typ.]	290 typ.	20		
	EZJZ1V180JA	11	18	220 max. [180 typ.]	210 typ.	20		
	EZJZ1V220JA	13	22	220 max. [160 typ.]	185 typ.	20		
	EZJZ1V270GA	16	27	100 max. [85 typ.]	100 typ.	20		
0603	EZJZ1V270EA	16	27	47 max. [33 typ.]	37 typ.	20		
	EZJZ1V270RA	16	27	20 max. [15 typ.]	16.5 typ.	3		
	EZJZ1V330GA	26	33	100 max. [85 typ.]	100 typ.	20		
	EZJZ1V420FA	EZJZ1V420FA 30		68 max. [55 typ.]	63 typ.	15		
	EZJZ1V650DA	40	65	27 max. [22 typ.]	33 typ.	5		

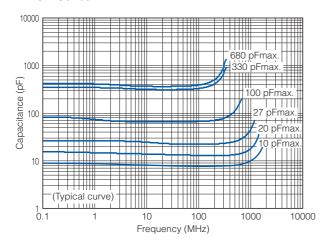

● Operating Temperature Range: -40 to 85 °C * Recommend soldering method : Reflow soldering

Maximum Allowable Voltage	Maximum DC Voltage that can be applied continuously within the operating temperature range
Varistor Voltage	Varistor starting voltage between terminals at DC 1 mA, also known as Breakdown voltage
Maximum Peak Current	Maximum current that can be withstood under the standard pulse 8/20 µs, 2 times based
Maximum ESD	Maximum voltage that can be withstood under ESD based on IEC61000-4-2, 10 times (5 times of each positive-negative polarity)

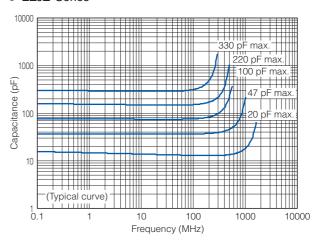

Panasonic

Voltage vs. Current

EZJP Series

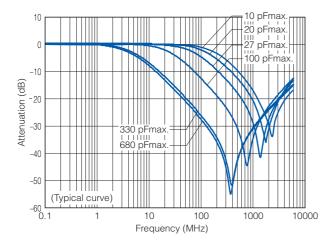


EZJZ Series

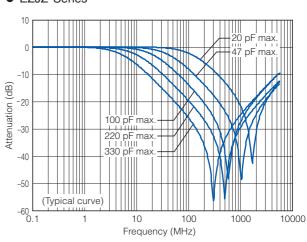


Capacitance vs. Frequency

EZJP Series



EZJZ Series



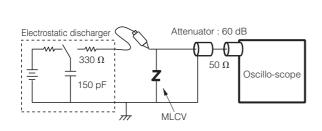
Attenuation vs. Frequency

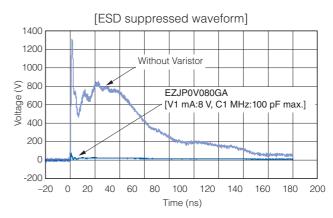
EZJP Series

EZJZ Series

Varistor Characteristics and Equivalent Circuit

A Multilayer Varistor does not have an electrical polarity like zener diodes and is equivalent to total 3 pcs. of 2 zener diodes and 1 capacitor.

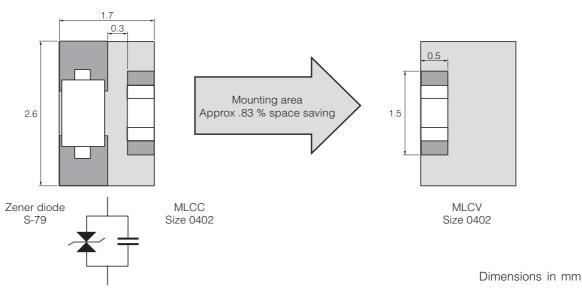

[Equivalent Circuit]



ESD Suppressive Effects

Typical effects of ESD suppression

Test conditions: IEC61000-4-2* Level 4 Contact discharge, 8 kV

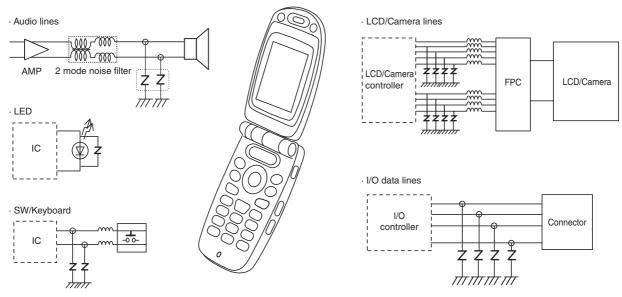


* IEC61000-4-2 ··· International Standard of the ESD testing method (HBM) for electronic equipment ability to withstand ESD generated from a human body. It sets 4 levels of severity

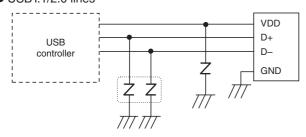
Severity	Level 1	Level 2	Level 3	Level 4
Contact discharge	2 kV	4 kV	6 kV	8 kV
Air discharge	2 kV	4 kV	8 kV	15 kV

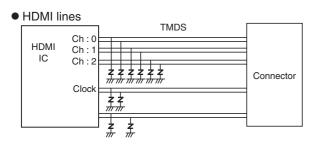
Replacement of Zener diode

Replacing "Zener diode and Capacitor" with Multilayer Varistor saves both the mounting area and number of components used.

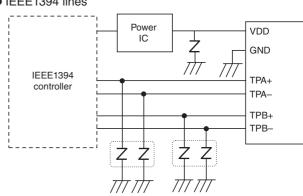


Recommended Applications


Applications	Series		DC 1k	1M	1G	Circuit (Hz)
Mobile phones, DSC, PC, PDA, HDD TV (PDP, LC etc.), DVD, DVC,	Series	Ultra low capacitance (Cap. : 3 pF or less)				DC to GHz Antenna, RF circuit, LVDS USB, IEEE1394, HDMI etc.
Game consoles, Audio equipment	EZJZ, P	Low capacitance (Cap. : 20 to 680 pF)				DC to tens of Hz PWR, SW, Audio terminals LCD, RS232C, etc.
PWR, Photoelectronic sensors, SSR, Motors, Pressure sensors, Proximity switches	Series EZJS	High capacitance (Cap.: 1800 to 22000 pF)				DC to several kHz PWR, SW, Audio terminals etc.


Applications

Mobile Phone



USB1.1/2.0 lines

• IEEE1394 lines

Performance and Testing Methods

Characteristics	Specifications	Testing Method				
Standard test conditions		Electrical characteristics shall be measured under the following conditions. Temp. : 5 to 35 °C, Relative humidity : 85 % or less				
Varistor voltage	To meet the specified value.	The Varistor voltage is the voltage (V_c ,or V_{cmA}) between both end terminals of a Varistor when specified current (CmA) is applied to it. The measurement shall be made as quickly as possible to avoid heating effects.				
Maximum allowable voltage	To meet the specified value.	The maximum DC voltage that can be applied continuously to a varistor.				
Capacitance	To meet the specified value.	Capacitance shall be measured at the specified frequency, bias voltage 0 V, and measuring voltage 0.2 to 2 Vrms.				
Maximum peak current	To meet the specified value.	The maximum current measured (Varistor voltage tolerance is within ±10 %) when a standard impulse current of 8/20 µ seconds is applied twice with an interval of 5 minutes.				
Maximum ESD	To meet the specified value.	The maximum ESD measured (while the varistor voltage is within ±30 % of its nominal value) when exposed to ESD 10 times (five times for each positive-negative polarity) based on IEC61000-4-2.				
Solder ability	To meet the specified value.	The part shall be immersed into a soldering bath under the conditions below. Solder: H63A Soldering flux : Ethanol solution of rosin (Concentration approx. 25 wt%) Soldering temp. : 230±5 °C Period : 4±1 s Soldering position : Immerse both terminal electrodes until they are completely into the soldering bath.				
Resistance to soldering heat	ΔVc / Vc : within ±10 %	After the immersion, leave the part for 24 ±2 hours under the standard condition, then evaluate its characteristics. Soldering conditions are specified below: Soldering conditions: 270 °C, 3 s / 260 °C, 10 s Soldering position: Immerse both terminal electrodes until they are completely into the soldering bath.				
		After repeating the cycles stated below for specified number of times, leave the part for 24±2 hours, then evaluate its characteristics. Cycle: 5 cycles				
Temperature	ΔVc / Vc : within ±10 %	Step Temperature Period				
cycling		1 Max. Operating Temp. 30±3 min				
		2 Ordinary temp. 3 min max.				
		3 Min. Operating Temp. 30±3 min				
		4 Ordinary temp. 3 min max.				
Biased Humidity	ΔVc / Vc : within ±10 %	After conducting the test under the conditions specified below, leave the part 24±2 hours, then evaluate its characteristics. Temp. : 40±2 °C Humidity : 90 to 95 %RH Applied voltage : Maximum allowable voltage (Individually specified) Period : 500+24 / 0 h				
High temperature exposure (dry heat)	ΔVc / Vc : within ±10 %	After conducting the test under the conditions specified below, leave the part 24 ±2 hours, then evaluate its characteristics. Temp.: Maximum operating temperature ±3 °C (Individually specified) Applied voltage: Maximum allowable voltage (Individually specified) Period: 500+24 / 0h				