

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



# Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China









### Is Now Part of



# ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <a href="https://www.onsemi.com">www.onsemi.com</a>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, emplo





# FAN54053 High Efficiency, 1.55 A, Li-Ion Switching Charger with Power Path, USB-OTG, in a Small Solution Footprint

#### **Features**

- Fully Integrated, High-Efficiency Switch-Mode Charger for Single-Cell Li-Ion and Li-Polymer Batteries
- Power Path Circuit Ensures Fast System Startup with a Dead Battery when VBUS is Connected
- 1.55 A Maximum Charge Current
- Programmable High Accuracy Float Voltage:
  - ±0.5% at 25°C
  - ±1% from 0 to 125°C
- ±5% Input and Charge Current Regulation Accuracy
- Temperature-Sense Input for JEITA Compliance
- Thermal Regulation and Shutdown
- 4.2 V at 2.3 A Production Test Support
- 5 V. 500 mA Boost Mode for USB OTG
- 28 V Absolute Maximum Input Voltage
- 6 V Maximum Input Operating Voltage
- Programmable through High-Speed I<sup>2</sup>C Interface (3.4 Mb/s) with Fast Mode Plus Compatibility
  - Input Current
  - Fast-Charge / Termination Current
  - Float Voltage
  - Termination Enable
- 3 MHz Synchronous Buck PWM Controller with Wide Duty Cycle Range
- Small Footprint 1 μH External Inductor
- Safety Timer with Reset Control
- Dynamic Input Voltage Control
- Very Low Battery Current when Charger Inactive

## **Applications**

- Cell Phones, Smart Phones, PDAs
- Tablet, Portable Media Players
- Gaming Device, Digital Cameras

All trademarks are the property of their respective owners.

## Description

The FAN54053 is a 1.55 A USB-compliant switch-mode charger featuring power path operation, USB OTG boost support, JEITA temperature control, and production test mode support, in a small 25 bump, 0.4 mm pitch WLCSP package.

To facilitate fast system startup, the IC includes a power path circuit, which disconnects the battery from the system rail, ensuring that the system can power up quickly following a VBUS connection. The power path circuit ensures that the system rail stays up when the charger is plugged in, even if the battery is dead or shorted.

The charging parameters; float voltage, input voltage regulation, input current, charging current, and other operating modes are programmable through an I<sup>2</sup>C Interface that operates up to 3.4 Mbps. The charger and boost regulator circuits switch at 3 MHz to minimize the size of external passive components.

The FAN54053 provides battery charging in three phases: conditioning, constant current and constant voltage. The IC automatically restarts the charge cycle when the battery falls below a voltage threshold. If the input source is removed, the IC enters a high-impedance mode blocking battery current from leaking to the input. Charge status is reported back to the host through the I<sup>2</sup>C port.

Dynamic input voltage control prevents a weak adapter's voltage from collapsing, ensuring charging capability from such adapters.

The FAN54053 is available in a space saving  $2.4 \, \text{mm} \times 2.0 \, \text{mm} \, \text{WLCSP}$  package.

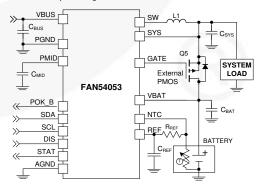
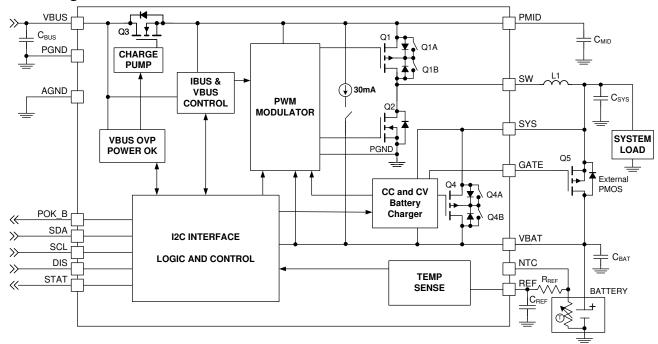



Figure 1. Typical Application


# **Ordering Information**

| Part Number | Temperature<br>Range | Package                                                          | PN Bits:<br>IC_INFO[5:3] | Packing Method |
|-------------|----------------------|------------------------------------------------------------------|--------------------------|----------------|
| FAN54053UCX | -40 to 85°C          | 25-Bump, Wafer-Level Chip-Scale<br>Package (WLCSP), 0.4 mm Pitch | 010                      | Tape and Reel  |

#### Table 1. Feature Summary

| Part Number | Slave Address | Automatic Charge | Battery Absent<br>Behavior | E1 Pin | Watchdog<br>Timer Default |
|-------------|---------------|------------------|----------------------------|--------|---------------------------|
| FAN54053    | 1101011       | No               | On                         | POK_B  | Disabled                  |

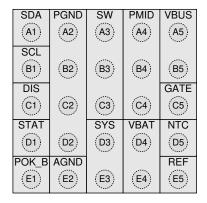
# **Block Diagram**



| PMID                          | Q1A | Q1B |
|-------------------------------|-----|-----|
| Greater than V <sub>BAT</sub> | ON  | OFF |
| Less than V <sub>BAT</sub>    | OFF | ON  |

| SYS                           | Q4A | Q4B |
|-------------------------------|-----|-----|
| Greater than V <sub>BAT</sub> | ON  | OFF |
| Less than V <sub>BAT</sub>    | OFF | ON  |

Figure 2. IC and System Block Diagram


**Table 2. Recommended External Components** 

| Component                           | Description                                      | Vendor                                        | Parameter           | Тур. | Unit |
|-------------------------------------|--------------------------------------------------|-----------------------------------------------|---------------------|------|------|
| L1                                  | 1 μH, 20%, 2.7 A, 2016                           | Toko DFE201610E-1R0M                          | L                   | 1.0  | μН   |
| LI                                  | or Equivalent                                    | DCR (Series R)                                | 48                  | mΩ   |      |
| C <sub>BAT</sub> , C <sub>SYS</sub> | 10 μF, 20%, 6.3 V, X5R, 0603                     | Murata: GRM188R60J106M<br>TDK: C1608X5R0J106M | С                   | 10   | μF   |
| C <sub>MID</sub>                    | 4.7 μF, 10%, 10 V, X5R, 0603 Murata: GRM188R61A- |                                               | C <sup>(1)</sup>    | 4.7  | μF   |
| C <sub>BUS</sub> ,                  | 1.0 μF, 10%, 25 V, X5R, 0603                     | Murata GRM188R61E105K<br>TDK:C1608X5R1E105M   | С                   | 1.0  | μF   |
| Q5                                  | PMOS,12 V, 16 mΩ, MLP2x2                         | Fairchild FDMA905P                            | R <sub>DS(ON)</sub> | 16   | mΩ   |
| $C_REF$                             | 1 μF, 10%, 6.3 V, X5R, 0402                      |                                               | С                   | 1.0  | μF   |

#### Note

1. 10 V rating is sufficient for C<sub>MID</sub> since PMID is protected from over-voltage surges on VBUS by Q3.

# **Pin Configuration**





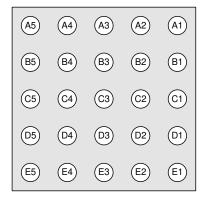



Figure 4. Bottom View

## **Pin Definitions**

| Pin#    | Name  | Description                                                                                                                                                                                                                                            |
|---------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A1 SDA  |       | I <sup>2</sup> C Interface Serial Data. This pin should not be left floating.                                                                                                                                                                          |
|         |       | I <sup>2</sup> C Interface Serial Clock. This pin should not be left floating.                                                                                                                                                                         |
| C1      | DIS   | <b>Disable</b> . If this pin is held HIGH, Q1 and Q3 are turned off, creating a HIGH Z condition at VBUS and the PWM converter is disabled.                                                                                                            |
| D1      | STAT  | <b>Status</b> . Open-drain output indicating charge status. The IC pulls this pin LOW when charge is in progress; can be used to signal the host processor when a fault condition occurs.                                                              |
| E1      | POK_B | <b>Power OK</b> . Open-drain output that pulls LOW when VBUS is plugged in and the battery has risen above V <sub>LOWV</sub> . This signal is used to signal the host processor that it can begin to draw significant current.                         |
| A2 – D2 | PGND  | <b>Power Ground</b> . Power return for gate drive and power transistors. The connection from this pin to the bottom of $C_{\text{MID}}$ should be as short as possible.                                                                                |
| E2      | AGND  | Analog Ground. All IC signals are referenced to this node.                                                                                                                                                                                             |
| A3 – C3 | SW    | Switching Node. Connect to output inductor.                                                                                                                                                                                                            |
| D3 – E3 | SYS   | System Supply. Output voltage of the switching charger and input to the power path controller. Bypass SYS to PGND with a 10 $\mu$ F capacitor.                                                                                                         |
| A4 – C4 | PMID  | <b>Power Input Voltage</b> . Power input to the charger regulator, bypass point for the input current sense. Bypass with a minimum of a 4.7 $\mu$ F, 6.3 V capacitor to PGND.                                                                          |
| D4 – E4 | VBAT  | <b>Battery Voltage</b> . Connect to the positive (+) terminal of the battery pack. Bypass with a 10 $\mu$ F capacitor to PGND. VBAT is a power path connection.                                                                                        |
| A5 – B5 | VBUS  | Charger Input Voltage and USB-OTG output voltage. Bypass with a 1 μF capacitor to PGND.                                                                                                                                                                |
| C5      | GATE  | <b>External MOSFET Gate</b> . This pin controls the gate of an external P-channel MOSFET transistor used to augment the internal ideal diode. The source of the P-channel MOSFET should be connected to SYS and the drain should be connected to VBAT. |
| D5      | NTC   | <b>Thermistor input</b> . The IC compares this node with taps on a resistor divider from REF to inhibit autocharging when the battery temperature is outside of permitted fast-charge limits.                                                          |
| E5      | REF   | Reference Voltage. REF is a 1.8 V regulated output.                                                                                                                                                                                                    |

# **Absolute Maximum Ratings**

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

| Symbol            |                                          | Parameter                                                          |                     | Min.               | Max. | Unit |
|-------------------|------------------------------------------|--------------------------------------------------------------------|---------------------|--------------------|------|------|
| M                 | Voltage on VDLIC Dia                     | Continuous                                                         |                     | -0.3               | 00.0 | V    |
| $V_{BUS}$         | Voltage on VBUS Pin                      | Pulsed, 100 ms Max                                                 | imum Non-Repetitive | -1.0               | 28.0 | V    |
| V                 | Voltage on PMID Voltage Pin              |                                                                    |                     | -0.3               | 7.0  | V    |
| Vı                | Voltage on SW, SYS, VBAT, STA            | AT, DIS Pins                                                       |                     | -0.3               | 7.0  | ]    |
| Vo                | Voltage on Other Pins                    |                                                                    | -0.3                | 6.5 <sup>(2)</sup> | V    |      |
| dV <sub>BUS</sub> | Maximum V <sub>BUS</sub> Slope Above 5.5 | um V <sub>BUS</sub> Slope Above 5.5 V when Boost or Charger Active |                     |                    | 4    | V/µs |
|                   | Electrostatic Discharge                  | Human Body Model                                                   | per JESD22-A114     | 20                 | 000  | V    |
| FCD               | Protection Level                         | Charged Device Model per JESD22-C101                               |                     | 500                |      | V    |
| ESD               | IEC 61000-4-2 System ESD <sup>(3)</sup>  | USB Connector                                                      | Air Gap             | -                  | 15   | kV   |
|                   | 1EC 61000-4-2 System ESD                 | Pins (V <sub>BUS</sub> to GND) C                                   | Contact             |                    | 8    |      |
| TJ                | Junction Temperature                     |                                                                    |                     | -40                | +150 | °C   |
| T <sub>STG</sub>  | Storage Temperature                      |                                                                    |                     | -65                | +150 | °C   |
| TL                | Lead Soldering Temperature, 10           | Seconds                                                            |                     |                    | +260 | °C   |

#### Notes:

- Lesser of 6.5 V or V<sub>I</sub> + 0.3 V.
- 3. Guaranteed if  $C_{BUS} \ge 1 \mu F$  and  $C_{MID} \ge 4.7 \mu F$ .

# **Recommended Operating Conditions**

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

| Symbol                       | Parameter                                                                       |                       | Min. | Max. | Unit                 |
|------------------------------|---------------------------------------------------------------------------------|-----------------------|------|------|----------------------|
| $V_{BUS}$                    |                                                                                 |                       | 4    | 6    | V                    |
| $V_{\text{BAT}(\text{MAX})}$ |                                                                                 |                       |      | 4.5  | ٧                    |
| $dV_{BUS}$                   | Negative VBUS Slew Rate during VBUS Short Circuit,                              | T <sub>A</sub> ≤ 60°C |      | 4    | V/µs                 |
| dt                           | $C_{MID} \le 4.7 \mu F$ , see VBUS Short While Charging $T_A \ge 60 ^{\circ} C$ |                       |      | 2    | <b>ν</b> /μ <b>S</b> |
| T <sub>A</sub>               | Ambient Temperature                                                             | mbient Temperature    |      | +85  | °C                   |
| $T_J$                        | Junction Temperature (see Register Bit section)                                 |                       | -30  | +120 | °C                   |

# **Thermal Properties**

Junction-to-ambient thermal resistance is a function of application and board layout. This data is measured with four-layer 2s2p boards in accordance to JEDEC standard JESD51. Special attention must be paid not to exceed junction temperature  $T_{J(max)}$  at a given ambient temperature  $T_A$ .

| Symbol        | Parameter                                              | Typical | Unit |
|---------------|--------------------------------------------------------|---------|------|
| $\theta_{JA}$ | θ <sub>JA</sub> Junction-to-Ambient Thermal Resistance |         | °C/W |
| $\theta_{JB}$ | Junction-to-PCB Thermal Resistance                     | 20      | °C/W |

# **Electrical Specifications**

Unless otherwise specified: according to the circuit of Figure 1; recommended operating temperature range for  $T_J$  and  $T_A$ ;  $V_{BUS}=5.0~V$ ;  $HZ\_MODE="0"$ ;  $OPA\_MODE="0"$  (Charge Mode); SCL, SDA=0 or 1.8 V; and typical values are for  $T_J=25^{\circ}C$ . Min. and Max. values are not tested in production, but are determined by characterization.

| Symbol                                           | Parameter                                                          |                                                                                                                 | Conditions                                                                                      | Min. | Тур.  | Max. | Unit |
|--------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------|-------|------|------|
| Power Sup                                        | plies                                                              |                                                                                                                 |                                                                                                 |      |       |      |      |
|                                                  | PWM Switching VRAT > VOREG                                         |                                                                                                                 |                                                                                                 |      | 25    |      | mA   |
| V <sub>OREG</sub> Charging C  I <sub>OCHRG</sub> | VBUS Current                                                       | $V_{BAT} > V_{OREG}$ $I_{BUSLIM} = 500 \text{ mA}$                                                              |                                                                                                 |      | 6     |      | mA   |
|                                                  |                                                                    | $0^{\circ}\text{C} < \text{T}_{\text{J}} < 85^{\circ}\text{C}, \text{ I}$<br>$V_{\text{BAT}} > V_{\text{LOWV}}$ | HZ_MODE = "1",                                                                                  |      | 190   | 280  | μА   |
| I <sub>BAT_HZ</sub>                              | Battery Discharge Current in High-Impedance Mode                   | DIS pin HIGH, or V <sub>BAT</sub> =4.35 V                                                                       | IS pin HIGH, or HZ_MODE = "1",<br>BAT=4.35 V                                                    |      | <1.25 | 10   | μА   |
| I <sub>BUS_HZ</sub>                              | Battery Leakage Current to V <sub>BUS</sub> in High-Impedance Mode |                                                                                                                 | DIS pin HIGH, or HZ_MODE = "1",<br>V <sub>BUS</sub> Shorted to Ground, V <sub>BAT</sub> =4.35 V |      | -0.2  |      | μА   |
| Charger Vo                                       | Itage Regulation                                                   |                                                                                                                 |                                                                                                 | •    | •     | •    |      |
|                                                  | Charge Voltage Range                                               |                                                                                                                 |                                                                                                 | 3.51 |       | 4.45 | V    |
| $V_{OREG}$                                       | Chaves Valtage Assurance                                           | $T_A = 25^{\circ}C$ , $V_{OREG}$                                                                                | = 4.35 V                                                                                        | -0.5 |       | +0.5 | %    |
|                                                  | Charge Voltage Accuracy                                            | T <sub>J</sub> =0 to 125°C                                                                                      |                                                                                                 | -1   |       | +1   | %    |
| Charging C                                       | Current Regulation (Fast Char                                      | ge)                                                                                                             |                                                                                                 |      |       | •    |      |
|                                                  | Output Charge Current<br>Range                                     | V <sub>LOWV</sub> < V <sub>BAT</sub> <                                                                          | IO_LEVEL = "0"                                                                                  | 550  |       | 1550 | mA   |
| I <sub>OCHRG</sub>                               |                                                                    | V <sub>OREG</sub>                                                                                               | IO_LEVEL = "1" (default)                                                                        | 165  | 200   | 230  | mA   |
|                                                  | Charge Current Accuracy                                            | IO_LEVEL = "0"                                                                                                  |                                                                                                 | -5   |       | +5   | %    |
| Weak Batte                                       | ery Detection                                                      |                                                                                                                 |                                                                                                 | •    | •     | •    |      |
|                                                  | Weak Battery Threshold<br>Range                                    |                                                                                                                 |                                                                                                 | 3.35 |       | 3.75 | V    |
| $V_{LOWV}$                                       | Weak Battery Threshold<br>Accuracy                                 |                                                                                                                 |                                                                                                 | -5   |       | +5   | %    |
|                                                  | Weak Battery Deglitch Time                                         | Rising Voltage, 2                                                                                               | mV Overdrive                                                                                    |      | 32    |      | ms   |
| PWM Char                                         | ging Threshold                                                     | •                                                                                                               |                                                                                                 | •    | •     |      | .1   |
| $V_{BATMIN}$                                     | Rising PWM Charging<br>Threshold                                   |                                                                                                                 |                                                                                                 | 3.1  | 3.2   | 3.3  | V    |
| VBATFALL                                         | Falling PWM Charging<br>Threshold                                  |                                                                                                                 |                                                                                                 |      | 3.0   |      | ٧    |
| Logic Leve                                       | ls: DIS, SDA, SCL                                                  | <u> </u>                                                                                                        |                                                                                                 | I    |       | ı    | .1   |
| V <sub>IH</sub>                                  | High-Level Input Voltage                                           |                                                                                                                 |                                                                                                 | 1.05 |       |      | V    |
| V <sub>IL</sub>                                  | Low-Level Input Voltage                                            |                                                                                                                 |                                                                                                 |      |       | 0.4  | V    |
| I <sub>IN</sub>                                  | Input Bias Current                                                 | Input Tied to GND                                                                                               | or V <sub>BUS</sub>                                                                             |      | 0.01  | 1.00 | μА   |
| R <sub>PD</sub>                                  | DIS Pull-Down Resistance                                           |                                                                                                                 |                                                                                                 |      | 1     |      | MΩ   |
| Charge Ter                                       | mination Detection                                                 |                                                                                                                 |                                                                                                 |      | ı     | l    |      |
|                                                  | Termination Current Range                                          | $V_{BAT} > V_{OREG} - V_{F}$                                                                                    | $_{\rm ICH}, V_{\rm BUS} > V_{\rm SLP}$                                                         | 50   |       | 400  | mA   |
|                                                  | Termination Current                                                | I <sub>TERM</sub> Setting ≤ 10                                                                                  |                                                                                                 | -15  |       | +15  | 1    |
| $I_{(TERM)}$                                     | Accuracy                                                           | I <sub>TERM</sub> Setting ≥ 20                                                                                  |                                                                                                 | -5   |       | +5   | %    |
|                                                  | Termination Current Deglitch                                       | 3                                                                                                               |                                                                                                 |      | 32    |      | ms   |

# **Electrical Specifications** (Continued)

Unless otherwise specified: according to the circuit of Figure 1; recommended operating temperature range for  $T_J$  and  $T_A$ ;  $V_{BUS}=5.0~V$ ;  $HZ\_MODE="0"$ ;  $OPA\_MODE="0"$  (Charge Mode); SCL, SDA=0 or 1.8 V; and typical values are for  $T_J=25^{\circ}C$ . Min. and Max. values are not tested in production, but are determined by characterization.

| Symbol                               | Parameter                                 | Conditions                                                              | Min.  | Тур.       | Max.  | Unit            |
|--------------------------------------|-------------------------------------------|-------------------------------------------------------------------------|-------|------------|-------|-----------------|
| Power Path (                         | Q4) Control (Precharge)                   |                                                                         | 1     |            |       |                 |
|                                      |                                           | IO_LEVEL = "1" (default)                                                | 165   | 200        | 235   | mA              |
| $I_{PP}$                             | Power Path Maximum                        | IO_LEVEL = "0", I <sub>BUSLIM</sub> ≤ "01"                              | 165   | 200        | 235   | mΑ              |
| IPP                                  | Charge Current                            | IO_LEVEL = "0", I <sub>BUSLIM</sub> > "01", I <sub>OCHARGE</sub> ≤ "02" | 375   | 450        | 520   | mΑ              |
|                                      |                                           | IO_LEVEL = "0", I <sub>BUSLIM</sub> > "01", I <sub>OCHARGE</sub> > "02" | 610   | 730        | 840   | mΑ              |
| V <sub>THSYS</sub>                   | VBAT to SYS Threshold                     | (SYS-VBAT) Falling                                                      | -6    | <b>-</b> 5 | -3    | m۷              |
| $V_{THSYS}$                          | for Q4 and Gate Transition While Charging | (SYS-VBAT) Rising                                                       | -1    | +1         | 2     | m۷              |
| Production T                         | est Mode                                  |                                                                         |       |            |       |                 |
| $V_{\text{BAT}(\text{PTM})}^{~(4)}$  | Production Test Output<br>Voltage         | 1 mA < I <sub>BAT</sub> < 2 A, V <sub>BUS</sub> =5.5 V                  | 4.116 | 4.200      | 4.284 | ٧               |
| I <sub>BAT(PTM)</sub> <sup>(4)</sup> | Production Test Output<br>Current         | 20% Duty with Max. Period 10 ms                                         | 2.3   |            |       | Α               |
| Battery Temp                         | perature Monitor (NTC)                    |                                                                         |       |            |       |                 |
| T1                                   | T1 (0°C) Temperature<br>Threshold         |                                                                         | 71.9  | 73.9       | 75.9  |                 |
| T2                                   | T2 (10°C) Temperature<br>Threshold        |                                                                         | 62.6  | 64.6       | 66.6  | % (             |
| Т3                                   | T3 (45°C) Temperature<br>Threshold        |                                                                         | 31.9  | 32.9       | 34.9  | V <sub>RE</sub> |
| T4                                   | T4 (60°C) Temperature<br>Threshold        |                                                                         | 21.3  | 23.3       | 25.3  |                 |
| Input Power                          | Source Detection                          |                                                                         |       |            |       |                 |
| $V_{IN(MIN)1}$                       | VBUS Input Voltage Rising                 | To Initiate and Pass VBUS Validation                                    |       | 4.35       | 4.45  | V               |
| $V_{\text{IN}(\text{MIN})2}$         | Minimum VBUS during Charge                | During Charging                                                         |       | 3.71       | 3.94  | ٧               |
| t <sub>VBUS_VALID</sub> (4)          | VBUS Validation Time                      |                                                                         |       | 30         |       | ms              |
| V <sub>BUS</sub> Control             | Loop                                      |                                                                         |       |            |       |                 |
| $V_{BUSLIM}$                         | VBUS Loop Setpoint<br>Accuracy            |                                                                         | -3    |            | +3    | %               |
| Input Curren                         | t Limit                                   |                                                                         |       |            |       |                 |
|                                      |                                           | I <sub>BUSLIM</sub> = "00"                                              | 450   | 475        | 500   |                 |
| I <sub>BUSLIM</sub>                  | Charger Input Current<br>Limit Threshold  | I <sub>BUSLIM</sub> = "01"                                              |       | 760        |       | m               |
|                                      |                                           | I <sub>BUSLIM</sub> = "10"                                              | 972   | 1080       | 1188  |                 |
| V <sub>REF</sub> Bias Ge             | nerator                                   |                                                                         |       |            |       |                 |
| $V_{REF}$                            | Bias Regulator Voltage                    | $V_{BUS} > V_{IN(MIN)1}$                                                |       | 1.8        |       | ٧               |
| V REF                                | Short-Circuit Current Limit               |                                                                         |       | 2.5        |       | m               |
| Battery Rech                         | arge Threshold                            |                                                                         |       |            |       |                 |
| $V_{RCH}$                            | Recharge Threshold                        | Below V <sub>OREG</sub>                                                 | 100   | 120        | 150   | m'              |
|                                      | Deglitch Time                             | V <sub>BAT</sub> Falling Below V <sub>RCH</sub> Threshold               |       | 130        |       | m               |
| STAT, POK_I                          | B Output                                  |                                                                         |       |            |       |                 |
| $V_{STAT(OL)}$                       | STAT Output Low                           | I <sub>STAT</sub> = 10 mA                                               |       |            | 0.4   | ٧               |
|                                      | STAT High Leakage                         |                                                                         | 1     |            | 1     | 1               |

# **Electrical Specifications** (Continued)

Unless otherwise specified: according to the circuit of Figure 1; recommended operating temperature range for  $T_J$  and  $T_A$ ;  $V_{BUS}=5.0~V;~HZ\_MODE="0";~OPA\_MODE="0"~(Charge Mode);~SCL,~SDA=0~or~1.8~V;~and~typical~values~are~for~T_J=25°C.~Min.~and~Max.~values~are~not~tested~in~production,~but~are~determined~by~characterization.$ 

| Symbol                  | Parameter                                                                  | Conditions                                                                                                    | Min.     | Тур. | Max. | Unit |
|-------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------|------|------|------|
| <b>Battery Dete</b>     | ction                                                                      |                                                                                                               |          |      |      |      |
| I <sub>DETECT</sub>     | Battery Detection Current before Charge Done (Sink Current) <sup>(5)</sup> | Begins after Termination Detected and                                                                         |          | -1.9 |      | mA   |
| tdetect                 | Battery Detection Time                                                     | V <sub>BAT</sub> ≤ V <sub>OREG</sub> - V <sub>RCH</sub>                                                       |          | 262  |      | ms   |
| Sleep Comp              | arator                                                                     |                                                                                                               |          |      |      |      |
| $V_{SLP}$               | Sleep-Mode Entry Threshold, V <sub>BUS</sub> – V <sub>BAT</sub>            | $2.3 \text{ V} \leq \text{V}_{\text{BAT}} \leq \text{V}_{\text{OREG}}, \text{V}_{\text{BUS}} \text{ Falling}$ | 0        | 0.04 | 0.10 | V    |
| Power Switc             | hes (see Figure 2)                                                         |                                                                                                               | •        |      |      |      |
|                         | Q3 On Resistance (VBUS to PMID)                                            | $I_{IN(LIMIT)} = 500 \text{ mA}$                                                                              |          | 180  | 400  |      |
| D                       | Q1 On Resistance (PMID to SW)                                              |                                                                                                               |          | 130  | 225  | mΩ   |
| $R_{DS(ON)}$            | Q2 On Resistance (SW to GND)                                               |                                                                                                               |          | 150  | 225  |      |
|                         | Q4 On Resistance (SYS to VBAT)                                             | V <sub>BAT</sub> =4.35 V                                                                                      |          | 70   | 100  | mΩ   |
| I <sub>SYNC</sub>       | Synchronous to Non-Synchronous<br>Current Cut-Off Threshold <sup>(6)</sup> | Low-Side MOSFET (Q2) Cycle-by-Cycle<br>Current Limit                                                          |          | 180  |      | mA   |
| Charger PW              | M Modulator                                                                |                                                                                                               |          |      |      |      |
| f <sub>SW</sub>         | Oscillator Frequency                                                       |                                                                                                               | 2.7      | 3.0  | 3.3  | MHz  |
| D <sub>MAX</sub>        | Maximum Duty Cycle                                                         |                                                                                                               |          |      | 100  | %    |
| D <sub>MIN</sub>        | Minimum Duty Cycle                                                         |                                                                                                               |          | 0    |      | %    |
| Boost Mode              | Operation (OPA_MODE=1)                                                     | 1                                                                                                             |          |      | ı    | 1    |
| V                       | Boost Output Voltage at VBUS                                               | $2.5~\text{V} < \text{V}_{\text{BAT}} < 4.5~\text{V},~\text{I}_{\text{LOAD}}$ from 0 to 200 mA                | 4.80     | 5.07 | 5.20 | V    |
| V <sub>BOOST</sub>      |                                                                            | $3.0~\text{V} < \text{V}_{\text{BAT}} < 4.5~\text{V},~\text{I}_{\text{LOAD}}$ from 0 to 500 mA                | 4.77     | 5.07 | 5.20 | V    |
| $I_{BAT(BOOST)}$        | Boost Mode Quiescent Current                                               | PFM Mode, V <sub>BAT</sub> = 3.6 V, I <sub>LOAD</sub> = 0 A                                                   |          | 250  | 350  | μА   |
| I <sub>LIMPK(BST)</sub> | Q2 Peak Current Limit                                                      |                                                                                                               | 1350     | 1550 | 1950 | mA   |
| 111/10                  | Minimum Battery Voltage for Boost                                          | While Boost Active                                                                                            |          | 2.32 |      | .,   |
| UVLO <sub>BST</sub>     | Operation                                                                  | To Start Boost Regulator                                                                                      |          | 2.48 | 2.70 | V    |
| VBUS Load               | Resistance                                                                 |                                                                                                               | <u>'</u> |      | •    | •    |
| _                       |                                                                            | Normal Operation                                                                                              |          | 500  |      | kΩ   |
| $R_{VBUS}$              | VBUS to PGND Resistance                                                    | VBUS Validation                                                                                               |          | 100  |      | Ω    |
| Protection a            | nd Timers                                                                  |                                                                                                               | 1        |      |      |      |
|                         | VBUS Over-Voltage Shutdown                                                 | V <sub>BUS</sub> Rising                                                                                       | 6.09     | 6.29 | 6.49 | V    |
| VBUS <sub>OVP</sub>     | Hysteresis                                                                 | V <sub>BUS</sub> Falling                                                                                      |          | 100  |      | mV   |
| I <sub>LIMPK(CHG)</sub> | Q1 Cycle-by-Cycle Peak Current<br>Limit                                    | Charge Mode                                                                                                   |          | 3    |      | Α    |
|                         | Battery Short-Circuit Threshold                                            | V <sub>BAT</sub> Rising                                                                                       | 1.95     | 2.00 | 2.07 | V    |
| $V_{SHORT}$             | Hysteresis                                                                 |                                                                                                               |          | 100  |      | mV   |
| I <sub>SHORT</sub>      | Linear Charging Current                                                    | V <sub>BAT</sub> < V <sub>SHORT</sub>                                                                         |          | 30   |      | mA   |
|                         | Thermal Shutdown Threshold <sup>(4)</sup>                                  | T <sub>J</sub> Rising                                                                                         |          | 145  |      |      |
| $T_{SHUTDWN}$           | Hysteresis <sup>(4)</sup>                                                  | T <sub>J</sub> Falling                                                                                        |          | 25   |      | °C   |
| T <sub>CF</sub>         | Thermal Regulation Threshold <sup>(4)</sup>                                | Charge Current Reduction Begins                                                                               |          | 120  |      | °C   |
| • (. <del> </del>       | The final regulation fill control                                          | 1 Change Carrott Hoddellon Degine                                                                             | 1        | 120  | 1    |      |

## **Electrical Specifications** (Continued)

Unless otherwise specified: according to the circuit of Figure 1; recommended operating temperature range for  $T_J$  and  $T_A$ ;  $V_{BUS}=5.0~V$ ;  $HZ\_MODE$ ;  $OPA\_MODE=0$ ; (Charge Mode); SCL, SDA=0 or 1.8 V; and typical values are for  $T_J=25^{\circ}C$ . Min. and Max. values are not tested in production, but are determined by characterization.

| Symbol             | Parameter                      | Conditions       | Min. | Тур. | Max. | Unit |  |
|--------------------|--------------------------------|------------------|------|------|------|------|--|
|                    | 32-Second Timer <sup>(7)</sup> | Charger Enabled  | 20.5 | 25.2 | 28.0 |      |  |
| t <sub>32S</sub>   | 32-Second Timer                | Charger Disabled | 18.0 | 25.2 | 34.0 | S    |  |
| t <sub>15MIN</sub> | 15-Minute Timer                | 15-Minute Mode   | 12.0 | 13.5 | 15.0 | min  |  |
| $\Delta t_{LF}$    | Low-Frequency Timer Accuracy   | Charger Inactive | -23  |      | 27   | %    |  |

#### Notes:

- 4. Guaranteed by design; not tested in production.
- 5. Negative current is current flowing from the battery to VBUS (discharging the battery).
- 6. Q2 always turns on for 60 ns, then turns off if current is below I<sub>SYNC</sub>.
- 7. This tolerance (%) applies to all timers on the IC, including soft-start and deglitching timers.

# I<sup>2</sup>C Timing Specifications

Guaranteed by design.

| Symbol              | Parameter                                       | Conditions                                | Min.                      | Тур. | Max. | Uni |  |  |  |
|---------------------|-------------------------------------------------|-------------------------------------------|---------------------------|------|------|-----|--|--|--|
|                     |                                                 | Standard Mode                             |                           |      | 100  |     |  |  |  |
| f <sub>SCL</sub>    |                                                 | Fast Mode 400                             |                           |      |      |     |  |  |  |
|                     | SCL Clock Frequency                             | Fast Mode Plus                            |                           |      | 1000 | kHz |  |  |  |
|                     |                                                 | High-Speed Mode, C <sub>B</sub> ≤ 100 pF  |                           |      | 3400 |     |  |  |  |
|                     |                                                 | High-Speed Mode, C <sub>B</sub> ≤ 400 pF  |                           |      | 1700 |     |  |  |  |
|                     |                                                 | Standard Mode                             |                           | 4.7  |      |     |  |  |  |
| t <sub>BUF</sub>    | BUS-free Time between STOP and START Conditions | Fast Mode                                 |                           | 1.3  |      | μS  |  |  |  |
|                     |                                                 | Fast Mode Plus                            |                           | 0.5  |      |     |  |  |  |
|                     |                                                 | Standard Mode                             |                           | 4    |      | μS  |  |  |  |
| +                   | START or Repeated START Hold                    | Fast Mode                                 |                           | 600  |      | ns  |  |  |  |
| t <sub>HD;STA</sub> | Time                                            | Fast Mode Plus                            |                           | 260  |      | ns  |  |  |  |
|                     |                                                 | High-Speed Mode                           |                           | 160  |      | ns  |  |  |  |
|                     |                                                 | Standard Mode                             |                           | 4.7  |      | μS  |  |  |  |
|                     |                                                 | Fast Mode                                 |                           | 1.3  |      | μS  |  |  |  |
| $t_{\text{LOW}}$    | SCL LOW Period                                  | Fast Mode Plus                            |                           | 0.5  |      | μS  |  |  |  |
|                     |                                                 | High-Speed Mode, C <sub>B</sub> ≤ 100 pF  |                           | 160  |      | ns  |  |  |  |
|                     |                                                 | High-Speed Mode, $C_B \le 400 \text{ pF}$ |                           | 320  |      | ns  |  |  |  |
| tнідн               | SCL HIGH Period                                 | Standard Mode                             |                           | 4    |      | μS  |  |  |  |
|                     |                                                 | Fast Mode                                 |                           | 600  |      | ns  |  |  |  |
|                     |                                                 | Fast Mode Plus                            |                           | 260  |      | ns  |  |  |  |
|                     |                                                 | High-Speed Mode, C <sub>B</sub> ≤ 100 pF  |                           | 60   |      | ns  |  |  |  |
|                     |                                                 | High-Speed Mode, C <sub>B</sub> ≤ 400 pF  |                           | 120  |      | ns  |  |  |  |
|                     |                                                 | Standard Mode                             |                           | 4.7  |      | μS  |  |  |  |
|                     | Days and all OTART Code on Time                 | Fast Mode                                 |                           | 600  |      | ns  |  |  |  |
| tsu;sta             | Repeated START Setup Time                       | Fast Mode Plus                            |                           | 260  |      | ns  |  |  |  |
|                     |                                                 | High-Speed Mode                           |                           | 160  |      | ns  |  |  |  |
|                     |                                                 | Standard Mode                             |                           | 250  |      |     |  |  |  |
|                     | Data Setup Time                                 | Fast Mode                                 |                           | 100  |      |     |  |  |  |
| t <sub>SU;DAT</sub> |                                                 | Fast Mode Plus                            |                           | 50   |      | ns  |  |  |  |
|                     |                                                 | High-Speed Mode                           |                           | 10   |      |     |  |  |  |
|                     |                                                 | Standard Mode                             | 0                         |      | 3.45 | μS  |  |  |  |
|                     | Data Hold Time                                  | Fast Mode                                 | 0                         |      | 900  | ns  |  |  |  |
| t <sub>HD;DAT</sub> |                                                 | Fast Mode Plus                            | 0                         |      | 450  | ns  |  |  |  |
|                     |                                                 | High-Speed Mode, C <sub>B</sub> ≤ 100 pF  | 0                         |      | 70   | ns  |  |  |  |
|                     |                                                 | High-Speed Mode, C <sub>B</sub> ≤ 400 pF  | 0                         |      | 150  | ns  |  |  |  |
|                     |                                                 | Standard Mode                             | 20+0.1C <sub>B</sub> 1000 |      | 1000 |     |  |  |  |
|                     |                                                 | Fast Mode                                 | 20+0.1C <sub>B</sub> 300  |      |      | ns  |  |  |  |
| $t_{RCL}$           | SCL Rise Time                                   | Fast Mode Plus                            | 20+0.1C <sub>B</sub> 120  |      |      |     |  |  |  |
|                     |                                                 | High-Speed Mode, C <sub>B</sub> ≤ 100 pF  |                           | 10   | 80   |     |  |  |  |
|                     |                                                 | High-Speed Mode, C <sub>B</sub> ≤ 400 pF  |                           | 20   | 160  |     |  |  |  |

# I<sup>2</sup>C Timing Specifications (Continued)

Guaranteed by design.

| Symbol              | Parameter                         | Conditions                                | Min.                 | Тур.             | Max. | Unit |  |  |
|---------------------|-----------------------------------|-------------------------------------------|----------------------|------------------|------|------|--|--|
| t <sub>FCL</sub>    | SCL Fall Time                     | Standard Mode                             | 20+0                 | .1C <sub>B</sub> | 300  |      |  |  |
|                     |                                   | Fast Mode                                 | 20+0.1C <sub>B</sub> |                  | 300  |      |  |  |
|                     |                                   | Fast Mode Plus 20+0.1                     |                      |                  | 120  | ns   |  |  |
|                     |                                   | High-Speed Mode, $C_B \le 100 \text{ pF}$ |                      | 10               | 40   |      |  |  |
|                     |                                   | High-Speed Mode, $C_B \le 400 \text{ pF}$ |                      | 20               | 80   |      |  |  |
| +                   | Rise Time of SCL after a Repeated | High-Speed Mode, C <sub>B</sub> ≤ 100 pF  |                      | 10               | 80   | no   |  |  |
| t <sub>RCL1</sub>   | START Condition and after ACK Bit | High-Speed Mode, $C_B \le 400 \text{ pF}$ |                      | 20               | 160  | ns   |  |  |
|                     |                                   | Standard Mode                             | 20+0                 | .1C <sub>B</sub> | 1000 | ns   |  |  |
| t <sub>RDA</sub>    | SDA Rise Time                     | Fast Mode                                 | 20+0                 | .1C <sub>B</sub> | 300  |      |  |  |
|                     |                                   | Fast Mode Plus                            | 20+0                 | .1C <sub>B</sub> | 120  |      |  |  |
|                     |                                   | High-Speed Mode, $C_B \le 100 \text{ pF}$ |                      | 10               | 80   |      |  |  |
|                     |                                   | High-Speed Mode, $C_B \le 400 \text{ pF}$ |                      | 20               | 160  |      |  |  |
|                     | SDA Fall Time                     | Standard Mode                             | 20+0.1C <sub>B</sub> |                  | 300  | ns   |  |  |
|                     |                                   | Fast Mode                                 | 20+0.1C <sub>B</sub> |                  | 300  |      |  |  |
| $t_{FDA}$           |                                   | Fast Mode Plus                            | 20+0.1C <sub>B</sub> |                  | 120  |      |  |  |
|                     |                                   | High-Speed Mode, $C_B \le 100 \text{ pF}$ |                      | 10               | 80   |      |  |  |
|                     |                                   | High-Speed Mode, $C_B \le 400 \text{ pF}$ |                      | 20               | 160  |      |  |  |
| t <sub>su;sto</sub> | Stop Condition Setup Time         | Standard Mode                             |                      | 4                |      | μS   |  |  |
|                     |                                   | Fast Mode                                 |                      | 600              |      | ns   |  |  |
|                     |                                   | Fast Mode Plus                            |                      | 120              |      | ns   |  |  |
|                     |                                   | High-Speed Mode                           |                      | 160              |      | ns   |  |  |
| Св                  | Capacitive Load for SDA and SCL   |                                           |                      |                  | 400  | pF   |  |  |

# **Timing Diagrams**

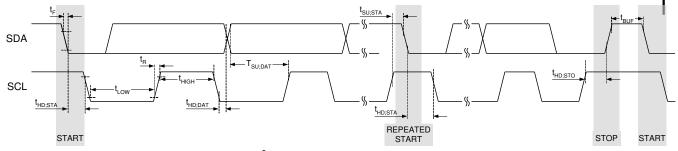
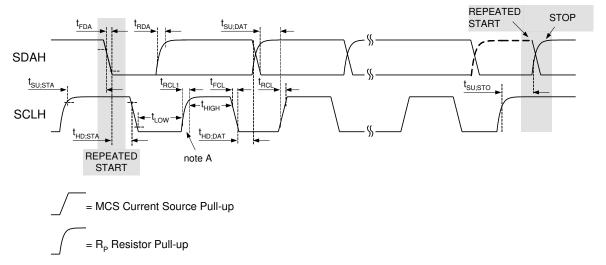
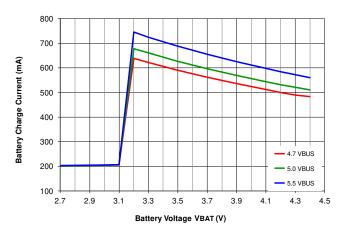




Figure 5. I<sup>2</sup>C Interface Timing for Fast and Slow Modes




Note A: First rising edge of SCLH after Repeated Start and after each ACK bit.

Figure 6. I<sup>2</sup>C Interface Timing for High-Speed Mode

## **Charge Mode Typical Characteristics**


Unless otherwise specified, circuit of Figure 1,  $V_{OREG}$ =4.35 V,  $I_{OCHARGE}$ =950 mA,  $V_{BUS}$ =5.0 V, and  $T_A$ =25°C.



1,700 1,500 Battery Charge Current (mA) 1,300 1,100 900 700 4.7 VBUS 500 5.5 VBUS 300 2.9 3.1 3.3 3.5 3.7 3.9 4.3 Battery Voltage VBAT (V)

Figure 7. Battery Charge Current vs.  $V_{\text{BUS}}$  with  $I_{\text{BUSLIM}} = 500 \text{ mA}$ 

Figure 8. Battery Charge Current vs.  $V_{\text{BUS}}$  with  $I_{\text{BUSLIM}} = 1100 \text{ mA}$ 



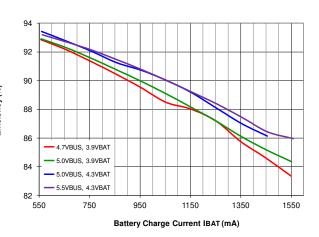
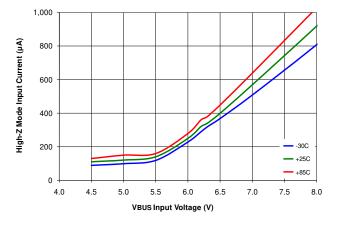




Figure 9. Efficiency vs. V<sub>BUS</sub>, I<sub>BUSLIM</sub>=500 mA, I<sub>SYS</sub>=0

Figure 10. Efficiency vs. Charging Current, IBUSLIM=No Limit



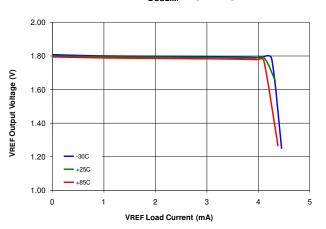
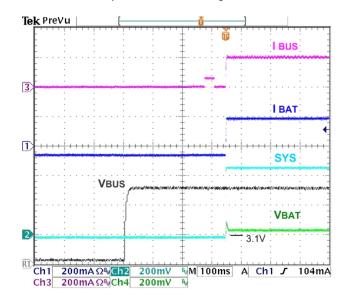




Figure 11. HZ Mode  $V_{\text{BUS}}$  Current vs. Temperature, 3.7  $V_{\text{BAT}}$ 

Figure 12. V<sub>REF</sub> vs. Load Current, Over-Temperature

## **Charge Mode Typical Characteristics**

Unless otherwise specified, circuit of Figure 1, Voreg=4.35 V, IoCharge=950 mA, V<sub>BUS</sub>=5.0 V, and T<sub>A</sub>=25°C.



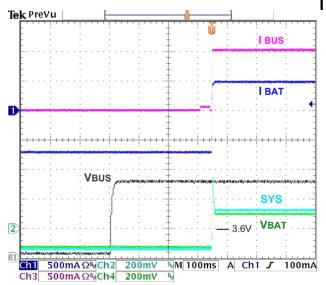
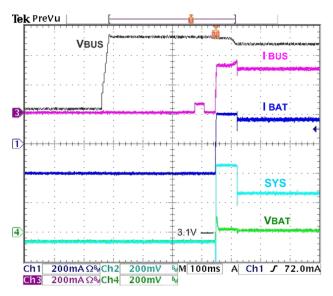




Figure 13. Charger Startup at  $V_{BUS}$  Plug-In, 500 mA  $I_{BUSLIM}$ , 3.1  $V_{BAT}$ , 50  $\Omega$  SYS Load, CE# = 0,  $IO_LVL=1$ 

Figure 14. Charger Startup at  $V_{BUS}$  Plug-In, 1100 mA  $I_{BUSLIM}$ , 3.6  $V_{BAT}$ , 700 mA SYS Load, CE# = 0,  $IO_LVL=0$ 



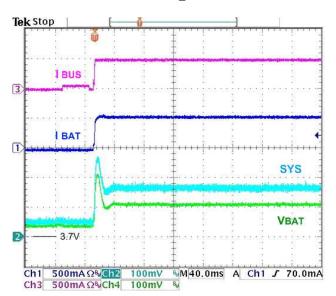



Figure 15. Charger Startup at V<sub>BUS</sub> Plug-In Using 300 mA Current Limited Source, 500 mA I<sub>BUSLIM</sub>, 3.1 V<sub>BAT</sub>, 200 mA SYS Load, CE# = 0, IO LVL=0

Figure 16. Charger Startup with HZ Bit Reset, 500 mA I<sub>BUSLIM</sub>, 950 mA I<sub>CHARGE</sub>, 50  $\Omega$  SYS Load, CE# = 0

## **Charge Mode Typical Characteristics**

Unless otherwise specified, circuit of Figure 1, Voreg=4.35 V, IoCharge=950 mA, V<sub>BUS</sub>=5.0 V, and T<sub>A</sub>=25°C.

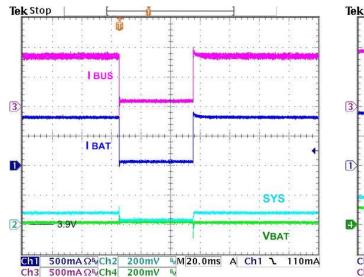
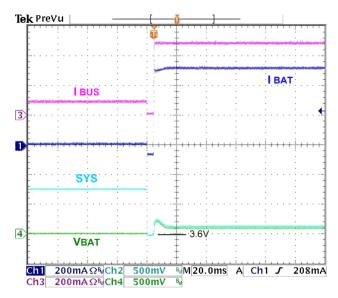




Figure 17. Battery Removal / Insertion while Charging, TE=0, 3.9  $V_{BAT}$ ,  $I_{CHRG}$ =950 mA,  $I_{BUSLIM}$ =No Limit, 50  $\Omega$  SYS Load

Figure 18. Battery Removal / Insertion when Charging, TE=1, 3.9  $V_{BAT}$ ,  $I_{BUSLIM}$ =No Limit, 50  $\Omega$  SYS Load



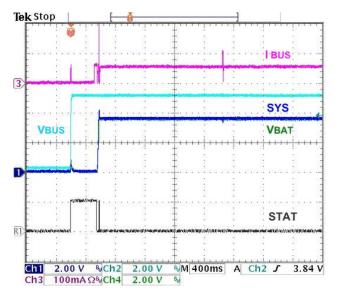



Figure 19. Charger Enable (CE# = 1 -0) with  $V_{BUS}$  Applied,  $I_{BUSLIM}$ =500 mA, 200 mA SYS Load, IO LVL=0

Figure 20. No Battery at  $V_{BUS}$  Power-Up, 100  $\Omega$  SYS Load, 1 k $\Omega$   $V_{BAT}$  Load

# **GSM Typical Characteristics**

A 2.0 A GSM pulse applied at  $V_{BAT}$  with 5  $\mu s$  rise / fall time. Simultaneous to GSM pulse, 50  $\Omega$  additional load applied at SYS.

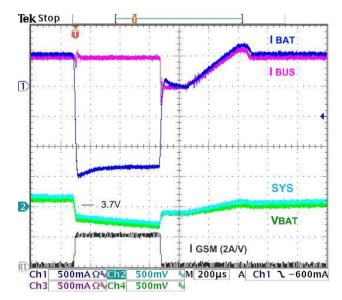



Figure 21. 2.0 A GSM Pulse Response, I<sub>BUSLIM</sub>=500 mA Control, I<sub>CHRG</sub>=950 mA, 3.7 V<sub>BAT</sub>, OREG=4.35 V

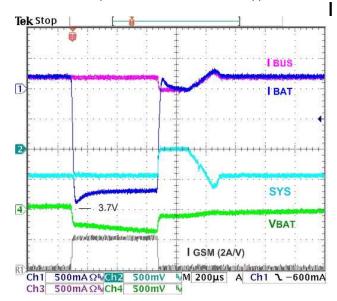



Figure 22. 2.0 A GSM Pulse Response, I<sub>BUSLIM</sub>=500 mA, I<sub>CHRG</sub>=950 mA, 3.7 V<sub>BAT</sub>, OREG=4.35 V, 200 mA Source Current Limit

## **Boost Mode Typical Characteristics**

Unless otherwise specified, using circuit of Figure 1, V<sub>BAT</sub>=3.6 V, T<sub>A</sub>=25°C.

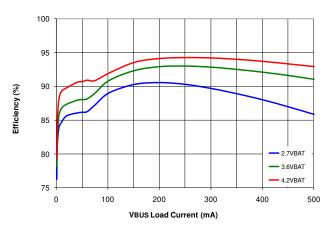
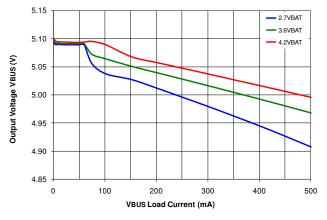




Figure 23. Efficiency vs. I<sub>BUS</sub> Over V<sub>BAT</sub>

Figure 24. Efficiency vs. I<sub>BUS</sub> Over-Temperature, 3.6 V<sub>BAT</sub>



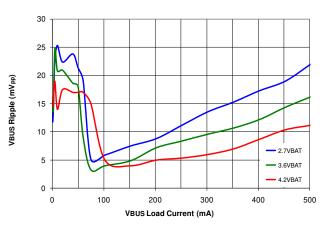
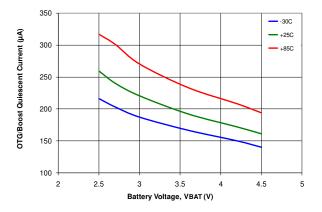
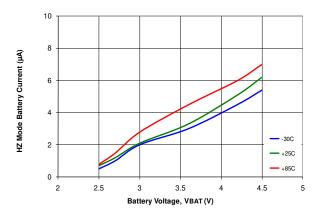




Figure 25. Regulation vs. I<sub>BUS</sub> Over V<sub>BAT</sub>

Figure 26. Output Ripple vs. I<sub>BUS</sub> Over V<sub>BAT</sub>





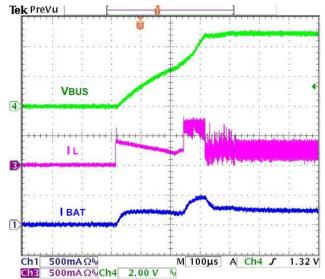


Figure 27. Quiescent Current ( $I_Q$ ) vs.  $V_{BAT}$  Over-Temperature

Figure 28. Battery Discharge Current vs. V<sub>BAT</sub>, HZ / Sleep Mode

SW

## **Boost Mode Typical Characteristics**

Unless otherwise specified, using circuit of Figure 1, VBAT=3.6 V, TA=25°C.



Tek PreVu

4

**VBUS** 

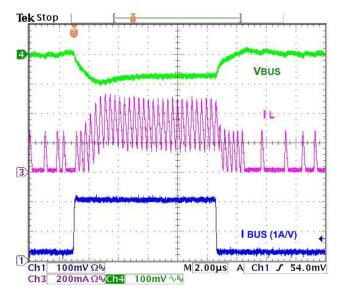



Figure 31. Load Transient, 20-200-20 mA  $I_{BUS}$ ,  $t_{RISE/FALL}$ =100 ns

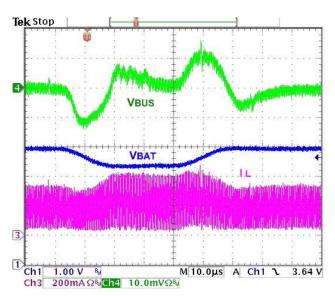



Figure 32. Line Transient, 50  $\Omega$  Load, 3.9-3.3-3.9  $V_{BAT}$ ,  $t_{RISE/FALL}$ =10  $\mu s$ 

### **Circuit Description / Overview**

When charging batteries with a current-limited input source, such as USB, a switching charger's high efficiency over a wide range of output voltages minimizes charging time.

FAN54053 combines a highly integrated synchronous buck regulator for charging with a synchronous boost regulator, which can supply 5 V to USB On-The-Go (OTG) peripherals. The FAN54053 employs synchronous rectification for both the charger and boost regulators to maintain high efficiency over a wide range of battery voltages and charge states.

The FAN54053 has four operating modes:

- Charge Mode: Charges a single-cell Li-ion or Li-polymer battery.
- Boost Mode: Provides 5 V power to USB-OTG with an integrated synchronous rectification boost regulator, using the battery as input.
- High-Impedance Mode:
   Both the boost and charging circuits are OFF in this mode. Current flow from VBUS to the battery or from the battery to VBUS is blocked in this mode. This mode consumes very little current from VBUS or the battery.
- Production Test Mode:
   This mode provides 4.35 V output on VBAT and supplies a load current of up to 2.3 A.

# **Charge Mode and Registers**

#### **Charge Mode**

In Charge Mode, FAN54053 employs six regulation loops:

- Input Current: Limits the amount of current drawn from VBUS. This current is sensed internally and can be programmed through the I<sup>2</sup>C interface.
- Charging Current: Limits the maximum charging current. This current is sensed using an internal sense MOSFET.
- 3. VBUS Voltage: This loop is designed to prevent the input supply from being dragged below VBUSLIM (typically 4.5 V) when the input power source is current limited. An example of this would be a travel charger. This loop cuts back the current when VBUS approaches VBUSLIM, allowing the input source to run in current limit.
- 4. Charge Voltage: The regulator is restricted from exceeding this voltage. As the internal battery voltage rises, the battery's internal impedance works in conjunction with the charge voltage regulation to decrease the amount of current flowing to the battery. Battery charging is completed when the current through Q4 drops below the I<sub>TERM</sub> threshold.
- 5. Pre-charge: When  $V_{\text{BAT}}$  is below  $V_{\text{BATMIN}}$ , Q4 operates as a linear current source and modulates its current to ensure that the voltage on SYS stays above 3.4 V.
- Temperature: If the IC's junction temperature reaches 120°C, charge current is reduced until the IC's temperature is below 120°C.

### **PWM Controller in Charge Mode**

The IC uses a current-mode PWM controller to regulate the output voltage and battery charge currents. The synchronous rectifier (Q2) has a negative current limit that turns off Q2 at 140 mA to prevent current flow from the battery.

#### **Battery Charging Curve**

If the battery voltage is below  $V_{SHORT}$ , a linear current source pre-charges the battery until  $V_{BAT}$  reaches  $V_{SHORT}$ . The PWM charging circuit is then started and the battery is charged with a constant current if sufficient input power is available. The current slew rate is limited to prevent overshoot.

During the current regulation phase of charging,  $I_{\text{BUSLIM}}$  or the programmed charging current limits the amount of current available to charge the battery and power the system.

During the voltage regulation phase of charging, assuming that  $V_{\text{OREG}}$  is programmed to the cell's fully charged "float" voltage, the current that the battery accepts with the PWM regulator limiting its output (sensed at VBAT) to  $V_{\text{OREG}}$  declines.

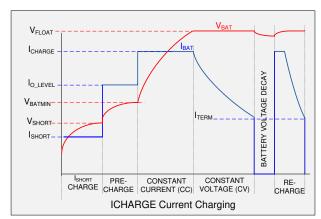



Figure 33. Charge Curve, I<sub>CHARGE</sub> Not Limited by I<sub>BUSLIM</sub>

The FAN54053 is designed to work with a current-limited input source at VBUS as shown below:

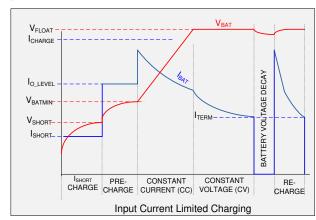



Figure 34. Charge Curve, IBUSLIM Limits ICHARGE

The following charging parameters can be programmed by the host through I<sup>2</sup>C:

Table 3. Programmable Charging Parameters

| Parameter                      | Name                 | Register  |  |
|--------------------------------|----------------------|-----------|--|
| Output Voltage Regulation      | V <sub>OREG</sub>    | REG2[7:2] |  |
| Battery Charging Current Limit | I <sub>OCHARGE</sub> | REG4[6:3] |  |
| Input Current Limit            | I <sub>BUSLIM</sub>  | REG1[7:6] |  |
| Charge Termination Limit       | I <sub>TERM</sub>    | REG4[2:0] |  |
| Weak Battery Voltage           | $V_{LOWV}$           | REG1[5:4] |  |
| VBUS Control                   | V <sub>BUSLIM</sub>  | REG5[2:0] |  |

## Output Voltage Regulation (Voreg)

The charger output or "float" voltage can be programmed by the OREG (REG02[7:2]) bits from 3.51 V to 4.45 V in 20 mV increments. The defauilt setting is 3.55 V.

See OREG Register Bit Definitions

### **Battery Charging Current Limit (Iocharge)**

When the IO\_LEVEL bit is set (default), the I<sub>OCHARGE</sub> bits are ignored and charge current is set to 200 mA.

See IOCHARGE Register Bit Definitions

### Input Current Limiting (IBUSLIM)

To minimize charging time without overloading VBUS current limitations, the IC's input current limit can be programmed by the IBUSLIM (REG1[7:6]) bits.

For the FAN54053, no charging occurs automatically at  $V_{\text{BUS}}$  POR, so the input current limit is established by the  $I_{\text{BUSLIM}}$  bits.

See IBUSLIM Register Bit Definitions

#### Termination Limit (I<sub>TERM</sub>)

Charge current termination can be enabled or disabled using the TE (REG01h[3]) bit. By default TE = "0", therefore, termination is disabled and charging does not terminate at the programmed  $I_{\text{TERM}}$  level.

When TE = "1", and  $V_{BAT}$  reaches  $V_{OREG}$ , the charging current is reduced, limited by the battery's ESR and its internal cell voltage. When the charge current falls below  $I_{TERM}$ ; PWM charging stops; but the STAT pin remains LOW. The STAT pin then goes HIGH and the STAT bits change to CHARGE DONE (10), provided the battery and charger are still connected. If  $V_{BAT}$  falls to  $V_{RCH}$  below  $V_{OREG}$ , the Fast Charge cycle starts again.

Post-charging can be enabled to "top-off" the battery to a lower termination current threshold than I<sub>TERM</sub>. The PC\_EN bit (REG07h[3]) must be set to "1" before the battery charging current reaches I<sub>TERM</sub>. The lower termination current is set by the PC\_IT (REG07h[2:0] bits. Post-charging begins after normal charging is ended (as described above) with the PC\_ON (REG11h[2]) monitor bit set to "1".

During post-charging, the STAT pin is HIGH, indicating that the charge current is below the  $I_{\mathsf{TERM}}$  level. Once the current reaches the threshold for post-charging completion (PC\_IT),

PWM charging stops and the PC\_ON bit changes back to "0". If the charging current goes above  $I_{TERM}$  without first falling to PC\_IT, the PC\_ON bit can be reset by using any of these methods:  $V_{BAT}$  moving below and above  $V_{BATMIN}$ , a  $V_{BUS}$  POR, or the CE# or HZ\_MODE bit cycled. If  $V_{BAT}$  falls to  $V_{RCH}$  below  $V_{OREG}$ , the Fast Charge cycle starts again.

See ITERM Register Bit Definitions

### Weak Battery Voltage (V<sub>LOWV</sub>)

The FAN54053 monitors the level of the battery with respect to a programmable  $V_{\text{LOWV}}$  (REG01h<5:4>) threshold (default 3.7 V). The  $V_{\text{LOWV}}$  threshold defines the voltage level of the battery at which the system is guaranteed to be fully operational when only powered by the battery.

The POK\_B pin pulls LOW once  $V_{BAT}$  reaches  $V_{LOWV}$ , and remains LOW as long as the IC is in Fast Charge. The IC will remain in Fast Charge as long as VBAT > 3.0 V.

See VLOWV Register Bit Definitions

### **VBUS Control loop (VBUSLIM)**

The IC includes a control loop that limits input current in case a current-limited source is supplying  $V_{\text{BUS}}$ .

The control increases the charging current until either:

- IBUSLIM or IOCHARGE is reached OR
- $V_{BUS} = V_{BUSLIM}$ .

If  $V_{BUS}$  collapses to  $V_{BUSLIM}$ , the VBUS loop reduces its current to keep  $V_{BUS} = V_{BUSLIM}$ . When the VBUS control loop is limiting the charge current, the VLIM bit (REG05h[3]) is set

See VBUSLIM Register Bit Definitions

## **Charger Operation**

#### **VBUS Plug In and Safety Timer**

At VBUS plug in, the TMR\_RST (Reg00h[7]) bit must be set within 2 seconds of  $V_{\text{BUS}}$  rising above  $V_{(\text{INMIN})1}$  or all registers, except for SAFETY (REG06h), are set to their default values. This functionality occurs regardless of the state of the CE# and WD\_DIS bit. If plug in occurs with the device in a HZ or Charge Done state and the TMR\_RST bit is not set within 2 seconds of  $V_{\text{BUS}}$  rising above  $V_{(\text{INMIN})1}$ , all register, except for SAFETY, will reset when the device enters PWM Charging or Recharge.

By default, the safety timers do not run in the FAN54053. A Watchdog ( $t_{32s}$ ) timer can be enabled by setting the WD\_DIS register bit, (REG13h[1]) to "0". When WD\_DIS = "0", charging is controlled by the host with the  $t_{32S}$  timer running to ensure that the host is alive. Setting the TMR\_RST bit resets the  $t_{32S}$  timer. If the  $t_{32S}$  timer times out; all registers, except SAFETY, are set to their default values (including WD\_DIS and CE#), the FAULT bits are set to "110", and STAT is pulsed.

#### **V<sub>BUS</sub> POR / Non-Compliant Charger Rejection**

256 ms after VBUS is connected, the IC pulses the STAT pin and sets the VBUS\_CON bit. Before starting to supply current, the IC applies a 110  $\Omega$  load from VBUS to GND.  $V_{\text{BUS}}$  must remain above  $V_{\text{IN(MIN)}1}$  and below VBUS\_OVP for  $t_{\text{VBUS}\_\text{VALID}}$  (32 ms) before the IC initiates charging or supplies power to SYS.

The VBUS validation sequence always occurs before significant current is available to be drawn from VBUS (for example, after a VBUS OVP fault or a  $V_{\rm RCH}$  (recharge initiation).  $t_{\rm VBUS\_VALID}$  ensures that unfiltered 50/60 Hz chargers and other non-compliant chargers are rejected.

#### **USB-Friendly Boot Sequence**

The FAN54053 does not automatically initiate charging at  $V_{BUS}$ POR. Instead, prior to receiving host commands, the buck is enabled to provide power to SYS while Q4 and Q5 remain off until register bit CE# (REG01[2]) is set to "0" through the  $I^2$ C interface, allowing charging through Q4.

#### Startup with No Battery

The FAN54053 has Battery Absent Behavior enabled. At  $V_{BUS}$  POR with the battery absent, the PWM will run, providing 3.55 V to the system from the input source with current limited by the default  $I_{BUSLIM}$  setting.

#### Startup with a Dead Battery

At  $V_{\text{BUS}}$  POR, if  $V_{\text{BAT}} < V_{\text{SHORT}}$ , all registers, including the SAFETY register, are reset to their default values and the DBAT\_B (REG02h[1]) bit is reset. CE# = "1", so charging is disabled.

If the battery's protection switch is open, the PWM will run, providing 3.55 V to the system from the input source with current limited by the default  $I_{\text{BUSLIM}}$  setting. This allows the host processor to awaken and establish host control. Once this occurs, the host's low level software can program the CE# bit to "0" and a linear current source closes the battery protection switch. When  $V_{\text{BAT}}$  voltage rises above  $V_{\text{SHORT}}$  and sufficient power is available, PWM charging begins and the battery is charged through the BATFET, Q4. The IO\_LEVEL (REG05h[5]) bit is set to "1" by default which limits charge current to 200 mA.

With CE# = "1" once  $V_{BAT}$  rises above  $V_{SHORT}$ , DBAT\_B is set. With CE# = "0" once  $V_{BAT}$  rises above  $V_{BATMIN}$ , DBAT\_B is set.

#### **Power Path Operation**

As long as V<sub>BAT</sub> < V<sub>BATMIN</sub>, Q4 operates as a linear current source, (Precharge) with its current (I<sub>PP</sub>) limited to 200 mA when IO\_LEVEL (REG05h[5]) is set to its default value of "1". If IO\_LEVEL is set to "0" and I<sub>INLIM</sub> > "01", charge current is limited to 450 mA when I<sub>OCHARGE</sub>  $\leq$  750 mA, and 730 mA when I<sub>OCHARGE</sub> > 750 mA. Providing the input current is not limited by the I<sub>BUSLIM</sub> setting or the current available from the source, during precharge, the IC regulates SYS to 3.55 V and provides the IO\_LEVEL limited current to the battery.

System power always has the highest priority when power from the buck is limited ensuring SYS does not fall below 3.4 V. This is managed by folding back the current to charge the battery until charge current is reduced to 0 A.

After  $V_{BAT}$  reaches  $V_{BATMIN}$ , Q4 closes and is used as a current-sense element to limit current ( $I_{OCHRG}$ ) per the  $I^2C$  register settings. This is accomplished by limiting the PWM modulator's current (Fast Charge). If SYS drops more than 5 mV ( $V_{THSYS}$ ) below  $V_{BAT}$  and CE#="0", Q4 and Q5 are turned on (GATE is pulled LOW). If CE#="1", only Q5 is turned on. Once SYS voltage becomes higher than  $V_{BAT}$ , Q5 is turned off and Q4 again serves as the current-sense element to limit  $I_{OCHRG}$ .

If CE# = "1" and DIS pin is high or CE# = "1" and HZ\_MODE = "1" while  $V_{BAT} > V_{LOWV}$ , so as to prevent the system from crashing, Q4 and Q5 are enabled. Q4 and Q5 are also both turned on when the IC enters SLEEP Mode ( $V_{BUS} < V_{BAT}$ ).

### POK\_B (see Table 4)

The POK\_B pin and POK\_B (REG11h[5]) bit are intended to provide feedback to the baseband processor that the battery is strong enough to allow the device to fully function. Whenever the IC is operating in precharge, POK\_B is HIGH. On exiting Precharge, POK\_B remains HIGH until  $V_{\text{BAT}} > V_{\text{LOWV}}.$  REG01h[5:4] sets the  $V_{\text{LOWV}}$  threshold.POK\_B pulls LOW once  $V_{\text{BAT}}$  reaches  $V_{\text{LOWV}},$  and remains LOW as long as the IC is in Fast Charge and the IC will remain in Fast Charge as long as  $V_{\text{BAT}} > 3.0 \text{ V}.$  If the battery voltage falls below 3.0 V the IC enters Precharge. If WD\_DIS = "0" and the  $T_{32S}$  expires during charging, the POK\_B pin will go high.

If the battery was above  $V_{\text{LOWV}}$  and has fallen below the level, the POK\_B bit can be set to change the state of the pin to be high. This setting of the bit and pin can be used to signal the system into a low-power state, preventing excessive loading from the system while attempting to recharge a depleted battery.

The STAT pin pulses any time the POK\_B pin changes.

Table 4. Q4, Q5, POK B vs. Operating Mode

| Operating Mode                                          | V <sub>BUS</sub>                                 | V <sub>BAT</sub>                                                     | CE# | PWM | V <sub>SYS</sub>   | Q4     | Q5  | GATE | POK_B                        |
|---------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------------|-----|-----|--------------------|--------|-----|------|------------------------------|
| BUS Disconnected                                        |                                                  |                                                                      |     |     |                    |        |     |      |                              |
| OFF                                                     | < V <sub>BAT OR</sub> < V <sub>IN(MIN)2</sub>    | > V <sub>SHORT</sub>                                                 | X   | OFF | ≤ V <sub>BAT</sub> | ON     | ON  | LOW  | HIGH                         |
|                                                         | VBUS Plug in with Battery Protection Switch Open |                                                                      |     |     |                    |        |     |      |                              |
| DWW                                                     | \                                                | ODEN                                                                 | 1   | ON  | V <sub>OREG</sub>  | OFF    | OFF | HIGH | HIGH                         |
| PWM                                                     | Valid                                            | OPEN                                                                 | 0   | ON  |                    |        |     |      | Indeterminate <sup>(8)</sup> |
| 30 mA Linear Charging (9)                               | Valid                                            | < V <sub>SHORT</sub>                                                 | 0   | ON  | 3.55               | OFF    | OFF | HIGH | HIGH                         |
|                                                         | Charge Mode                                      |                                                                      |     |     |                    |        |     |      |                              |
| Precharge                                               | Valid                                            | > V <sub>SHORT</sub> and<br>< V <sub>BATMIN</sub>                    | 0   | ON  | 3.55               | Linear | OFF | HIGH | HIGH                         |
| Precharge:<br> SYS + Ipp > IPWM,<br> IBAT < IPP         | Valid                                            | < VBATMIN                                                            | 0   | ON  | < 3.55             | Linear | OFF | HIGH | HIGH                         |
| Fast Charge                                             | Valid                                            | > V <sub>BATMIN</sub> and<br>< V <sub>LOWV</sub>                     | 0   | ON  | > V <sub>BAT</sub> | ON     | OFF | HIGH | HIGH                         |
|                                                         |                                                  | > V <sub>LOWV</sub>                                                  |     |     |                    |        |     |      | LOW                          |
| Battery Voltage Falling from Fast Charge                |                                                  |                                                                      |     |     |                    |        |     |      |                              |
| Precharge                                               | Valid                                            | V <sub>BATFALL</sub>                                                 | 0   | ON  | 3.55               | ON     | OFF | HIGH | HIGH                         |
| Battery Supplementing SYS                               |                                                  |                                                                      |     |     |                    |        |     |      |                              |
| Cupplemental Made:                                      |                                                  | > V <sub>SHORT</sub>                                                 | 1   | ON  | < V <sub>BAT</sub> | Х      | ON  | LOW  | Х                            |
| Supplemental Mode : I <sub>SYS</sub> > I <sub>PWM</sub> | Valid                                            | > V <sub>BATMIN</sub> and<br>> V <sub>SYS</sub> + V <sub>THSYS</sub> | 0   | ON  | < V <sub>BAT</sub> | Х      | ON  | LOW  | х                            |

#### Note:

- 8. When  $V_{BAT}$  is open it can float to  $V_{SYS}$ , and POK\_B = HIGH when  $V_{BAT} < V_{LOWV}$  and POK\_B = LOW when  $V_{BAT} > V_{LOWV}$ .
- 9. 30 mA Linear Charging operating mode assumes the host has programmed CE# = "0" during PWM Operating Mode.

#### Charger Status / Fault Status

The STAT pin indicates the operating condition of the IC and provides a fault indicator for interrupt driven systems.

Table 5. STAT Pin Function

| EN_STAT | Charge State              | STAT Pin                   |
|---------|---------------------------|----------------------------|
| 0       | X                         | OPEN                       |
| Х       | Normal Conditions         | OPEN                       |
| 1       | Charging                  | LOW                        |
| Х       | Fault (Charging or Boost) | 128 μs Pulse,<br>then OPEN |

The FAULT bits (REG00h[2:0]) indicate the type of fault in Charge Mode.

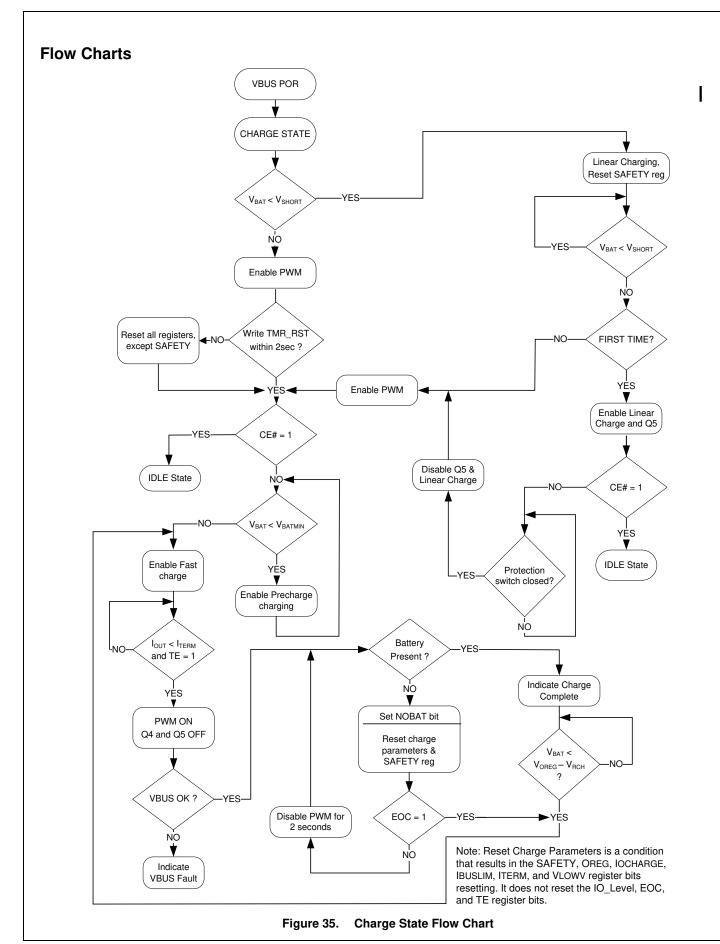
#### Monitor Registers (REG10h, REG11h)

Additional status monitoring bits enable the host processor to have more visibility into the status of the IC. The monitor bits are real-time status indicators and are not internally debounced or otherwise time qualified.

The state of the MONITOR register bits listed in High-Impedance Mode is valid only when  $V_{\text{BUS}}$  is valid.

#### **Charge Mode Control Bits**

The CE# (REG01h[2]) bit is set to "1" by default, therefore, charging is disabled.


Setting the RESET (REG04h[7]) bit clears all registers (except SAFETY). The CE# bit will only be cleared if RESET occurs with a valid VBUS and  $V_{BAT} < V_{LOWV}$ . If HZ\_MODE or the WD\_DIS bit was set when the RESET bit is set, this bit is also cleared. Refer to the Register Bit Definitions section for more details.

The HZ\_MODE (REG01h[1]) and DIS pin will put the device in High-Impedance Mode. If HZ\_MODE = "1" or DIS pin is HIGH, so as to prevent the system from crashing, Q4 and Q5 are enabled.

The functionality of the HZ\_MODE (REG01h[1]) bit and DIS pin has a dependence upon  $V_{BAT}$  voltage level and the WD\_DIS (REG13h[1]) bit state. Refer to Table 5 for details.

Table 6. DIS Pin, HZ\_MODE and WD\_DIS bits Operation

| Conditions                                          | Functionality                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                                     | Setting either the HZ_MODE bit through I <sup>2</sup> C or the DIS pin to HIGH will disable the charger and put the IC into High-Impedance Mode.                                                                                                                                                                                    |  |  |  |  |
| WD DIS = 1 and $V_{BAT} > V_{LOWV}$                 | Resetting the HZ_MODE bit or the DIS pin to LOW will allow charging to resume.                                                                                                                                                                                                                                                      |  |  |  |  |
| VVD_DIS = 1 and VBAI > VLOWV                        | While in High-Impedance mode, if $V_{BAT}$ drops below $V_{LOWV}$ , all registers (except SAFETY), including HZ_MODE and CE# are reset. Note that charge parameters will need to be reprogrammed in order to completely charge the battery.                                                                                         |  |  |  |  |
| WD_DIS = 1 and V <sub>BAT</sub> < V <sub>LOWV</sub> | Setting either the HZ_MODE bit through I <sup>2</sup> C or the DIS pin to HIGH will reset all registers (except SAFETY), including HZ_MODE and CE#.                                                                                                                                                                                 |  |  |  |  |
| WD_DIS = 0 and V <sub>BAT</sub> > V <sub>LOWV</sub> | Setting either the HZ_MODE bit through I <sup>2</sup> C or the DIS pin to HIGH will stop the t <sub>32S</sub> timer from advancing (does not reset it), disable the charger, and put the IC into High-Impedance Mode.                                                                                                               |  |  |  |  |
|                                                     | Resetting the HZ_MODE bit or the DIS pin to LOW will allow charging to resume.                                                                                                                                                                                                                                                      |  |  |  |  |
| WD_DIS = 0 and V <sub>BAT</sub> < V <sub>LOWV</sub> | Setting either the HZ_MODE bit through I <sup>2</sup> C or the DIS pin to HIGH will disable the charger and put the IC into High-Impedance Mode. The T <sub>32S</sub> timer will continue to run. If the T <sub>32S</sub> timer is allowed to overflow, all registers (except SAFETY) are reset, including WD_DIS, HZ_MODE and CE#. |  |  |  |  |

