

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, emplo

FAN54063 High Efficiency, 1.55 A, Li-Ion Switching Charger with Power Path, USB-OTG, in a Small Solution Footprint

Features

- Fully Integrated, High-Efficiency Switch-Mode Charger for Single-Cell Li-Ion and Li-Polymer Batteries
- Power Path Circuit Ensures Fast System Startup with a Dead Battery when VBUS is Connected
- 1.55 A Maximum Charge Current
- Programmable High Accuracy Float Voltage:
 - ±0.5% at 25°C
 - ±1% from 0 to 125°C
- ±5% Input and Charge Current Regulation Accuracy
- Temperature-Sense Input for JEITA Compliance
- Thermal Regulation and Shutdown
- 4.2 V at 2.3 A Production Test Support
- 5 V, 500 mA Boost Mode for USB OTG
- 28 V Absolute Maximum Input Voltage
- 6 V Maximum Input Operating Voltage
- Programmable through High-Speed I²C Interface (3.4 Mb/s) with Fast Mode Plus Compatibility
 - Input Current
 - Fast-Charge / Termination Current
 - Float Voltage
 - Termination Enable
- 3 MHz Synchronous Buck PWM Controller with Wide Duty Cycle Range
- Small Footprint 1 μH External Inductor
- Safety Timer with Reset Control
- Dynamic Input Voltage Control
- Very Low Battery Current when Charger Inactive

Applications

- Cell Phones, Smart Phones, PDAs
- Tablet, Portable Media Players
- Gaming Device, Digital Cameras

All trademarks are the property of their respective owners.

Description

The FAN54063 is a 1.55 A USB-compliant switch-mode charger featuring power path operation, USB OTG boost support, JEITA temperature control, and production test mode support, in a small 25 bump, 0.4 mm pitch WLCSP package.

To facilitate fast system startup, the IC includes a power path circuit, which disconnects the battery from the system rail, ensuring that the system can power up quickly following a VBUS connection. The power path circuit ensures that the system rail stays up when the charger is plugged in, even if the battery is dead.

The charging parameters and operating modes are programmable through an I²C Interface that operates up to 3.4 Mbps. The charger and boost regulator circuits switch at 3 MHz to minimize the size of external passive components.

The FAN54063 provides battery charging in three phases: conditioning, constant current and constant voltage. The IC automatically restarts the charge cycle when the battery falls below a voltage threshold. If the input source is removed, the IC enters a high-impedance mode blocking battery current from leaking to the input. Charger status is reported back to the host through the I²C port.

Dynamic input voltage control prevents a weak adapter's voltage from collapsing, ensuring charging capability from such adapters.

The FAN54063 is available in a space saving 2.4 mm x 2.0 mm WLCSP package.

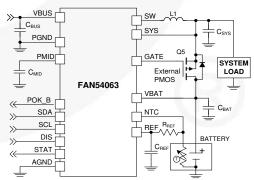
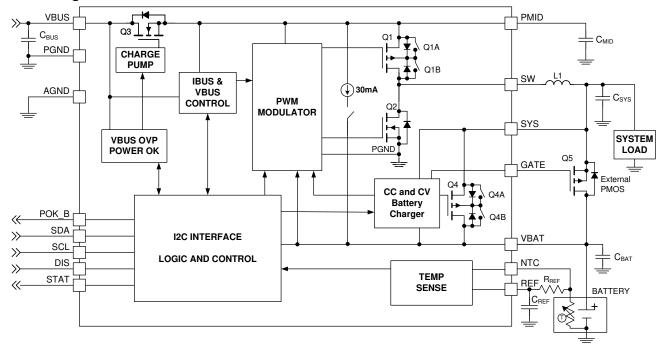


Figure 1. Typical Application


Ordering Information

Part Number	Temperature Range	Package	PN Bits: IC_INFO[5:3]	Packing Method
FAN54063UCX	-40 to 85°C	25-Bump, Wafer-Level Chip-Scale Package (WLCSP), 0.4 mm Pitch	010	Tape and Reel

Table 1. Feature Summary

Part Number	Slave Address	Automatic Charge	Battery Absent Behavior	E1 Pin	Watchdog Timer Default
FAN54063	1101011	No	On	POK_B	Disabled

Block Diagram

PMID	Q1A	Q1B
Greater than V _{BAT}	ON	OFF
Less than V _{BAT}	OFF	ON

SYS	Q4A	Q4B	
Greater than V _{BAT}	ON	OFF	
Less than V _{BAT}	OFF	ON	

Figure 2. IC and System Block Diagram

Table 2. Recommended External Components

Component	Description	Vendor	Parameter	Тур.	Unit
L1	1L 20% 4.0 A 2016	Semco CIGT201610EH1R0M	L	1.0	μН
LI	1 μH, 20%, 4.0 A, 2016	or Equivalent	DCR (Series R)	33	mΩ
C_{BAT}, C_{SYS}	10 μF, 20%, 6.3 V, X5R, 0603	SR, 0603 Murata: GRM188R60J106M C TDK: C1608X5R0J106M			μF
C _{MID}	4.7 μF, 10%, 10 V ⁽¹⁾ , X5R, 0603	Murata: GRM188R61A475K TDK: C1608X5R1A475K	С	4.7	μF
C _{BUS}	1.0 μF, 10%, 25 V, X5R, 0603	Murata GRM188R61E105K TDK:C1608X5R1E105M	С	1.0	μF
Q5	Q5 PMOS,12 V, 16 mΩ, MLP2x2 Fairchild FDMA905P		R _{DS(ON)}	16	mΩ
C_REF	1.0 μF, 10%, 6.3 V, X5R, 0402		С	1.0	μF

Note

1. 10 V rating is sufficient for C_{MID} since PMID is protected from over-voltage surges on VBUS by Q3.

Pin Configuration

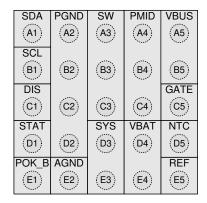


Figure 3. Top View

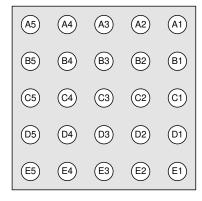


Figure 4. Bottom View

Pin Definitions

Pin#	Name	Description
A1 SDA		I ² C Interface Serial Data. This pin should not be left floating.
B1 SCL I ² C Interface Serial Clock. This pin should not be left floating.		
C1 DIS		Disable . If this pin is held HIGH, Q1 and Q3 are turned off; creating a HIGH Z condition at VBUS and the PWM converter is disabled.
D1	STAT	Status. Open-drain output indicating charge status. The IC pulls this pin LOW when charge is in progress; can be used to signal the host processor when a fault condition occurs.
E1	POK_B	Power OK . Open-drain output that pulls LOW when VBUS is plugged in and the battery has risen above V _{LOWV} . This signal is used to signal the host processor that it can begin to draw significant current.
A2 – D2	PGND	Power Ground . Power return for gate drive and power transistors. The connection from this pin to the bottom of C_{MID} should be as short as possible.
E2	AGND	Analog Ground. All IC signals are referenced to this node.
A3 – C3	SW	Switching Node. Connect to output inductor.
D3 – E3	SYS	System Supply. Output voltage of the switching charger and input to the power path controller. Bypass SYS to PGND with a 10 μ F capacitor.
A4 – C4	PMID	Power Input Voltage . Power input to the charger regulator, bypass point for the input current sense. Bypass with a minimum of a 4.7 μ F, 6.3 V capacitor to PGND.
D4 – E4	VBAT	Battery Voltage . Connect to the positive (+) terminal of the battery pack. Bypass with a 10 μ F capacitor to PGND. VBAT is a power path connection.
A5 – B5	VBUS	Charger Input Voltage and USB-OTG Output Voltage. Bypass with a 1 μF capacitor to PGND.
C5	GATE	External MOSFET Gate . This pin controls the gate of an external P-channel MOSFET transistor used to augment the internal ideal diode. The source of the P-channel MOSFET should be connected to SYS and the drain should be connected to VBAT.
D5	NTC	Thermistor Input . The IC compares this node with taps on a resistor divider from REF to inhibit autocharging when the battery temperature is outside of permitted fast-charge limits.
E5	REF	Reference Voltage. REF is a 1.8 V regulated output.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol		Parameter		Min.	Max.	Unit
V	Continuous			-0.3	20.0	V
V _{BUS}	Voltage on VBUS Pin	Pulsed, 100 ms Max	imum Non-Repetitive	-1.0	28.0	V
Vı	Voltage on PMID, SW, SYS, VBA	T, STAT, DIS Pins	-0.3	7.0	V	
Vo	Voltage on Other Pins			-0.3	6.5 ⁽²⁾	V
dV _{BUS}	Maximum V _{BUS} Slope Above 5.5	V when Boost or Char		4	V/μs	
	Electrostatic Discharge	Human Body Model per JESD22-A114		2000		V
ESD	Protection Level	Charged Device Model per JESD22-C101		500		
ESD	IEC 61000-4-2 System ESD ⁽³⁾	USB Connector	Air Gap	15		kV
	1EC 61000-4-2 System ESD	Pins (V _{BUS} to GND)		8] ^v
TJ	Junction Temperature		_	-40	+150	°C
T _{STG}	Storage Temperature	_		-65	+150	°C
T _L	Lead Soldering Temperature, 10	Seconds			+260	°C

Notes:

- 2. Lesser of 6.5 V or $V_1 + 0.3 V$.
- 3. Guaranteed if $C_{BUS} \ge 1 \mu F$ and $C_{MID} \ge 4.7 \mu F$.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter		Min.	Max.	Unit
V _{BUS}	Supply Voltage		4	6	V
$V_{BAT(MAX)}$	Maximum Battery Voltage when Boost enabled			4.5	V
dV_{BUS}	Negative VBUS Slew Rate during VBUS Short Circuit,	T _A ≤ 60°C		4	\//a
	C _{MID} ≤ 4.7 μF	$T_A \ge 60^{\circ}C$		2	V/μs
T _A	Ambient Temperature		-30	+85	°C
TJ	Junction Temperature (see Thermal Regulation and Shut	down)	-30	+120	°C

Thermal Properties

Junction-to-ambient thermal resistance is a function of application and board layout. This data is measured with four-layer 2s2p boards in accordance to JEDEC standard JESD51. Special attention must be paid not to exceed junction temperature $T_{J(MAX)}$ at a given ambient temperature T_A .

Symbol	Parameter	Typical	Unit
$\theta_{\sf JA}$	Junction-to-Ambient Thermal Resistance	50	°C/W
$\theta_{\sf JB}$	Junction-to-PCB Thermal Resistance	20	°C/W

Electrical Specifications

Unless otherwise specified: according to the circuit of Figure 1; recommended operating temperature range for T_J and T_A ; $V_{BUS} = 5.0 \text{ V}$; $HZ_MODE = "0"$; $OPA_MODE = "0"$ (Charge Mode); SCL, SDA = 0 or 1.8 V; and typical values are for $T_J = 25^{\circ}C$. Min. and Max. values are not tested in production, but are determined by characterization.

Symbol	Parameter		Conditions	Min.	Тур.	Max.	Unit
Power Sup	plies						
		PWM Switching			20		mA
Power Supp IVBUS IBHAT_HZ IBUS_HZ Charger Vo Voreg Charging Co IOCHARGE Weak Batter VLOWV PWM Charge VBATMIN	VBUS Current	$V_{BAT} > V_{OREG}$ $I_{BUSLIM} = 500 \text{ mA}$			6		mA
		0°C < T _J < 85°C, I "1", V _{BAT} > V _{LOWV}	DIS pin HIGH or HZ_MODE =		190	280	μА
I _{BAT_HZ}	Battery Discharge Current in High-Impedance Mode	DIS pin HIGH, or HZ_MODE = "1", VBAT = 4.35 V			<1.25	10.00	μА
I _{BUS_HZ}	Battery Leakage Current to V _{BUS} in High-Impedance Mode	DIS pin HIGH or H V _{BUS} Shorted to G	HZ_MODE = "1", V _{BAT} = 4.35 V, iround	-5.0	-0.2		μА
Charger Vo	oltage Regulation						-
	Charge Voltage Range			3.51		4.45	V
V_{OREG}	Chaves Valtage Assurance	$T_A = 25^{\circ}C, V_{OREG}$	= 4.35 V	-0.5		+0.5	%
	Charge Voltage Accuracy	T _J = 0 to 125°C		-1		+1	%
Charging C	Current Regulation (Fast Charge	ge)					
	Output Charge Current Range	V _{LOWV} < V _{BAT} <	IO_LEVEL = "0"	550		1550	mA
I _{OCHARGE}		V _{OREG}	IO_LEVEL = "1" (default)	165	200	230	mA
	Charge Current Accuracy	IO_LEVEL = "0"		-5		+5	%
Weak Batte	ery Detection						-
	Weak Battery Threshold Range			3.4		3.7	V
V_{LOWV}	Weak Battery Threshold Accuracy			-5		+5	%
	Weak Battery Deglitch Time				32		ms
PWM Char	ging Threshold				ı		.1
V _{BATMIN}	Rising PWM Charging Threshold			3.1	3.2	3.3	٧
VBATFALL	Falling PWM Charging Threshold				3.0		٧
Logic Leve	ls: DIS, SDA, SCL	<u> </u>				I.	.1
V _{IH}	High-Level Input Voltage			1.05			V
V _{IL}	Low-Level Input Voltage					0.4	V
I _{IN}	Input Bias Current	Input Tied to GND	or V _{BUS}		0.01	1.00	μА
R _{PD}	DIS Pull-Down Resistance	$V_{DIS} = 0.4 \text{ V}$			300		kΩ
Charge Ter	mination Detection						
	Termination Current Range			50		400	mA
	Termination Current	I _{TERM} Setting ≤ 10	0 mA	-15		+15	
I_{TERM}	Accuracy	I _{TERM} Setting > 20		-5		+5	%
	Termination Current Deglitch Time ⁽⁴⁾				32		ms

Electrical Specifications (Continued)

Unless otherwise specified: according to the circuit of Figure 1; recommended operating temperature range for T_J and T_A ; $V_{BUS} = 5.0 \text{ V}$; $HZ_MODE = "0"$; $OPA_MODE = "0"$ (Charge Mode); SCL, SDA = 0 or 1.8 V; and typical values are for $T_J = 25^{\circ}C$. Min. and Max. values are not tested in production, but are determined by characterization.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Power Path (Q4) Control (Precharge)					•
		IO_LEVEL = "1" (default)	165	200	235	mA
I_{PP}	Power Path Maximum Charge Current	IO_LEVEL = "0", IBUSLIM < "01"	165	200	235	mA
Ірр		IO_LEVEL = "0", IBUSLIM >"01", IOCHARGE < "02"	375	450	520	mA
		IO_LEVEL = "0", IBUSLIM >"01", IOCHARGE > "02"	610	730	840	m <i>P</i>
V _{THSVS}	VBAT to SYS Threshold	(SYS – VBAT) Falling	-6	-5	-3	m٧
V_{THSYS}	for Q4 and Gate Transition While Charging	(SYS – VBAT) Rising	-1	1	2	m۱
Production T	est Mode					
$V_{\text{BAT}(\text{PTM})}^{(4)}$	Production Test Output Voltage	1 mA < I _{BAT} < 2 A, V _{BUS} = 5.5 V	4.116	4.200	4.284	٧
I _{BAT(PTM)} ⁽⁴⁾	Production Test Output Current	20% Duty with Max. Period 10 ms	2.3			Α
Battery Temp	perature Monitor (NTC)					
T1	T1 (0°C) Temperature Threshold		71.9	73.9	75.9	
T2	T2 (10°C) Temperature Threshold		62.6	64.6	66.6	% (
Т3	T3 (45°C) Temperature Threshold		31.9	32.9	34.9	V _{RE}
T4	T4 (60°C) Temperature Threshold		21.3	23.3	25.3	
Input Power	Source Detection					
$V_{IN(MIN)1}$	VBUS Input Voltage Rising	To Initiate and Pass VBUS Validation		4.35	4.45	V
$V_{\text{IN}(\text{MIN})2}$	Minimum VBUS during Charge	During Charging		3.71	3.94	٧
t _{VBUS_VALID} (4)	VBUS Validation Time			32		ms
V _{BUS} Control	Loop					
V _{BUSLIM}	VBUS Loop Setpoint Accuracy		-3		+3	%
Input Curren	t Limit					
		IBUSLIM = "00"	450	475	500	
I _{BUSLIM}	Charger Input Current Limit Threshold	IBUSLIM = "01"		760		m
	Limit Tilloshold	IBUSLIM = "10"	972	1080	1188	
V _{REF} Bias Ge	nerator					
V	Bias Regulator Voltage	Charge Mode		1.8		٧
V_{REF}	Short-Circuit Current Limit	Charge Mode		2.5		m.
Battery Rech	arge Threshold					
V	Recharge Threshold	V _{BAT} Below V _{OREG}	100	120	150	m'
V _{RCH}	Deglitch Time	V_{BAT} Falling Below V_{RCH} Threshold		130		m
STAT, POK_I	B Outputs					
$V_{(OL)}$	Output Low	I _{SINK} = 10 mA			0.4	\
I _(OH)	Output High Leakage Current	V _{OUTPUT} = 5 V			1	μA

Electrical Specifications (Continued)

Unless otherwise specified: according to the circuit of Figure 1; recommended operating temperature range for T_J and T_A ; $V_{BUS} = 5.0 \text{ V}$; $HZ_MODE = "0"$; $OPA_MODE = "0"$ (Charge Mode); SCL, SDA = 0 or 1.8 V; and typical values are for $T_J = 25^{\circ}C$. Min. and Max. values are not tested in production, but are determined by characterization.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Battery Dete	ction			-		
I _{DETECT}	Battery Detection Current before Charge Done (Sink Current) ⁽⁵⁾	Begins after Termination Detected and		-1.9		mA
t _{DETECT}	Battery Detection Time	V _{BAT} ≤ V _{OREG} − V _{RCH}		262		ms
Sleep Comp	arator					
V_{SLP}	Sleep-Mode Entry Threshold, V _{BUS} – V _{BAT}	$V_{\text{IN(MIN)2}} \le V_{\text{BAT}} \le V_{\text{OREG}}, V_{\text{BUS}} \text{ Falling}$	0	0.04	0.10	V
Power Switc	hes (see Figure 2)					
	Q3 On Resistance (VBUS to PMID)	I _{BUSLIM} = 500 mA		180	340	
R _{DS(ON)}	Q1 On Resistance (PMID to SW)			130	225	mΩ
TIDS(ON)	Q2 On Resistance (SW to GND)			150	225	
	Q4 On Resistance (SYS to VBAT)	V _{BAT} = 4.35 V		70	100	mΩ
I _{SYNC}	Synchronous to Non-Synchronous Current Cut-Off Threshold ⁽⁶⁾	Low-Side MOSFET (Q2) Cycle-by-Cycle Current Limit		180		mA
Charger PW	M Modulator					
f _{SW}	Oscillator Frequency		2.7	3.0	3.3	MHz
D _{MAX}	Maximum Duty Cycle				100	%
D _{MIN}	Minimum Duty Cycle			0		%
Boost Mode	Operation (OPA_MODE = 1)		1			1
V	Boost Output Voltage at VBUS	$2.5~\text{V} < \text{V}_{\text{BAT}} < 4.5~\text{V},~\text{I}_{\text{LOAD}}$ from 0 to 200 mA	4.80	5.07	5.20	V
V _{BOOST}		$3.0~V < V_{BAT} < 4.5~V,~I_{LOAD}$ from 0 to $500~mA$	4.77	5.07	5.20	V
$I_{BAT(BOOST)}$	Boost Mode Quiescent Current	PFM Mode, V _{BAT} = 3.6 V, I _{LOAD} = 0 A		250	350	μА
I _{LIMPK(BST)}	Q2 Peak Current Limit		1550	1800	2100	mA
11)/1.0	Minimum Battery Voltage for Boost	While Boost Active		2.32		.,
UVLO _{BST}	Operation	To Start Boost Regulator		2.48	2.70	V
VBUS Load	Resistance					
Б	VIDLO : BOND D : :	Normal Operation		500		kΩ
R_{VBUS}	VBUS to PGND Resistance	VBUS Validation		100		Ω
Protection a	nd Timers					1
\	VBUS Over-Voltage Shutdown	V _{BUS} Rising	6.09	6.29	6.49	V
VBUS _{OVP}	Hysteresis	V _{BUS} Falling		100		mV
I _{LIMPK(CHG)}	Q1 Cycle-by-Cycle Peak Current Limit	Charge Mode		3		Α
.,	Battery Short-Circuit Threshold	V _{BAT} Rising	1.95	2.00	2.07	V
V_{SHORT}	Hysteresis			100		mV
I _{SHORT}	Linear Charging Current	V _{BAT} < V _{SHORT}		30		mA
	Thermal Shutdown Threshold ⁽⁴⁾	T _J Rising		145		
$T_{SHUTDWN}$	Hysteresis ⁽⁴⁾	T _J Falling		25		°C
T _{CF}	Thermal Regulation Threshold ⁽⁴⁾	Charge Current Reduction Begins		120		°C
· CF	Thomas regulation mileonola	Shargo Santoni Hoddollon Dogino	1	120		

Electrical Specifications (Continued)

Unless otherwise specified: according to the circuit of Figure 1; recommended operating temperature range for T_J and T_A ; $V_{BUS} = 5.0 \text{ V}$; HZ_MODE ; $OPA_MODE = 0$; (Charge Mode); SCL, SDA = 0 or 1.8 V; and typical values are for $T_J = 25^{\circ}C$. Min. and Max. values are not tested in production, but are determined by characterization.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
t _{32S} 3	32-Second Timer ⁽⁷⁾	Charger Enabled	20.5	25.2	28.0	
	32-Second Timer	Charger Disabled	18.0	25.2	28.0	S
Δt_{LF}	Low-Frequency Timer Accuracy	Charger Inactive	-23		27	%

Notes:

- 4. Guaranteed by design; not tested in production.
- 5. Negative current is current flowing from the battery to ground (discharging the battery).
- 6. Q2 always turns on for 60 ns, then turns off if current is below I_{SYNC}.
- 7. This tolerance (%) applies to all timers on the IC, including soft-start and deglitching timers.

I²C Timing Specifications

Guaranteed by design.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Uni	
		Standard Mode			100		
		Fast Mode			400		
f_{SCL}	SCL Clock Frequency	Fast Mode Plus			1000	kHz	
		High-Speed Mode, C _B ≤ 100 pF			3400		
		High-Speed Mode, C _B ≤ 400 pF			1700		
		Standard Mode		4.7			
t _{BUF}	BUS-free Time between STOP and START Conditions	Fast Mode		1.3		μS	
	OTAITI OUTUIIOIIS	Fast Mode Plus		0.5			
		Standard Mode		4		μS	
	START or Repeated START Hold	Fast Mode		600		ns	
t _{HD;STA}	Time	Fast Mode Plus		260		ns	
	High-Speed Mode		160		ns		
		Standard Mode		4.7		μS	
		Fast Mode		1.3		μS	
t_{LOW}	SCL LOW Period	Fast Mode Plus		0.5		μS	
		High-Speed Mode, C _B ≤ 100 pF		160		ns	
	High-Speed Mode, C _B ≤ 400 pF		320		ns		
		Standard Mode		4		μS	
	SCL HIGH Period	Fast Mode		600		ns	
t _{HIGH}		Fast Mode Plus		260		ns	
		High-Speed Mode, C _B ≤ 100 pF		60		ns	
		High-Speed Mode, C _B ≤ 400 pF		120		ns	
		Standard Mode		4.7		μS	
	D	Fast Mode		600		ns	
tsu;sta	Repeated START Setup Time	Fast Mode Plus		260		ns	
		High-Speed Mode		160		ns	
		Standard Mode		250			
	D . O . T	Fast Mode		100			
t _{SU;DAT}	Data Setup Time	Fast Mode Plus		50		ns	
		High-Speed Mode		10			
		Standard Mode	0		3.45	μS	
		Fast Mode	0		900	ns	
t _{HD;DAT}	Data Hold Time	Fast Mode Plus	0		450	ns	
		High-Speed Mode, C _B ≤ 100 pF	0		70	ns	
		High-Speed Mode, C _B ≤ 400 pF	0		150	ns	
		Standard Mode	20 + 0).1C _B	1000		
		Fast Mode	+		300		
t _{RCL}	SCL Rise Time	Fast Mode Plus	20 + 0).1C _B	120	ns	
		High-Speed Mode, C _B ≤ 100 pF		10	80	1	
		High-Speed Mode, C _B ≤ 400 pF	1	20	160		

I²C Timing Specifications (Continued)

Guaranteed by design.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
		Standard Mode	20 + 0.1C _B		300		
		Fast Mode	20 + 0).1C _B	300		
t_{FCL}	SCL Fall Time	Fast Mode Plus	20 + 0).1C _B	120	ns	
		High-Speed Mode, $C_B \le 100 \text{ pF}$	ed Mode, C _B ≤ 100 pF 10				
		High-Speed Mode, $C_B \le 400 \text{ pF}$		20	80		
t- a	Rise Time of SCL after a Repeated	High-Speed Mode, $C_B \le 100 \text{ pF}$		10	80	ne	
t _{RCL1}	START Condition and after ACK Bit	High-Speed Mode, C _B ≤ 400 pF		20	160	ns	
		Standard Mode	20 + 0).1C _B	1000		
	SDA Rise Time	Fast Mode	20 + 0.1C _B		300	ns	
t_{RDA}		Fast Mode Plus	20 + 0.1C _B		120		
		High-Speed Mode, $C_B \le 100 \text{ pF}$		10	80		
		High-Speed Mode, $C_B \le 400 \text{ pF}$	20		160		
		Standard Mode	20 + 0.1C _B		300		
		Fast Mode	20 + 0.1C _B		300		
t_{FDA}	SDA Fall Time	Fast Mode Plus	20 + 0).1C _B	120	ns	
		High-Speed Mode, $C_B \le 100 \text{ pF}$		10	80	i	
		High-Speed Mode, C _B ≤ 400 pF		20	160		
		Standard Mode		4		μS	
t _{SU;STO}	Ston Condition Setup Time	Fast Mode		600		ns	
	Stop Condition Setup Time	Fast Mode Plus		120		ns	
		High-Speed Mode		160		ns	
Св	Capacitive Load for SDA and SCL				400	pF	

Timing Diagrams

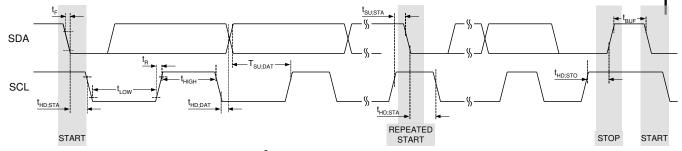
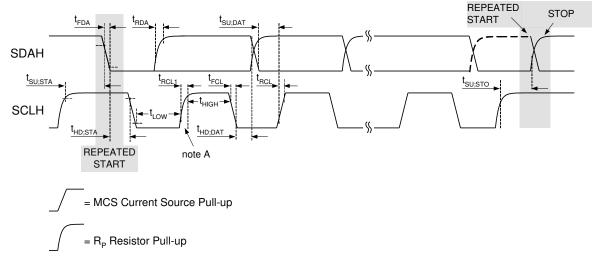
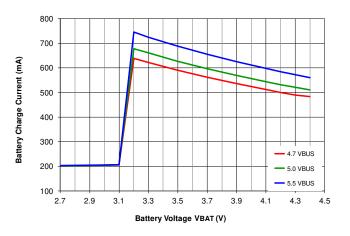



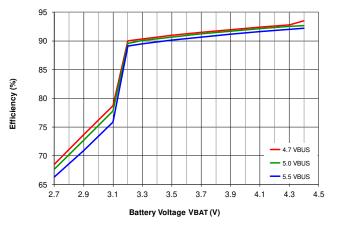
Figure 5. I²C Interface Timing for Fast and Slow Modes



Note A: First rising edge of SCLH after Repeated Start and after each ACK bit.

Figure 6. I²C Interface Timing for High-Speed Mode

Charge Mode Typical Characteristics


Unless otherwise specified, circuit of Figure 1, V_{OREG} = 4.35 V, I_{OCHARGE} = 950 mA, V_{BUS} = 5.0 V, and T_A = 25°C.

1,700 1 500 Battery Charge Current (mA) 1,300 1,100 900 700 4.7 VBUS 500 5.5 VBUS 300 2.9 3.1 3.3 3.5 3.7 3.9 4.3 Battery Voltage VBAT (V)

Figure 7. Battery Charge Current vs. V_{BUS} with $I_{BUSLIM} = 500 \text{ mA}$

Figure 8. Battery Charge Current vs. V_{BUS} with $I_{BUSLIM} = 1100 \text{ mA}$

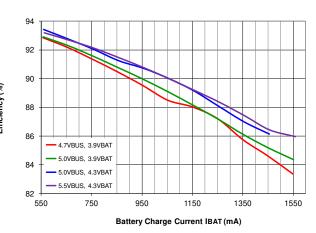
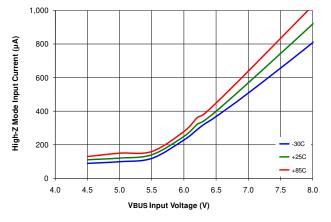



Figure 9. Efficiency vs. V_{BUS} , I_{BUSLIM} = 500 mA, I_{SYS} = 0

Figure 10. Efficiency vs. Charging Current, IBUSLIM = No Limit

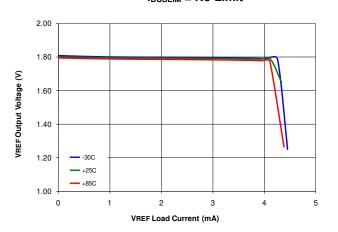
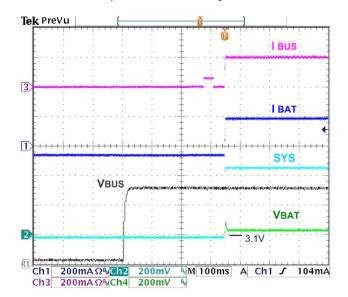



Figure 11. HZ Mode V_{BUS} Current vs. Temperature, 3.7 V_{BAT}

Figure 12. V_{REF} vs. Load Current, Over-Temperature

Charge Mode Typical Characteristics

Unless otherwise specified, circuit of Figure 1, $V_{OREG} = 4.35 \text{ V}$, $I_{OCHARGE} = 950 \text{ mA}$, $V_{BUS} = 5.0 \text{ V}$, and $T_A = 25^{\circ}C$.

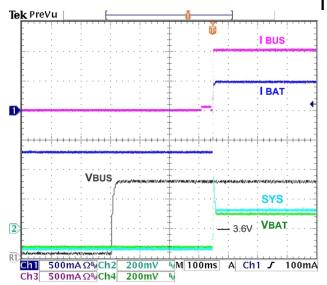
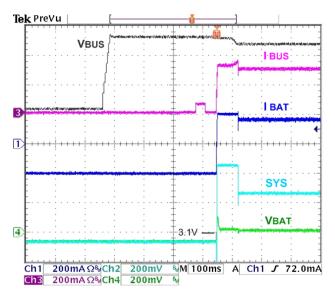



Figure 13. Charger Startup at V_{BUS} Plug-In, 500 mA I_{BUSLIM} , 3.1 V_{BAT} , 50 Ω SYS Load, CE# = 0, IO_LEVEL = 1

Figure 14. Charger Startup at V_{BUS} Plug-In, 1100 mA I_{BUSLIM} , 3.6 V_{BAT} , 700 mA SYS Load, CE# = 0, IO_{LEVEL} = 0

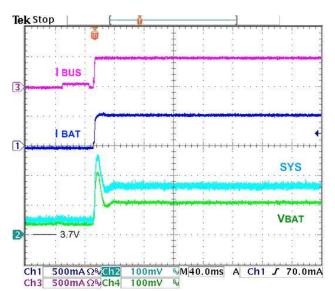


Figure 15. Charger Startup at V_{BUS} Plug-In Using 300 mA Current Limited Source, 500 mA I_{BUSLIM} , 3.1 V_{BAT} , 200 mA SYS Load, CE# = 0, IO_LEVEL = 0

Figure 16. Charger Startup with HZ Bit Reset, 500 mA I_{BUSLIM}, 950 mA I_{OCHARGE}, 50 Ω SYS Load, CE# = 0

Charge Mode Typical Characteristics

Unless otherwise specified, circuit of Figure 1, Voreg = 4.35 V, IOCHARGE = 950 mA, VBUS = 5.0 V, and TA = 25°C.

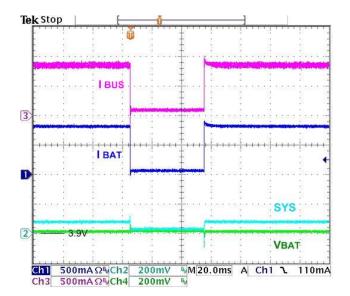
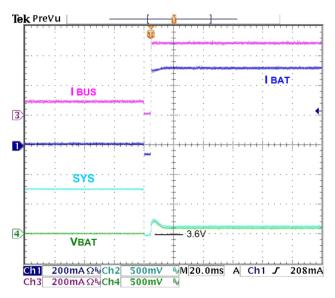



Figure 17. Battery Removal / Insertion while Charging, TE = 0, 3.9 V_{BAT} , $I_{OCHARGE}$ = 950 mA, I_{BUSLIM} = No Limit, 50 Ω SYS Load

Figure 18. Battery Removal / Insertion when Charging, TE = 1, 3.9 V_{BAT} , I_{BUSLIM} = No Limit, 50 Ω SYS Load

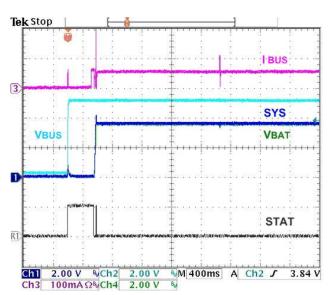


Figure 19. Charger Enable (CE# = 1 to 0) with V_{BUS} Applied, I_{BUSLIM} = 500 mA, 200 mA SYS Load, IO_{LEVEL} = 0

Figure 20. No Battery at V_{BUS} Power-Up, 100 Ω SYS Load, 1 k Ω V_{BAT} Load

GSM Typical Characteristics

A 2.0 A GSM pulse applied at V_{BAT} with 5 μs rise / fall time. Simultaneous to GSM pulse, 50 Ω additional load applied at SYS.

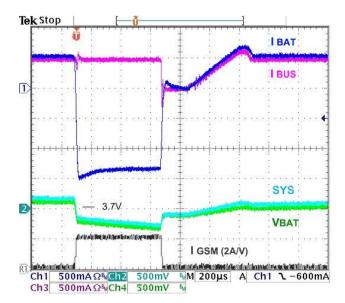


Figure 21. 2.0 A GSM Pulse Response, I_{BUSLIM} = 500 mA Control, $I_{OCHARGE}$ 950 mA, 3.7 V_{BAT} , V_{OREG} = 4.35 V

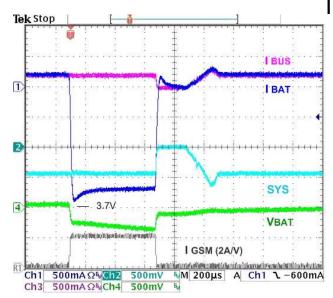


Figure 22. 2.0 A GSM Pulse Response, I_{BUSLIM} = 500 mA, I_{OCHARGE} = 950 mA, 3.7 V_{BAT}, V_{OREG} = 4.35 V, 200 mA Source Current Limit

Boost Mode Typical Characteristics

Unless otherwise specified, using circuit of Figure 1, $V_{BAT} = 3.6 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

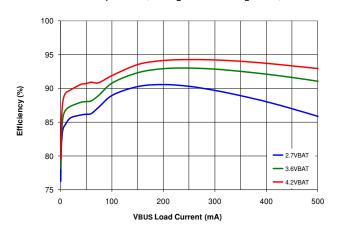
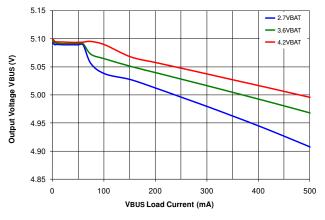



Figure 23. Efficiency vs. I_{BUS} Over V_{BAT}

Figure 24. Efficiency vs. I_{BUS} Over-Temperature, 3.6 V_{BAT}

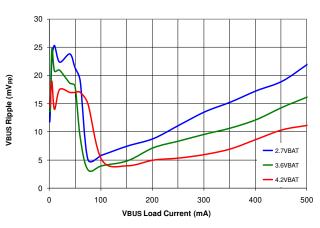
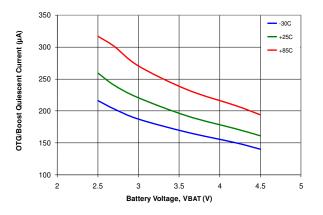
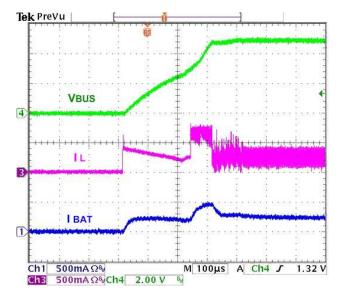



Figure 25. Regulation vs. I_{BUS} Over V_{BAT}

Figure 26. Output Ripple vs. I_{BUS} Over V_{BAT}

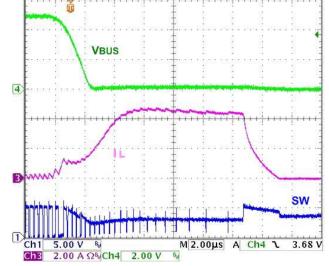
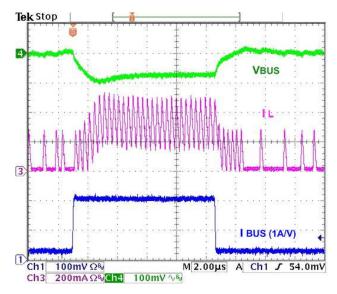

Figure 27. Quiescent Current (I_Q) vs. V_{BAT} Over-Temperature

Figure 28. Battery Discharge Current vs. V_{BAT}, HZ / Sleep Mode

Boost Mode Typical Characteristics

Unless otherwise specified, using circuit of Figure 1, $V_{BAT} = 3.6 \text{ V}$, $T_A = 25^{\circ}\text{C}$.



Tek PreVu

Figure 29. OTG Startup, 50 Ω Load, 3.6 V_{BAT} External / Additional 10 μF on V_{BUS}

Figure 30. OTG V_{BUS} Overload Response

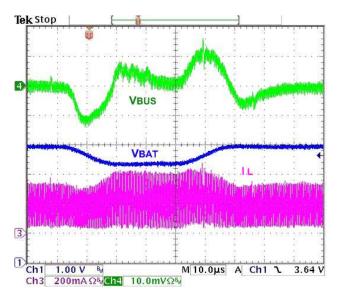


Figure 31. Load Transient, 20-200-20 mA I_{BUS} , $t_{RISE/FALL} = 100 \text{ ns}$

Figure 32. Line Transient, 50 Ω Load, 3.9-3.3-3.9 V_{BAT} , $t_{RISE/FALL}$ = 10 μs

Circuit Description / Overview

When charging batteries with a current-limited input source, such as USB, a switching charger's high efficiency over a wide range of output voltages minimizes charging time.

FAN54063 combines a highly integrated synchronous buck regulator for charging with a synchronous boost regulator, which can supply 5 V to USB On-The-Go (OTG) peripherals. The FAN54063 employs synchronous rectification for both the charger and boost regulators to maintain high efficiency over a wide range of battery voltages and charge states.

The FAN54063 has four operating modes:

- Charge Mode: Charges a single-cell Li-ion or Li-polymer battery.
- Boost Mode: Provides 5 V power to USB-OTG with an integrated synchronous rectification boost regulator, using the battery as input.
- High-Impedance Mode:
 Both the boost and charging circuits are OFF in this mode. Current flow from VBUS to the battery or from the battery to VBUS is blocked in this mode. This mode consumes very little current from VBUS or the battery.
- Production Test Mode:
 This mode provides 4.2 V output on VBAT and supplies a load current of up to 2.3 A.

Charge Mode and Registers

Charge Mode

In Charge Mode, FAN54063 employs six regulation loops:

- Input Current: Limits the amount of current drawn from VBUS. This current is sensed internally and can be programmed through the I²C interface.
- Charging Current: Limits the maximum charging current. This current is sensed using an internal sense MOSFET.
- 3. VBUS Voltage: This loop is designed to prevent the input supply from being dragged below VBUSLIM (typically 4.5 V) when the input power source is current limited. An example of this would be a travel charger. This loop cuts back the current when VBUS approaches VBUSLIM, allowing the input source to run in current limit.
- 4. Charge Voltage: The regulator is restricted from exceeding this voltage. As the internal battery voltage rises, the battery's internal impedance works in conjunction with the charge voltage regulation to decrease the amount of current flowing to the battery. Battery charging is completed when the current through Q4 drops below the I_{TERM} threshold.
- 5. Pre-charge: When V_{BAT} is below V_{BATMIN} , Q4 operates as a linear current source and modulates its current to ensure that the voltage on SYS stays above 3.4 V.
- Temperature: If the IC's junction temperature reaches 120°C, charge current is reduced until the IC's temperature is below 120°C.

PWM Controller in Charge Mode

The IC uses a current-mode PWM controller to regulate the output voltage and battery charge currents. The synchronous rectifier (Q2) has a negative current limit that turns off Q2 at 180 mA to prevent current flow from the battery.

Battery Charging Curve

If the battery voltage is below V_{SHORT} , a linear current source pre-charges the battery until V_{BAT} reaches V_{SHORT} . The PWM charging circuit is then started and the battery is charged with a constant current if sufficient input power is available. The current slew rate is limited to prevent overshoot.

During the current regulation phase of charging, I_{BUSLIM} or the programmed charging current limits the amount of current available to charge the battery and power the system.

During the voltage regulation phase of charging, assuming that V_{OREG} is programmed to the cell's fully charged "float" voltage, the current that the battery accepts with the PWM regulator limiting its output (sensed at VBAT) to V_{OREG} declines.

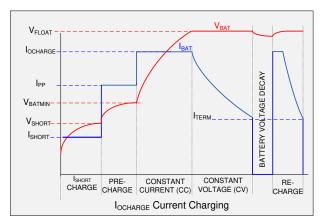


Figure 33. Charge Curve, I_{OCHARGE} Not Limited by I_{BUSLIM}

The FAN54063 is designed to work with a current-limited input source at VBUS as shown below:

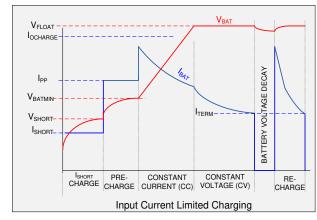


Figure 34. Charge Curve, IBUSLIM Limits IOCHARGE

The following charging parameters can be programmed by the host through l^2C :

Table 3. Programmable Charging Parameters

Parameter	Name	Register
Output Voltage Regulation	V _{OREG}	REG02[7:2]
Battery Charging Current Limit	I _{OCHARGE}	REG04[6:3]
Input Current Limit	I _{BUSLIM}	REG01[7:6]
Charge Termination Limit	I _{TERM}	REG04[2:0]
Weak Battery Voltage	V_{LOWV}	REG01[5:4]

Output Voltage Regulation (Vortical)

The charger output or "float" voltage can be programmed by the OREG (REG02[7:2]) bits from 3.51 V to 4.45 V in 20 mV increments. The default setting is 3.55 V.

See OREG Register Bit Definitions

Battery Charging Current Limit (Iocharge)

When the IO_LEVEL bit is set (default), the IOCHARGE bits are ignored and charge current is set to 200 mA.

See IOCHARGE Register Bit Definitions

Input Current Limiting (IBUSLIM)

To minimize charging time without overloading VBUS current limitations, the IC's input current limit can be programmed by the IBUSLIM (REG01[7:6]) bits.

See IBUSLIM Register Bit Definitions

Termination Limit (ITERM)

Charge current termination can be enabled or disabled using the TE (REG01[3]) bit. By default TE = "0", therefore, termination is disabled and charging does not terminate at the programmed I_{TERM} level.

When TE = "1", and V_{BAT} reaches V_{OREG} , the charging current is reduced, limited by the battery's ESR and its internal cell voltage. When the charge current falls below I_{TERM} ; PWM charging stops; but the STAT pin remains LOW. The STAT pin then goes HIGH and the STAT bits change to CHARGE DONE (10), provided the battery and charger are still connected. If V_{BAT} falls to V_{RCH} below V_{OREG} , the Fast Charge cycle starts again.

Post-charging can be enabled to "top-off" the battery to a lower termination current threshold than I_{TERM} . The PC_EN bit (REG07[3]) must be set to "1" before the battery charging current reaches I_{TERM} . The lower termination current is set by the PC_IT (REG07[2:0] bits. Post-charging begins after normal charging is ended (as described above) with the PC_ON (REG11[2]) monitor bit set to "1".

During post-charging, the STAT pin is HIGH, indicating that the charge current is below the I_{TERM} level. Once the current reaches the threshold for post-charging completion (set by the PC_IT bits), PWM charging stops and the PC_ON bit changes back to "0". If the charging current goes above I_{TERM} without first falling to PC_IT, the PC_ON bit can be reset by using any of these methods: V_{BAT} moving below and above V_{BATMIN} , a VBUS POR, or the CE# or HZ MODE bit cycled. If

 V_{BAT} falls to V_{RCH} below $V_{\text{OREG}},$ the Fast Charge cycle starts again.

See ITERM Register Bit Definitions

Weak Battery Voltage (V_{LOWV})

The FAN54063 monitors the level of the battery with respect to a programmable V_{LOWV} threshold set by VLOWV (REG01[5:4]) and the default is 3.7V. V_{LOWV} defines the voltage level of the battery at which the system is guaranteed to be fully operational when only powered by the battery.

The POK_B pin pulls LOW once V_{BAT} reaches V_{LOWV} , and remains LOW as long as the IC is in Fast Charge. The IC will remain in Fast Charge as long as $V_{BAT} > 3.0 \text{ V}$.

See VLOWV Register Bit Definitions

VBUS Control loop (VBUSLIM)

The IC includes a control loop that limits input current in case a current-limited source is supplying V_{BUS} .

OR

The control increases the charging current until either:

- I_{BUSLIM} or I_{OCHARGE} limit is reached
- V_{BUS} = V_{BUSLIM}.

If V_{BUS} collapses to V_{BUSLIM} , set by VBUSLIM bits (REG05[2:0]), the VBUS loop reduces its current to keep $V_{BUS} = V_{BUSLIM}$. When the VBUS control loop is limiting the charge current, the VLIM bit (REG05[3]) is set.

See VBUSLIM Register Bit Definitions

Charger Operation

VBUS Plug In and Safety Timer

At VBUS plug in, the TMR_RST (Reg00[7]) bit must be set within 2 seconds of V_{BUS} rising above $V_{(\text{INMIN})^1}$ or all registers, except for SAFETY (REG06), are set to their default values. This functionality occurs regardless of the state of the CE# and WD_DIS bit. If plug in occurs with the device in a HZ or Charge Done state and the TMR_RST bit is not set within 2 seconds of V_{BUS} rising above $V_{(\text{INMIN})^1}$, all register, except for SAFETY, will reset when the device enters PWM Charging or Recharge.

By default, the safety timers do not run in the FAN54063. A Watchdog (t_{32S}) timer can be enabled by setting the WD_DIS register bit, (REG13[1]) to "0". When WD_DIS = "0", charging is controlled by the host with the t_{32S} timer running to ensure that the host is alive. Setting the TMR_RST bit resets the t_{32S} timer. If the t_{32S} timer times out; all registers, except SAFETY, are set to their default values (including WD_DIS and CE#), the FAULT bits are set to "110", and STAT is pulsed.

V_{BUS} POR / Non-Compliant Charger Rejection

256 ms after VBUS is connected, the IC pulses the STAT pin and sets the VBUS_CON bit. Before starting to supply current, the IC applies a 100 Ω load from VBUS to GND. V_{BUS} must remain above $V_{\text{IN(MIN)}1}$ and below VBUS_OVP for $t_{\text{VBUS}_\text{VALID}}$ (32 ms) before the IC initiates charging or supplies power to SYS.

The VBUS validation sequence always occurs before significant current is drawn from VBUS (for example, after a VBUS OVP fault or a recharge initiation. t_{VBUS_VALID} ensures that unfiltered 50/60 Hz chargers and other non-compliant chargers are rejected.

USB-Friendly Boot Sequence

The FAN54063 does not automatically initiate charging at VBUS POR. Instead, prior to receiving host commands, the buck is enabled to provide power to SYS while Q4 and Q5 remain off until register bit CE# (REG01[2]) is set to "0" through the I²C interface, allowing charging through Q4.

Startup with No Battery

The FAN54063 has Battery Absent Behavior enabled. At VBUS POR with the battery absent, the PWM will run, providing 3.55 V to the system from the input source with current limited by the default I_{BUSLIM} setting.

Startup with a Dead Battery

At VBUS POR, if $V_{BAT} < V_{SHORT}$, all registers, including the SAFETY register, are reset to their default values and the DBAT_B (REG02[1]) bit is reset. CE# = "1", so charging is disabled.

If the battery's protection switch is open, the PWM will run, providing 3.55 V to the system from the input source with current limited by the default I_{BUSLIM} setting. This allows the host processor to awaken and establish host control. Once this occurs, the host's low level software can program the CE# bit to "0" and a linear current source closes the battery protection switch. When V_{BAT} voltage rises above V_{BATMIN} and sufficient power is available, PWM charging begins and the battery is charged through the BATFET, Q4. The IO_LEVEL (REG05[5]) bit is set to "1" by default which limits charge current to 200 mA.

With CE# = "1" once V_{BAT} rises above V_{SHORT} , DBAT_B is set. With CE# = "0" once V_{BAT} rises above V_{BATMIN} , DBAT_B is set.

Power Path Operation

As long as V_{BAT} < V_{BATMIN}, Q4 operates as a linear current source, (Precharge) with its current (I_{PP}) limited to 200 mA when IO_LEVEL (REG05[5]) is set to its default value of "]". If IO_LEVEL is set to "0" and IBUSLIM > "01", charge current is limited to 450 mA when I_{OCHARGE} \leq 750 mA, and 730 mA when I_{OCHARGE} > 750 mA. Providing the input current is not limited by the I_{BUSLIM} setting or the current available from the source, during precharge, the IC regulates SYS to 3.55 V and provides the I_{PP} limited current to the battery.

System power always has the highest priority when power from the buck is limited ensuring SYS does not fall below 3.4 V. This is managed by folding back the current to charge the battery until charge current is reduced to 0 A.

After V_{BAT} reaches V_{BATMIN} , Q4 closes and is used as a current-sense element to limit current ($I_{OCHARGE}$) per the I^2C register settings. This is accomplished by limiting the PWM modulator's current (Fast Charge). If SYS drops more than 5 mV (V_{THSYS}) below V_{BAT} and CE#="0", Q4 and Q5 are turned on (GATE is pulled LOW). If CE#="1", only Q5 is turned on. Once SYS voltage becomes higher than V_{BAT} , Q5 is turned off and Q4 again serves as the current-sense element to limit $I_{OCHARGE}$.

If the DIS pin is HIGH or HZ_MODE = "1" while $V_{BAT} > V_{LOWV}$, Q4 and Q5 are enabled to prevent the system from crashing. Q4 and Q5 are also both turned on when the IC enters SLEEP Mode ($V_{BUS} < V_{BAT}$).

POK_B (see Table 4)

The POK_B pin and the POK_B (REG11[5]) bit are intended to provide feedback to the processor that the battery is strong enough to allow the device to fully function. Whenever the IC is operating in precharge, POK_B is HIGH. On exiting Precharge, POK_B remains HIGH until $V_{BAT} > V_{LOWV}$. REG01[5:4] sets the V_{LOWV} threshold. POK_B pulls LOW once V_{BAT} reaches V_{LOWV} , and remains LOW as long as the IC is in Fast Charge and the IC will remain in Fast Charge as long as $V_{BAT} > 3.0 \ V$. If the battery voltage falls below 3.0 V the IC enters Precharge. If WD_DIS = "0" and the t_{32S} timer expires during charging, the POK_B pin will go HIGH.

The POK_B bit can be set via I2C to change the state of the pin to HIGH. This setting of the bit and pin can be used to signal the system into a low-power state, preventing excessive loading from the system while attempting to recharge a depleted battery.

The STAT pin pulses any time the POK_B pin and bit change states.

Table 4. Q4, Q5, POK B vs. Operating Mode

Operating Mode	VBUS	VBAT	CE#	PWM	VSYS	Q4	Q5	GATE	POK_B
		VBUS	Disco	nnecte	d				
OFF	< V _{BAT OR} < V _{IN(MIN)2}	> V _{SHORT}	Х	OFF	≤ V _{BAT}	ON	ON	LOW	HIGH
	VBUS	Plug in with B	attery l	Protecti	on Swit	ch Ope	n		
PWM	Valid	OPEN	1	ON	V _{OREG}	OFF	OFF	HIGH	HIGH
I VVIVI	Valid	OI EN	0	ON	VOREG	OII	011	man	Indeterminate ⁽⁸⁾
30 mA Linear Charging ⁽⁹⁾	Valid	< V _{SHORT}	0	ON	3.55	OFF	OFF	HIGH	HIGH
	Charge Mode								
Precharge	Valid	> V _{SHORT} and < V _{BATMIN}	0	ON	3.55	Linear	OFF	HIGH	HIGH
Precharge: I _{SYS} + I _{pp} > I _{PWM} , I _{BAT} < I _{PP}	Valid	< V _{BATMIN}	0	ON	< 3.55	Linear	OFF	HIGH	HIGH
Fast Charge	Valid	> V _{BATMIN} and < V _{LOWV}	0	ON	> V _{BAT}	ON	OFF	HIGH	HIGH
_		> V _{LOWV}							LOW
	E	Battery Voltage	Falling	from F	ast Cha	rge			
Precharge	Valid	V _{BATFALL}	0	ON	3.55	ON	OFF	HIGH	HIGH
	Battery Supplementing SYS								
Supplemental Mode: I _{SYS} > I _{PWM}	Valid	> V _{BATMIN} and > V _{SYS} + V _{THSYS}	Х	ON	< V _{BAT}	Х	ON	LOW	Х

Notes:

- When VBAT is open, V_{BAT} can float to V_{SYS}, and POK_B = HIGH when V_{BAT} < V_{LOWV} and POK_B = LOW when V_{BAT} > V_{LOWV}. Battery's presence or not (VBAT open) can be monitored by reading NOBAT bit (REG11[3]).
- 9. 30 mA Linear Charging operating mode assumes the host has programmed CE# = "0" during PWM Operating Mode.

Charger Status / Fault Status

The STAT pin indicates the operating condition of the IC and provides a fault indicator for interrupt driven systems.

Table 5. STAT Pin Function

EN_STAT	Charge State	STAT Pin
0	X	OPEN
Х	Normal Conditions	OPEN
1	Charging	LOW
Х	Fault (Charging or Boost)	128 μs Pulse, then OPEN

The FAULT bits (REG00[2:0]) indicate the type of fault in Charge Mode. $\label{eq:charge_power} % \begin{subarray}{ll} \end{subarray} \begin{subarray}{ll} \end{subarray} % \begin{subarray}{ll} \end{subarray} \begin{subarray}{ll} \end{subarray} % \begin{subar$

Monitor Registers (REG10, REG11)

Additional status monitoring bits enable the host processor to have more visibility into the status of the IC. The monitor bits are real-time status indicators and are not internally debounced or otherwise time qualified.

The state of the MONITOR register bits listed in High-Impedance Mode is valid only when V_{BUS} is valid.

Charge Mode Control Bits

The CE# (REG01[2]) bit is set to "1' by default, therefore, charging is disabled.

Setting the RESET (REG04[7]) bit clears all registers (except SAFETY). The CE# bit will only be cleared if RESET occurs with a valid VBUS and $V_{\text{BAT}} < V_{\text{LOWV}}$. If the HZ_MODE bit was set when the RESET bit is set, this bit is also cleared. Refer to the Register Bit Definitions section for more details.

Setting the HZ_MODE bit (REG01[1]) or raising the DIS pin will put the device in High-Impedance Mode, where the buck is disabled. Q4 and Q5 are enabled to prevent the system from crashing. Refer to Table 6 for details.

If the charger is in High-Impedance mode and V_{BAT} drops below V_{LOWV} , or High Impedance mode is entered while V_{BAT} < V_{LOWV} , all registers (except SAFETY), including HZ_MODE and CE#, are reset to their default values. If WD_DIS = "0" (REG13[1]), the register resets, including WD_DIS, only occur if the Watch-Dog Timer (t_{32S}) expires. If the DIS pin is HIGH, the IC will remain in High-Impedance Mode. If the DIS pin is LOW, the buck will be enabled.

Table 6. DIS Pin, HZ_MODE and WD_DIS Bit Operation

Conditions	Functionality
WD_DIS = 1 (default) and V _{BAT} > V _{LOWV}	Setting either the HZ_MODE bit through I ² C or the DIS pin HIGH will disable the charger and put the IC into High-Impedance Mode.
_	Resetting the HZ_MODE bit or the DIS pin to LOW will allow charging to resume.
	Setting either the HZ_MODE bit through I^2C or the DIS pin HIGH will stop the t_{32S} timer from advancing (does not reset it), disable the charger, and put the IC into High-Impedance Mode.
WD_DIS = 0 and $V_{BAT} > V_{LOWV}$	Resetting the HZ_MODE bit or the DIS pin LOW allows charging to resume. The t_{32S} timer resuming counting down the remainder of time from where it was suspended, at HZ mode entry.

Flow Charts Note: At VBUS plug in, the TMR_RST (REG00[7]) bit must be set within **VBUS POR** 2 seconds of V_{BUS} rising above $V_{\text{IN}(\text{MIN})1}$ or all registers, except for SAFETY (REG06), are set to their default values. Enable Linear charging **FIRST** $V_{BAT} < V_{SHORT}$ $V_{\text{BAT}} < V_{\text{SHORT}}$ Reset Safety register TIME? NO NO YĖS Enable PWM YĖS Battery VBUS OK? CE# = 1 Enable PWM Present? NO NO NO Indicate VBUS Enunciate battery absent Fault fault YES $V_{BAT} < V_{BATMIN}$ Enunciate Battery battery absent Present? fault NO Reset Charge YES Parameters (see Enable Precharge **Enable Fast** bottom of page) charging charging Indicate Charge Complete EOC = 1 $I_{OUT} < I_{TERM}$ NO and TE = 1 V_{BAT} < NO $V_{\mathsf{OREG}} - V_{\mathsf{RCH}}$ YES Disable PWM for YĖS PWM ON 2 seconds Q4 and Q5 OFF YES

Note: Reset Charge Parameters is a condition that results in the OREG, IOCHARGE, IBUSLIM, ITERM, VLOWV, and the Safety register bits resetting. It does not reset the IO_LEVEL, EOC, and TE register bits.

Figure 35. Charge State Flow Chart

Non-Charging States

Sleep Mode

When V_{BUS} falls below $V_{BAT} + V_{SLP}$ and V_{BUS} is above $V_{IN(MIN)2}$, the IC enters Sleep Mode to prevent the battery from draining into VBUS. During Sleep Mode, reverse current is disabled by body switching Q1.

Idle State

The Idle State is related to the condition of the battery. During Idle mode the Switch Mode Power Supply (SMPS) is operating, but the battery is not being charged for one or more of the following conditions exists: the Safety Timer expires (CE# reset to 1), charging is complete, or the BATFET is disabled by the Charge Enable bit, CE# = "1".

The PWM Buck continues to supply power to the system, but the Battery is no longer being charged and the BATFET is disabled.

Standby State

The Standby State is an intermediate state where the switch mode supply is off due to either bad input power, the device has been put in High-Impedance Mode, or the die temperature is too hot.

Charger Protection

Battery Temperature (NTC) Monitor

The FAN54063 reduces the maximum charge current and termination voltage if an NTC measuring battery temperature (T_{BAT}) indicates that it is outside the fast-charging limits (T2 to T3), as described in the JEITA specification¹. There are four temperature thresholds that change battery charger operation: T1, T2, T3, and T4, shown below.

Table 7. Battery Temperature Thresholds

For use with 10 k Ω NTC, β = 3380, and R_{REF} = 10 k Ω .

Threshold	Temperature	% of V _{REF}
T1	0°C	73.9
T2	10°C	64.6
T3	45°C	32.9
T4	60°C	23.3

Table 8. Charge Parameters vs. T_{BAT}

T _{BAT} (°C)	I _{CHARGE}	V_{FLOAT}	
Below T1	Charging to VBAT Disabled		
Between T1 and T2	I _{OCHARGE} / 2 ⁽¹⁰⁾	4.0 V	
Between T2 and T3	I _{OCHARGE}	V_{OREG}	
Between T3 and T4	I _{OCHARGE} / 2 ⁽¹⁰⁾	4.0 V	
Above T4	Charging to VBAT Disabled		

Note:

 If I_{OCHARGE} is programmed to less than 650 mA, the charge current is limited to 340 mA. Thermistors with other β values can be used, with some shift in the corresponding temperature threshold, as shown in Table 9.

 Table 9.
 Thermistor Temperature Thresholds

 $R_{REF} = R_{THRM}$ at 25°C.

Parameter	Various Thermistors						
R _{THRM(25°C)}	10 kΩ	10 kΩ	47 kΩ	100 kΩ			
β	3380	3940	4050	4250			
T1	0°C	3°C	6	8			
T2	10°C	12°C	13	14			
Т3	45°C	42°C	41	40			
T4	60°C	55°C	53	51			

The host processor can disable temperature-driven control of charging parameters by writing "1" to the TEMP_DIS bit. Since TEMP_DIS is reset whenever the IC resets its registers, the temperature controls are enforced whenever the IC is auto-charging, since auto-charge is always preceded by a reset of registers.

To disable the thermistor circuit, tie the NTC pin to GND. Before enabling the charger, the IC tests to see if NTC is shorted to GND. If NTC is shorted to GND, no thermistor readings occur and the NTC_OK and NTC1 to NTC4 are reset.

The IC first measures the NTC immediately prior to entering any PWM charging state, then measures the NTC once per second, updating the result in NTC1 to NTC4 bits (REG 12[3:0]).

Table 10. NTC1-NTC4 Decoding

T _{BAT} (°C)	NTC4	NTC3	NTC2	NTC1
Above T4	1	1	1	1
Between T3 and T4	0	1	1	1
Between T2 and T3	0	0	1	1
Between T1 and T2	0	0	0	1
Below T1	0	0	0	0

Safety Register Settings

The IC contains a SAFETY register (REG06) that prevents the values of OREG (REG02[7:2]) and IOCHARGE (REG04[6:3]) from exceeding the values of VSAFE (REG06[3:0]) and ISAFE (REG06[7:4]) in the SAFETY register.

After V_{BAT} rises above V_{SHORT} , the SAFETY register is loaded with its default value and may be written to only before writing to any other register. The same 8-bit value should be written to the SAFETY register twice to set the register value. After writing to any other register, the SAFETY register is locked until V_{BAT} falls below V_{SHORT} .

If the host attempts to write a value higher than VSAFE or ISAFE to OREG or IOCHARGE, respectively; the VSAFE, ISAFE value appears as the OREG, IOCHARGE register value, respectively.

The Safety register is reset when the battery is below V_{SHORT} and power is removed from VBUS.

¹ Japan Electronics and Information Technology Industries Association (JEITA) and Battery Association of Japan. "A Guide to the Safe Use of Secondary Lithium Ion Batteries in Notebook-type Personal Computers," April 28, 2007.