imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconduc

August 2013

FAN54300 — USB-Compliant, Dual-Power Input, Single-Cell, Li-Ion Switching Charger with USB-OTG Boost Regulator

Features

- Fully Integrated, High-Efficiency Charger for Single-Cell Li-Ion and Li-Polymer Battery Packs
- Accepts USB or Dedicated Power Input Source
- 5 V, 300 mA Boost Mode for USB OTG from 2.5 to 4.5 V Battery Input
- Charge Voltage Accuracy: $\pm 0.5\%$ at T_A=25°C $\pm 1\%$ from T_A=0 to 125°C
- ±5% USB Input Current Regulation Accuracy
- ±5% Charge Current Regulation Accuracy
- 20 V Absolute Maximum Input Voltage
- 9.5 V Maximum Input Operating Voltage on VIN Pin,
 6.5 V Maximum on VBUS Pin
- Up to 1.5 A Maximum Charge Rate
- Programmable Charge and Mode through High-Speed I²C Interface (3.4 Mb/s) with Fast Mode Plus Compatibility
 - Input Current
 - Fast-Charge / Termination Current
 - Charger Voltage
 - Safety Timer
 - Termination Enable
- 3 MHz Synchronous Buck PWM Controller with Wide Duty Cycle Range
- Small Footprint, 1 μH, External Inductors
- Safety Timer with Reset Control
- Weak Input Sources Accommodated by Reducing Charging Current to Maintain Minimum V_{BUS} Voltage
- Low Reverse Leakage from Battery Drain to VBUS or VIN
- Programmable LED Drive for Charge Indication
- Register and Slave Addresses Compatible with FAN540X and FAN542X Families

Description

The FAN54300 combines two highly integrated switch-mode chargers and a boost regulator to minimize single-cell Li-Ion charging time from a USB and/or auxiliary power source.

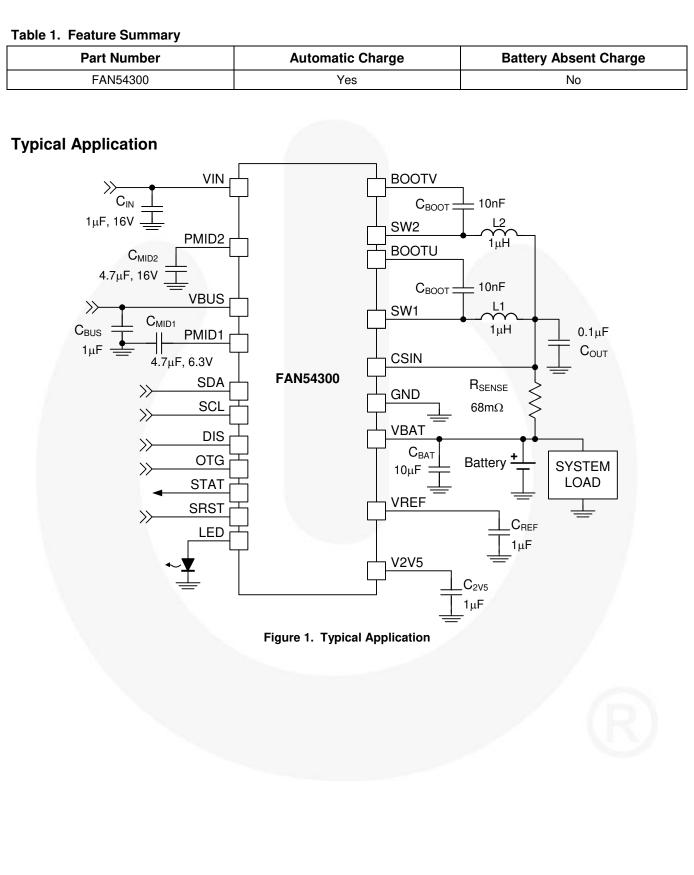
Charging parameters and operating modes are programmable through an I²C Bus® interface that operates up to 3.4 Mbps. The charger and boost regulator circuits switch at 3 MHz to minimize the size of the external passive components.

The FAN54300 provides battery charging in three phases: conditioning, constant current, and constant voltage.

To ensure USB compliance and minimize charging time, the USB input current is limited to the value set through the l^2C host. Charge termination is determined by a programmable minimum current level. A safety timer with reset control provides a safety backup for the l^2C host.

The IC automatically restarts the charge cycle when the battery falls below an internal threshold. If the input source is removed, the IC enters a high-impedance mode, with leakage from the battery to the input prevented. Charge status is reported back to the host through the I^2C port. Charge current is reduced when the die temperature reaches 120°C.

The FAN54300 can operate as a boost regulator on command from the system. The boost regulator includes a soft-start that limits inrush current from the battery.


The FAN54300 is available in a 30-bump, 0.4 mm pitch, wafer-level, chip-scale package (WLCSP).

Applications

- Cell Phones, Smart Phones, PDAs
- Digital Cameras
- Portable Media Players

eracing ine			
Part Number	Temperature Range	Package	Packing
FAN54300UCX	-40 to 85°C	30-Ball, WLCSP, 5x6 Array, 0.4mm Pitch, 586 μm Package Height	Tape and Reel

Ordering Information

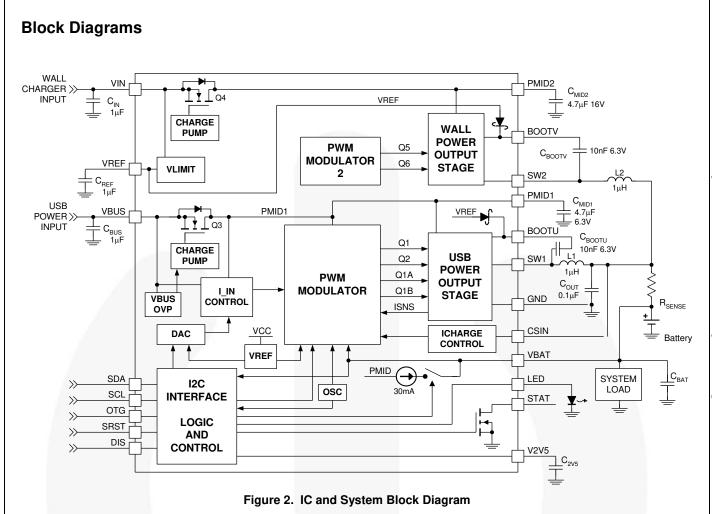
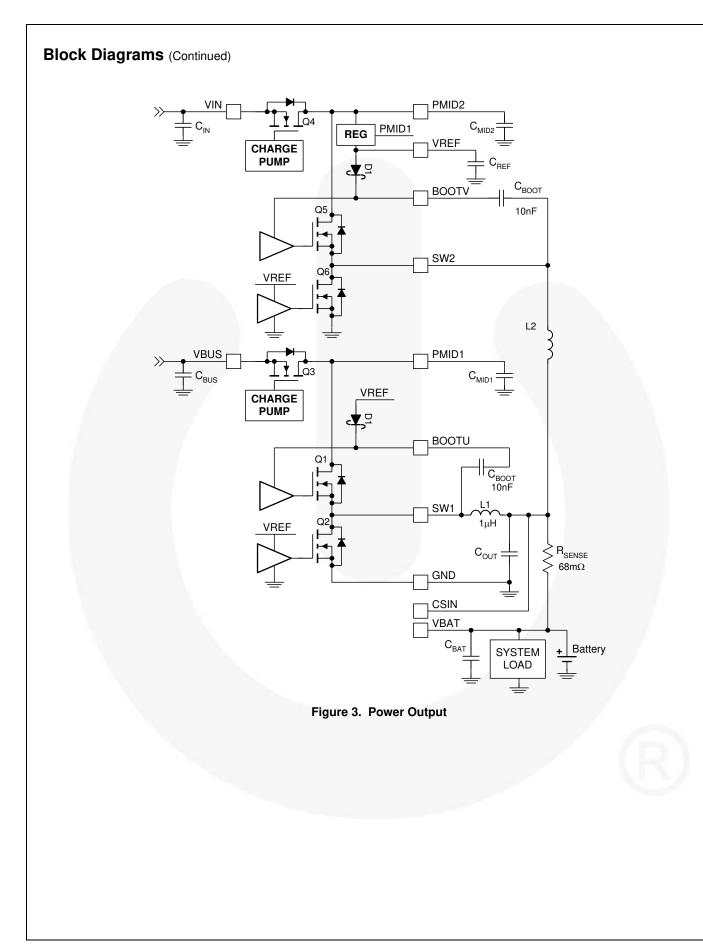



Table 2. Recommended External Components

Component	Description	Vendor	Parameter	Тур.	Units
	Charge Currents to 1 A:	Murata: LQM2MPN1R0M	L	1.0	μH
L1, L2:	1 μH, 20%, 1.3 A, 2016		DCR	85	mΩ
	Charge Currents Above 1 A:			1.0	μH
	1 μH, 20%, 1.6 A, 2520	Murata: LQM2HPN1R0M	DCR	55	mΩ
C _{BAT}	10 μF, 20%, 6.3 V, X5R, 0603	Murata: GRM188R60J106M	С	10	μF
C _{MID1,2}	4.7 μF, 10%, 16 V, X5R, 0805	Murata: GRM21BR61C475K	С	4.7	μF
C _{IN} , C _{BUS}	1.0 μF, 10%, 16 V, X5R, 0603	Murata GRM188R61E105K	С	1.0	μF
C _{BOOT}	10 nF, 10%, 6.3 V, X5R, 0201	Murata GRM033R70J103K	С	10	nF
C _{OUT}	0.1 μF, 10%, 6.3 V, X5R, 0201	Murata GRM033R60J104K	С	0.1	μF
C_{2V5}, C_{REF}	1μF, 10%, 6.3 V, X5R, 0402	Murata GRM155R60J105M	С	1.0	μF

Pin Configuration

BOOTV	VREF	V2V5	SDA	BOOTU
(A1)	(A2)	(A3)	(A4)	(A5)
V	N	SCL	VB	US
(B1)	(B2)	(B3)	(B4)	(B5)
PM	ID2	SRST	PM	ID1
(C1)	(C2)	(C3)	(C4)	(C5)
SV	V2	DIS	SV	V1
(D1)	(D2)	(D3)	(D4)	(D5)
		GND		
E1)	(E2)	(E3)	(E4)	(E5)
LED	OTG	CSIN	VBAT	STAT
(F1)	(F2)	(F3)	(F4)	(F5)

Figure 4. Pin Assignments (Top View)

Pin Definitions

Pin #	Name	Description
		•
A1	BOOTV	BOOT . High-side NMOS driver supply. Connect a 10nF capacitor from SW2 to this pin.
A2	VREF	Bias Regulator Output . Connect to a 1 μ F capacitor to PGND. This pin supplies the internal gate drive and power supply to the IC while charging. Up to 5 mA of current can be provided from this pin to drive external circuits. This pin is active when either V _{IN} or V _{BUS} are above V _{BAT} .
A3	V2V5	2.5 V Regulator . Connect to a 1 μ F capacitor to PGND. Up to 5 mA can be provided from this pin to drive external circuits. This regulator is powered only when VIN is connected.
A4	SDA	I ² C Interface Serial Data. This pin should not be left floating.
A5	BOOTU	BOOT. High-side NMOS driver supply. Connect a 10 nF capacitor from SW1 to this pin.
B1, B2	VIN	Charger Input Voltage. Bypass with a minimum of 1 µF, 16 V capacitor to GND.
B3	SCL	I ² C Interface Serial Clock. This pin should not be left floating.
B4, B5	VBUS	USB Input Voltage. Bypass with a 1 μ F, 16 V capacitor to GND.
C1, C2	PMID2	Power Input Voltage for VIN Power Source . Power input to the charger regulator, bypass point for the VIN input current sense, and high-voltage input switch. Bypass with a minimum of 4.7 μ F, 16 V capacitor to PGND.
C3	SRST	Safety Reset. When LOW, both safety registers are reset to their default values. When HIGH, the safety registers reset when V_{BAT} drops below V_{SHORT} .
C4, C5	PMID1	Power Input Voltage for VBUS Power Source . Power input to the VBUS switching charger regulator, bypass point for the VBUS input current sense, and high-voltage input switch. Bypass with a minimum of 4.7 μ F, 6.3 V capacitor to PGND.
D1, D2	SW2	Switching Node for VIN Charger. Connect to the output inductor.
D3	DIS	Charge Disable . When this pin is HIGH, charging is disabled and no timers are reset. When LOW, charging is controlled by the I ² C registers. This pin does not affect the 32-second timer.
D4, D5	SW1	Switching Node for VBUS Charger and OTG Boost. Connect to the output inductor.
E1–E5	GND	Ground . Power return for gate drive and power transistors as well as IC signal ground. The connection from this pin to the bottoms of the C_{PMID} capacitors should be as short as possible.
F1	LED	Light Emitting Diode Output. Up to 5 mA current source drive from the active PMID indicates the battery is charging.

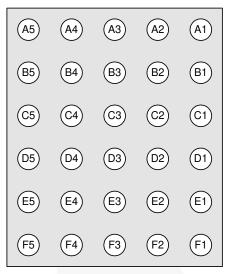


Figure 5. Pin Assignments (Bottom View)

Т
≥
Ž
154300
μ
õ
0
S
USB-C
Ь
ŏ
ň
ц Ц
Ĭ
a
3
ual-P
<u>e</u>
ΰ
ŏ
0W0
e
Ť
F
ď
Ž
ţ,
ഗ
Ť
õ
ľ
S S
E E
ļ,
l, Li-lon
9
S
S
itc
2
l≓
ЗС
2
<u>Ω</u>
۲ ۲
ar
Ö.
e
≤.
İŧ
C
S
φ
В-O
Ĭ
TG B
3
ŏ
Š
t t
Ъ
Э.
Ľ
8
Ĩť
<u> </u>
_

Pin #	Name	Description
F2	OTG	On The Go . When unattended charging is indicated, the level on this pin sets the I_{BUS} current limit. This pin is also used to put the IC into Boost Mode.
F3	CSIN	Current-Sense Input . Connect to sense resistor in series with the battery. The IC uses this node to sense current into the battery. Bypass this pin with a 0.1 μ F capacitor to PGND.
F4	VBAT	Battery Voltage . Connect to the positive (+) terminal of the battery pack. Bypass with a 10 μ F capacitor to PGND.
F5	STAT	Status. Open-drain output indicating charge status. The IC pulls this pin LOW when charging is in process.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol		Parameter	Min.	Max.	Unit
N/		Continuous	-1.4	00.0	V
V _{BUS}	VBUS Voltage	Pulsed, 100 ms Maximum Non-Repetitive	-2.0	20.0	V
V _{IN}	VIN Voltage		-2.0	20.0	V
V _{BOOTU}	BOOTU Voltage		-0.7	20.0	V
V _{BOOTV}	BOOTV Voltage		-0.7	20.0	V
V_{PMID1}	PMID1 Voltage		-1.0	20.0	V
V _{SW1}	SW1 Voltage		-0.7	6.5	V
V _{PMID2}	PMID2 Voltage	1	-1.0	20.0	V
V _{SW2}	SW2 Voltage		-0.7	12.0	V
Vo	Other Pins		-0.3	6.5 ⁽¹⁾	V
$\frac{\text{dV}_{\text{BUS}}}{\text{dt}}$	Maximum Rate of V _{BUS} Increase	Above 5.5 V when IC Enabled		4	V/µs
dV _{IN} dt	Maximum Rate of V _{IN} Increase A	Above 9.5 V when IC Enabled		4	V/µs
ESD	Electrostatic Discharge	Human Body Model per JESD22-A114	2	.0	kV
ESD	Protection Level	Charged Device Model per JESD22-C101	1.5		kV
TJ	Junction Temperature		-40	+150	°C
T _{STG}	Storage Temperature		-65	+150	°C
TL	Lead Soldering Temperature, 10) Seconds		+260	°C

Note:

1. Lesser of 6.5 V or V_{REF} + 0.3 V.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Min.	Max.	Units
V _{BUS}	VBUS Supply Voltage	4	6	V
V _{IN}	VIN Supply Voltage	4.0	9.5	V
TA	Ambient Temperature	-30	+85	°C
TJ	Junction Temperature	0	+125	°C

Thermal Properties

Junction-to-ambient thermal resistance is a function of application and board layout. This data is measured with four-layer 2s2p boards in accordance to JEDEC standard JESD51. Special attention must be paid not to exceed junction temperature $T_{J(max)}$ at a given ambient temperate T_A .

;	Symbol	Parameter	Typical	Unit
	θ_{JA}	Junction-to-Ambient Thermal Resistance	60	°C/W
	θ_{JB}	Junction-to-PCB Thermal Resistance		°C/W

Electrical Specifications

Unless otherwise specified: circuit of Figure 1, recommended operating temperature range for T_J and T_A , V_{BUS} or $V_{IN} = 5.0$ V, HZ1, HZ2, OPA_MODE = 0, (Charger Mode). SCL, SDA, OTG = 0 or 1.8 V. Typical values are for $T_J = 25^{\circ}$ C.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
Power Su	pplies					
		PWM Switching, Open Battery, TE=0		33		mA
		PWM Not Switching (V _{BAT} > V _{OREG})		3.6		mA
I _{VBUS}	VBUS Current	$0^{\circ}C < T_J < 85^{\circ}C, \ HZ1 = 1, \ V_{BAT} > V_{LOWV}$		350	500	μΑ
		$0^{\circ}C < T_J < 85^{\circ}C, HZ1$ = 1, $V_{BAT} < V_{LOWV}, 32S$ Mode		350	500	μA
		PWM Switching, Open Battery, TE=0		33		mA
		PWM Not Switching (VBAT>VOREG)	100	2.6		mA
I _{VIN}	VIN Current	$0^{\circ}C < T_J < 85^{\circ}C, \ HZ2 = 1, \ V_{IN} > V_{LOWV}$	1	350	500	μΑ
		$\begin{array}{l} 0^{\circ}C < T_{J} < 85^{\circ}C, HZ2 = 1, V_{IN} < V_{LOWV}, \\ 32S \; Mode \end{array}$		350	500	μA
	Detter Discharze Current in	$0^{\circ}C < T_J < 85^{\circ}C, HZ1 = HZ2 = 1 \text{ or} \\ DIS=1, V_{BAT} = 4.2 \text{ V}$			20	μA
I _{BAT}	Battery Discharge Current in High-Z Mode	$\begin{array}{l} 0^{\circ}C < T_{J} < 85^{\circ}C, \ V_{BAT} = 4.2 \ V, \ V_{IN} = \\ V_{BUS} = \ Open \ or \ GND, \ HZ1 = HZ2 = 1, \\ SDA = SCL = 1.8 \ V, \ No \ I^{2}C \ Traffic \end{array}$			30	μΑ
Charger \	oltage Regulation					
	Charge Voltage Range		3.5		4.4	V
V _{OREG}	Charge Voltage Accuracy	$T_A = 25^{\circ}C$	-0.5		+0.5	%
		$T_J = 0$ to 125°C	-1		+1	%
Charging	Current Regulation					
	Output Charge Current Range	$V_{LOWV} < V_{BAT} < V_{OREG},$ $V_{BUS} > V_{SLP}, R_{SENSE} = 68 m\Omega$	550		1500	mA
IOCHRG	Charge Current Accuracy	$20 \text{ mV} \leq V_{IREG} \leq 40 \text{ mV}$	92	97	102	% of
	Across R _{SENSE}	$V_{IREG} > 40 \text{ mV}$	94	97	100	Setting
Weak-Bat	Itery Detection		1			
V _{LOWV}	Weak-Battery Threshold Accuracy	$3.4 \le V_{LOWV} \le 3.7$	-5		+5	%
	Weak Battery Deglitch Time	Rising Voltage, 2 mV Overdrive		30		ms
Logic Lev	vels: DIS, SDA, SCL, OTG					•
V _{IH}	HIGH-Level Input Voltage		1.05			V
VIL	LOW-Level Input Voltage				0.4	V
I _{IN}	Input Bias Current	Input Tied to GND or V _{BAT}		0.01	1.00	μA
Charge T	ermination Detection					
	Termination Current Range	$\label{eq:VBAT} \begin{split} V_{\text{BAT}} &> V_{\text{OREG}} - V_{\text{RCH}}, V_{\text{BUS}} > V_{\text{SLP}}, \\ R_{\text{SENSE}} &= 68 \ \text{m}\Omega \end{split}$	50		400	mA
L	Termination Current Assures	$[V_{CSIN}-V_{BAT}]$ from 3 mV to 20 mV	-25%		+25%	
I _(TERM)	Termination Current Accuracy	$[V_{CSIN}-V_{BAT}]$ from 20 mV to 40 mV	-5%		+5%	
	Termination Current Deglitch Time	2 mV Overdrive		30		ms

Electrical Specifications (Continued)

Unless otherwise specified: circuit of Figure 1, recommended operating temperature range for T_J and T_A , V_{BUS} or $V_{IN} = 5.0$ V, HZ1, HZ2, OPA_MODE = 0, (Charger Mode). SCL, SDA, OTG = 0 or 1.8V. Typical values are for $T_J = 25^{\circ}$ C.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
VBUS Inp	ut Power Source Detection					
V _{BUS(MIN)1}	V _{BUS} Input Voltage Rising	To Start VBUS Validation	4.20	4.30	4.40	V
V _{BUS(MIN)2}	Min. V _{BUS} to Pass Validation	During V _{BUS} Validation Period	4.00	4.08	4.15	V
V _{BUS(MIN)3}	Min. V _{BUS} During Charge	During Charging	3.64	3.71	3.78	V
tvbus_valid	V _{BUS} Validation Time			30		ms
VBUSLOAD	V _{BUS} Load	$V_{BUS} = 5 V$, Applied at V_{BUS} Validation		50		mA
VIN Input	Power Source Detection				I.	
V _{IN(MIN)1}	VIN Input Voltage Rising	To Start VIN Validation	4.20	4.30	4.40	V
V _{IN(MIN)2}	Min. V _{IN} to Pass Validation	During VIN Validation Period	4.00	4.08	4.15	V
V _{IN(MIN)3}	Min. V _{IN} During Charge	During Charging	3.64	3.71	3.78	V
t _{VBUS_VALID}	V _{IN} Validation Time			30		ms
VINLOAD	V _{IN} Load	$V_{IN} = 5 V$, Applied at V_{IN} Validation		50		mA
Input Curr	ent Limit					
	VBUS Input Current-Limit	I _{BUS} set to 100 mA	88	93	98	
BUSLIM	Threshold	I _{BUS} set to 500 mA	450	475	500	- mA
V _{2V5} 2.5V I	inear Regulator					
M	2.5 V Regulator Output	I_{2V5} from 0 to 5 mA, $V_{IN} > 4.75$ V	2.35	2.50	2.65	V
V _{2V5}	Current Limit		6	8		mA
V _{REF} Bias	Generator					
M	Bias regulator voltage	$V_{IN} > V_{IN(MIN)}$	3.5		6.0	V
V_{REF}	current limit		10	15		mA
Battery Re	echarge Threshold					
V	Recharge Threshold	Below V _(OREG)	100	120	150	mV
V _{RCH}	Deglitch Time	VBAT falling below V _{RCH} threshold		130		ms
STAT Out	put					
V _{STAT(OL)}	STAT Output LOW	I _{STAT} = 10 mA			0.4	V
I _{STAT(OH)}	STAT High Leakage Current	V _{STAT} = 5 V			1	μA
LED Outp	ut			1		
$I_{\text{LED}(\text{ON})}$	LED Output Current Accuracy	V_{LED} from 1.5 to 3.5 V, Max. (V_{REF} , V_{BAT}) – V_{LED} > 100 mV	-30		+30	%
I _{LED(OFF)}	LED Off-State Leakage Current	V _{LED} = 0 V			1	μA
Battery De	etection					1
I _{DETECT}	Battery Detection Current Before Charge Complete (Sink Current) ⁽²⁾	Begins After Termination Detected and $V_{BAT} \leq V_{OREG} - V_{RCH}$		-0.45		mA
t DETECT	Battery Detection time			262		ms

Continued on the following page ...

Electrical Specifications (Continued)

Unless otherwise specified: circuit of Figure 1, recommended operating temperature range for T_J and T_A , V_{BUS} or $V_{IN} = 5.0$ V, HZ1, HZ2, OPA_MODE = 0, (Charger Mode). SCL, SDA, OTG = 0 or 1.8 V. Typical values are for $T_J = 25^{\circ}$ C.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
Sleep Cor	nparator	•			•	
V_{SLP}	$ Sleep Mode Entry Threshold, \\ V_{BUS} - V_{BAT} \mbox{ or } V_{IN} - V_{BAT} $	$2.3 \text{ V} \leq \text{V}_{BAT} \leq \text{V}_{OREG}, \text{V}_{PWRIN} \text{ Falling}$	0	90	160	mV
	Sleep Mode Exit Hysteresis	2.3 V ≤ V _{BAT} ≤ V _{OREG}		40		mV
V_{SLP} EXIT	Deglitch Time for V_{BUS} Rising Above $V_{SLP} + V_{SLP_EXIT}$	Rising Voltage		30		ms
Power Sw	itches (see Figure 3)					
	Q3 On Resistance (VBUS to PMID1)	$ BUS_{(LIMIT)} \ge 500 \text{ mA}$		210	300	
-	Q1 On Resistance (PMID1 to SW1)			110	225	
P	Q2 On Resistance (SW1 to GND)			130	225	
R _{DS(ON)}	Q4 On Resistance (VIN to PMID2)			160	225	mΩ
	Q5 On Resistance (PMID2 to SW2)			110	225	
	Q6 On Resistance (SW2 to GND)			190	350	
Charger F	WM Modulator					
f _{SW}	Oscillator Frequency		2.7	3.0	3.3	MHz
D _{MAX}	Maximum Duty Cycle				100	%
D _{MIN}	Minimum Duty Cycle			0		%
I _{SYNC}	Synchronous to Non- Synchronous Current Threshold ⁽³⁾	Low-Side MOSFET Cycle-by-Cycle Current Limit		-120		mA
Boost Mo	de Operation (OPA_MODE = 1,	HZ1 = 0)		1		
N		$2.5 \text{ V} < \text{V}_{BAT} < 4.5 \text{ V}, 0-200 \text{ mA Load}$	4.80	5.05	5.17	V
V _{BOOST}	Boost Output Voltage at VBUS	$2.7 \text{ V} < \text{V}_{\text{BAT}} < 4.5 \text{ V}, 0-300 \text{ mA Load}$	4.77	5.05	5.17	v
BAT(BOOST)	Boost Mode Quiescent Current	PFM Mode, $V_{IN} = 3.6 \text{ V}$, $I_{OUT} = 0$		300	400	μA
ILIMPK(BST)	Q2-Peak Current Limit		1160	1380	1550	mA
V _{BAT(MAX)}	Maximum Battery Input for Boost Operation	V _{BAT} Rising	4.7	1		V
	Hysteresis	V _{BAT} Falling		125		mV
UVLO _{BST}	Minimum Battery Voltage for	While Boost Active		2.42		v
OVLOBSI	Boost Operation	To Start Boost Regulator		2.58	2.70	v
VBUS, VII	Load Resistance					
R _{VBUS}	VBUS to GND Resistance	Normal Operation	500	1000	1500	Ω
IVBUS		V _{BUS} Validation	50	110	175	Ω
D.		Normal Operation	500	1000	1500	Ω
R _{VIN}	VIN to GND Resistance	V _{IN} Validation	50	110	175	Ω

Continued on the following page ...

Electrical Specifications (Continued)

Unless otherwise specified: circuit of Figure 1, recommended operating temperature range for T_J and T_A , V_{BUS} or $V_{IN} = 5.0$ V, HZ1, HZ2, OPA_MODE = 0, (Charger Mode). SCL, SDA, OTG = 0 or 1.8 V. Typical values are for $T_J = 25^{\circ}$ C.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units	
Protection	and Timers	•	·			•	
VBUSOVP	VBUS Over-Voltage Shutdown	V _{BUS} Rising	6.12	6.31	6.50	V	
	Hysteresis	V _{BUS} Falling		100		mV	
VINOVP	VIN Over-Voltage Shutdown	V _{IN} Rising	9.5	10.0	10.5	V	
	Hysteresis	V _{IN} Falling		100		mV	
V _{SHORT}	Battery Short-Circuit Threshold	V _{BAT} Rising	2.00	2.05	2.10	V	
	Hysteresis	V _{BAT} Falling		100		V	
I _{SHORT}	Short-Circuit Current	V _{BAT} < V _{SHORT}	30	40	50	mA	
Ŧ	Thermal Shutdown Threshold ⁽⁴⁾	T _J Rising		165			
T _{SHUTDWN}	Hysteresis ⁽⁴⁾	T _J Falling	6	10		°C	
T_{CF}	Thermal Regulation Threshold ⁽⁴⁾	Charge Current Reduction Begins		120		°C	
t _{INT}	Detection Interval			2.1		S	
t _{32SEC}	32-Second Timer ⁽⁵⁾	32-Second Mode	21.0		31.5	S	
t _{15MIN}	15-Minute Timer	15-Minute Mode	12.0	13.5	15.0	min	
Δt_{LF}	Low Frequency Timer Accuracy	Charger Inactive	-25		25	%	

Notes:

2. Refers to negative inductor current. At lower battery charging current, of about 20 mA, non-synchronous switching operation commences.

3. Q2 and Q6 always turn on for »60 ns and then turn off if the current is below I_{SYNC}.

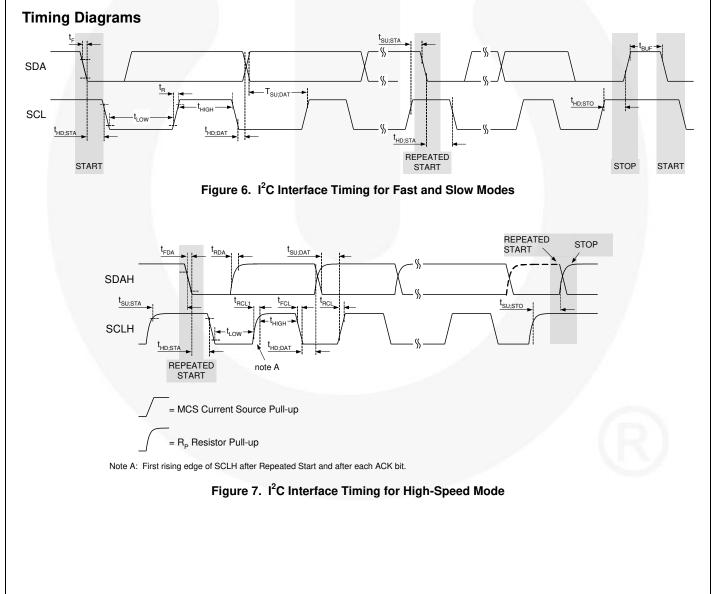
4. Guaranteed by design.

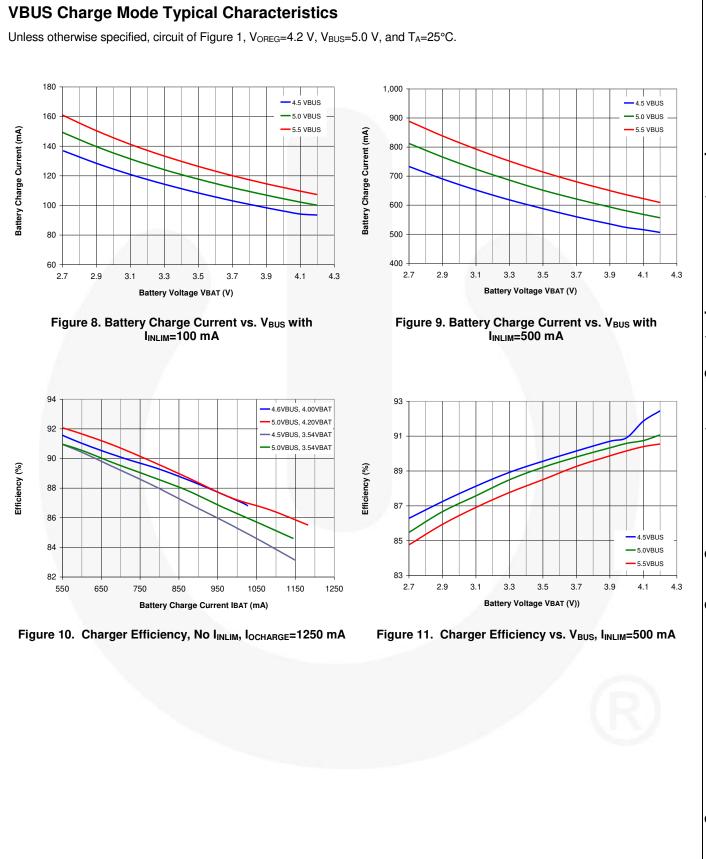
5. This tolerance applies to all timers on the IC, including soft-start and deglitching timers.

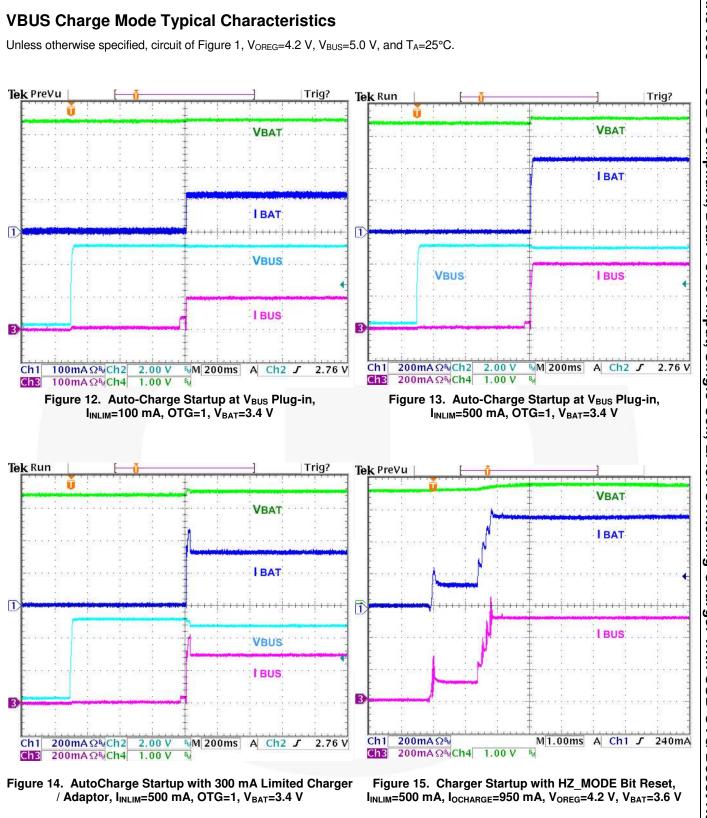
FAN54300

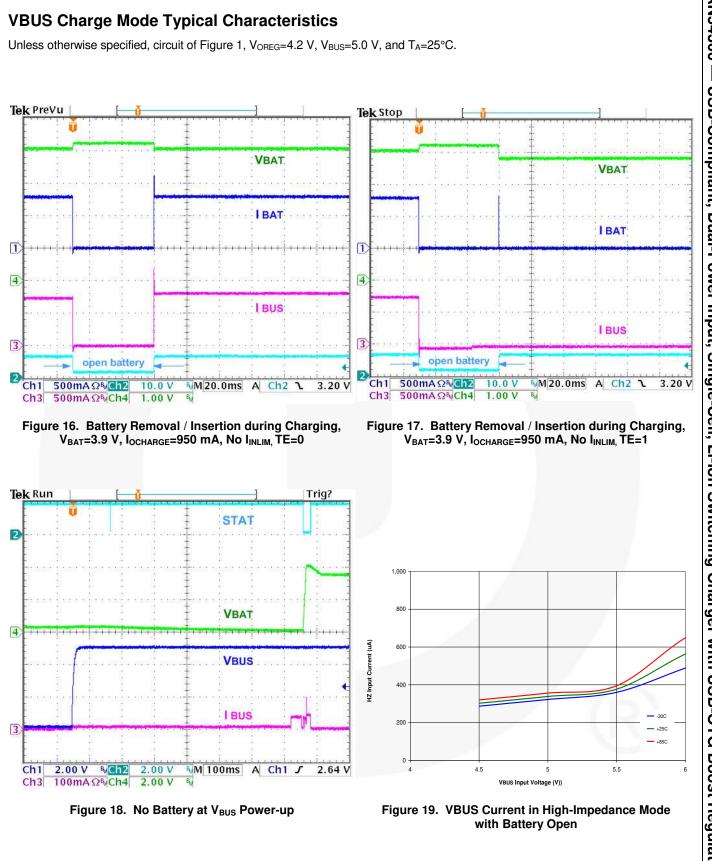
Ī

I²C Timing Specifications

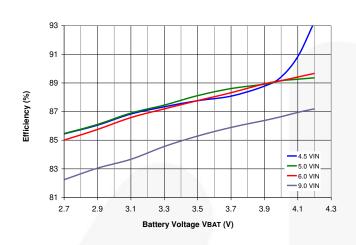

Guaranteed by design.


Symbol	Parameter	Conditions	Min.	Тур.	Max.	Uni	
f _{SCL}		Standard Mode			100		
		Fast Mode			400		
	SCL Clock Frequency	High-Speed Mode, C _B ≤ 100 pF			3400	kH:	
		High-Speed Mode, C _B ≤ 400 pF			1700		
t _{BUF}	Bus-Free Time between STOP and START Conditions	Standard Mode		4.7			
		Fast Mode		1.3		μS	
	START or Repeated START Hold Time	Standard Mode		4		μS	
t _{HD;STA}		Fast Mode		600		ns	
412,017		High-Speed Mode		160		ns	
		Standard Mode		4.7		μ	
		Fast Mode		1.3		μ	
t _{LOW}	SCL LOW Period	High-Speed Mode, $C_B \leq 100 \text{ pF}$		160		ns	
		High-Speed Mode, $C_B \leq 400 \text{ pF}$		320		n	
		Standard Mode		4		μ	
	SCL HIGH Period	Fast Mode		600		n:	
t _{HIGH}		High-Speed Mode, $C_B \le 100 \text{ pF}$		60		n	
		High-Speed Mode, $C_B \leq 400 \text{ pF}$		120		n	
	Repeated START Setup Time	Standard Mode		4.7			
		Fast Mode		600		μ	
tsu;sta		High-Speed Mode		160		n: n:	
		Standard Mode		250		11	
	Data Catur Time			100		n	
tsu;dat	Data Setup Time	Fast Mode					
		High-Speed Mode	0	10	0.45		
	Data Hold Time	Standard Mode	0		3.45	μ	
t _{HD;DAT}		Fast Mode	0		900	n	
		High-Speed Mode, $C_B \leq 100 \text{ pF}$	0		70	n	
		High-Speed Mode, $C_B \leq 400 \text{ pF}$	0		150	n	
	SCL Rise Time	Standard Mode).1C _B	1000		
t _{RCL}		Fast Mode	20+0).1C _B	300	n	
		High-Speed Mode, $C_B \leq 100 \text{ pF}$		10	80		
		High-Speed Mode, $C_B \leq 400 \text{ pF}$		20	160		
	SCL Fall Time	Standard Mode).1C _B	300		
t _{FCL}		Fast Mode	20+0).1C _B	300	n	
чғс		High-Speed Mode, $C_B \leq 100 \text{ pF}$		10	40		
		High-Speed Mode, $C_B \leq 400 \text{ pF}$		20	80		
	SDA Rise Time Rise Time of SCL after a	Standard Mode	20+0	20+0.1C _B			
t _{RDA}		Fast Mode	20+0).1C _B	300	ns	
t _{RCL1}	Repeated START Condition and after ACK Bit	High-Speed Mode, $C_B \leq 100 \text{ pF}$		10	80		
		High-Speed Mode, $C_B \leq 400 \text{ pF}$		20	160	1	


I²C Timing Specifications


Guaranteed by design.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
t _{FDA}	SDA Fall Time	Standard Mode		20+0.1C _B		-	
		Fast Mode		20+0.1C _B			
		High-Speed Mode, $C_B \leq 100 \text{ pF}$		10	80	ns	
		High-Speed Mode, $C_B \leq 400 \text{ pF}$		20	160		
tsu;sto	Stop Condition Setup Time	Standard Mode		4		μS	
		Fast Mode		600		ns	
		High-Speed Mode		160		ns	
CB	Capacitive Load for SDA, SCL				400	pF	



Unless otherwise specified, circuit of Figure 1, V_{OREG} = 4.2 V, V_{IN} = 5.0 V, and T_A =25°C.

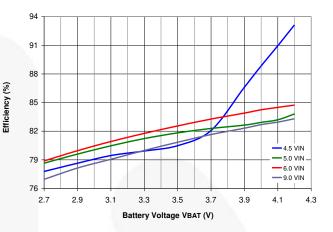


Figure 20. Charger Efficiency, Iocharge=950 mA

Figure 21. Charger Efficiency, Iocharge=1550 mA

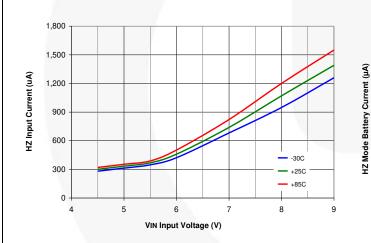


Figure 22. V_{IN} Current in High-Impedance Mode, V_{BAT}=3.6 V

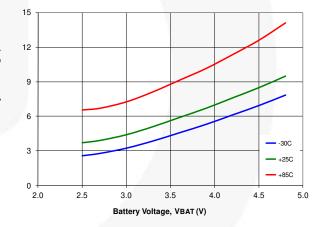
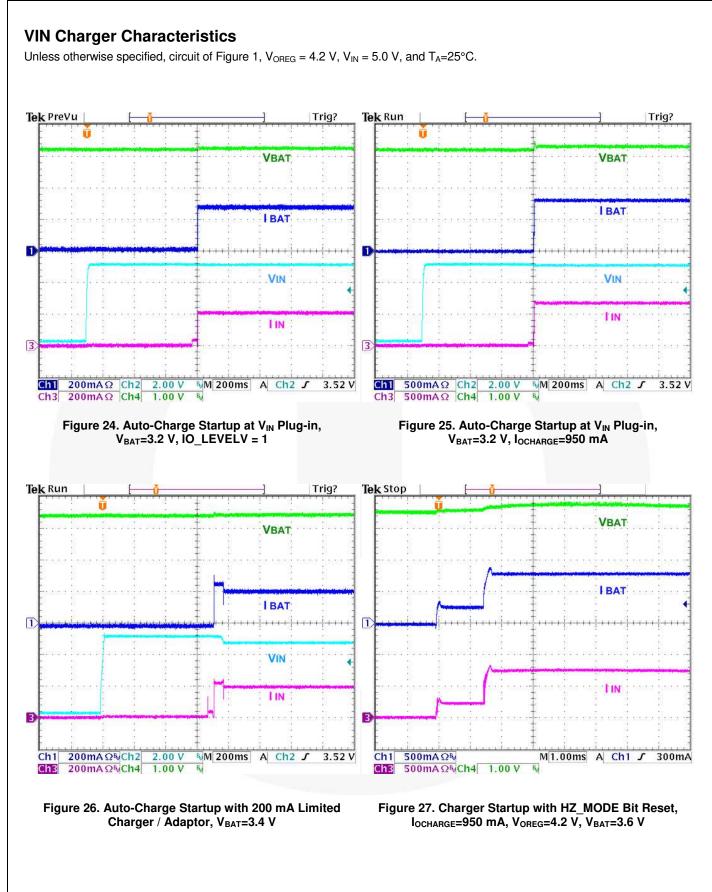
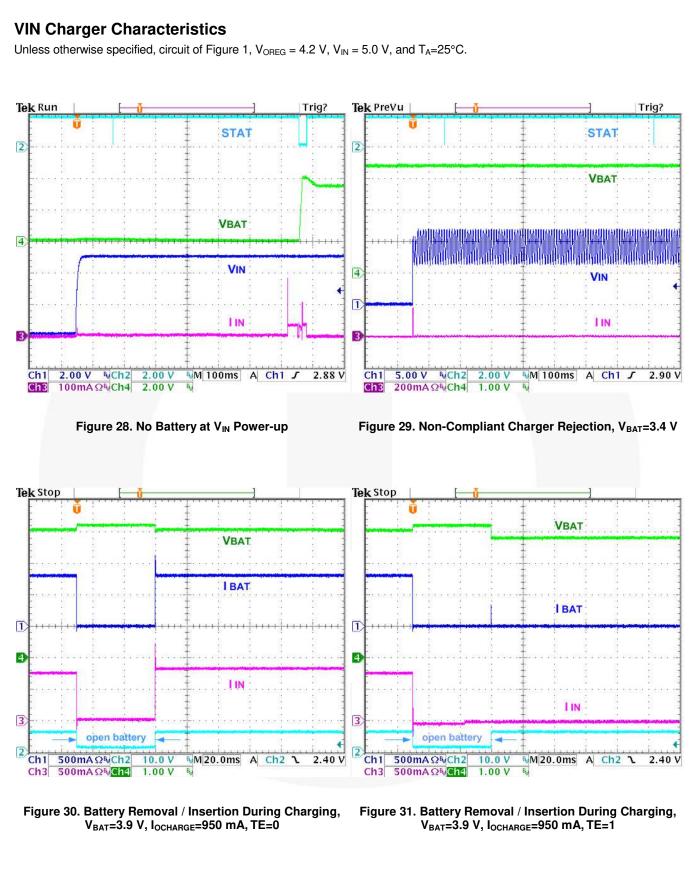
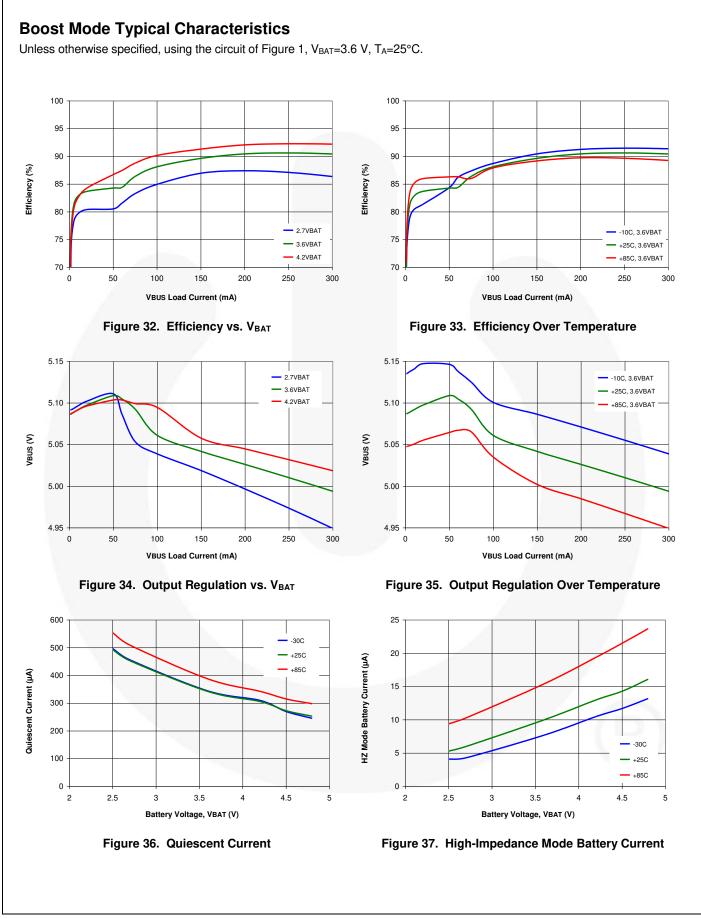
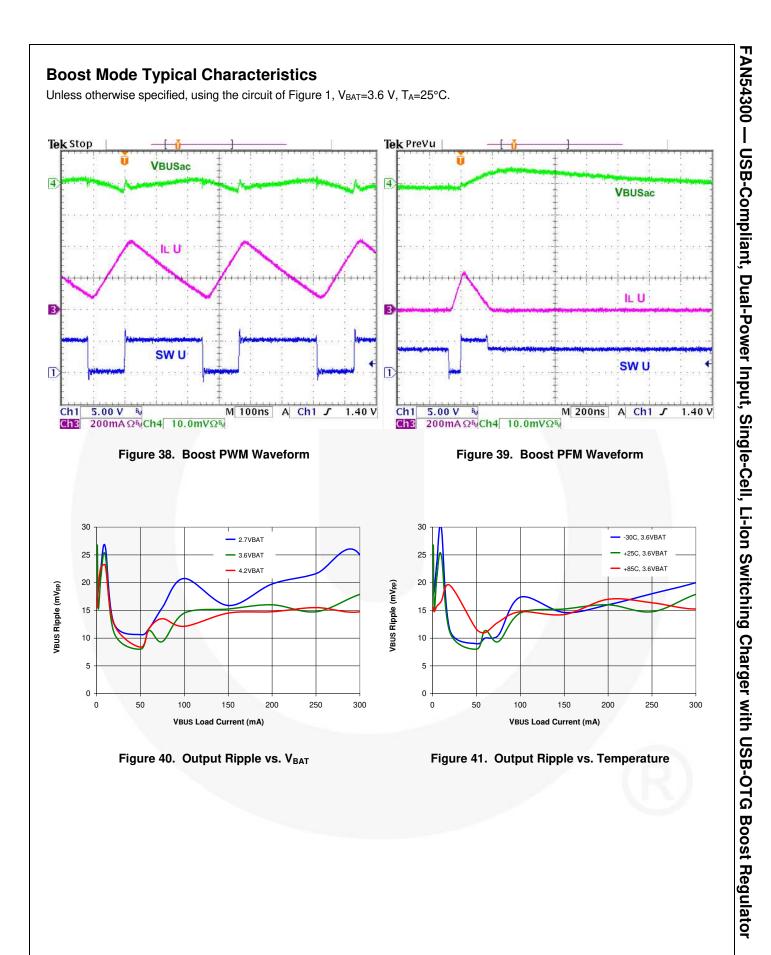
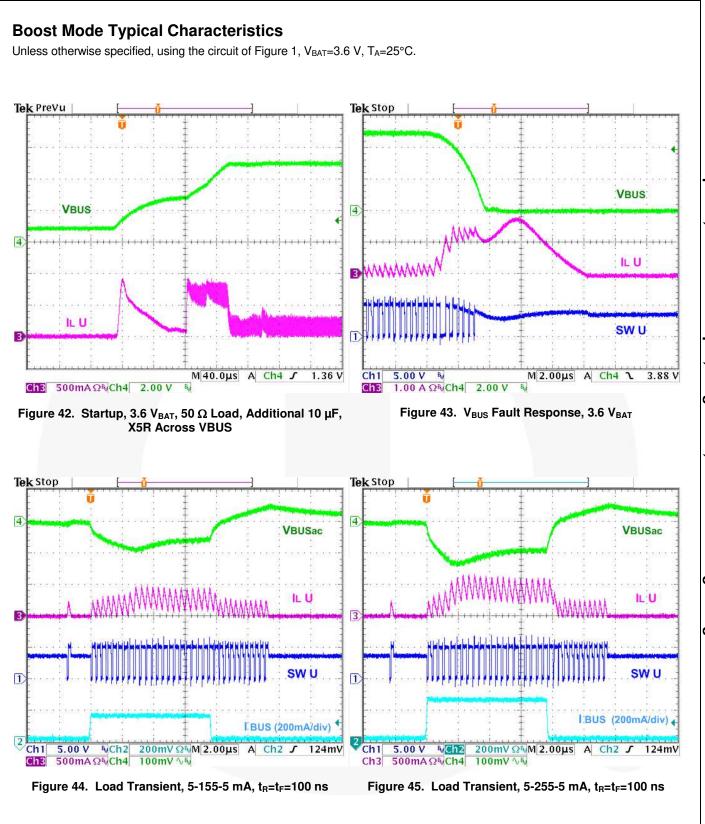





Figure 23. Battery Current in High-Impedance Mode, VBUS=Open, V_{IN}=Open





FAN54300 ---

USB-Compliant, Dual-Power Input, Single-Cell, Li-Ion Switching Charger with USB-OTG Boost Regulator

Circuit Description / Overview

When charging batteries with a current-limited input source, such as USB, a switching charger's high efficiency over a wide range of output voltages minimizes charging time.

The FAN54300 combines two highly integrated synchronous buck regulators for charging from two separate power sources. The IC also includes a synchronous boost regulator, which can supply 5 V to USB On-The-Go (OTG) peripherals. The regulator employs synchronous rectification for both the charger and boost regulators to maintain high efficiency over a wide range of battery voltages and charge states.

In addition to its USB (VBUS) input, the FAN54300 allows a second power source (VIN) to be used for charging. This input source is typically a "wall wart" and can be up to 9.5 V input.

The FAN54300 has three operating modes:

Charge Mode:

Charges a single-cell Li-lon or Li-polymer battery.

Boost Mode:

Provides 5 V power to USB-OTG with an integrated synchronous rectification boost regulator using the battery as input.

High-Impedance Mode:

Both the boost and charging circuits are off in this mode. Current flow from PWRIN (the charging power source) to the battery, or from the battery to PWRIN, are blocked in this mode. This mode consumes very little current from PWRIN or the battery.

When the IC is charging the battery from VIN, the boost regulator may be simultaneously enabled to supply 5 V for OTG peripherals.

Charge Mode

In Charge Mode, FAN54300 employs five regulation loops:

- 1. VBUS input current: Limits the amount of current drawn from VBUS. This current is sensed internally and can be programmed through the I²C interface
- Charging current: Limits the maximum charging current. This current is sensed using an external R_{SENSE} resistor.
- 3. Charge voltage: The regulator is restricted from exceeding this voltage. As the internal battery voltage rises, the battery's internal impedance and R_{SENSE} works in conjunction with the charge voltage regulation to decrease the amount of current flowing to the battery. Battery charging is completed when the voltage across R_{SENSE} drops below the I_{TERM} threshold.
- 4. Temperature: If the IC's junction temperature reaches 120°C, charge current is continuously reduced until the IC's temperature stabilizes at 120°C.
- An additional loop limits the amount of drop on VBUS or VIN to a programmable voltage (V_{SP}) to accommodate current-limited wall chargers.

Input Source Selection

The FAN54300 selects the power source (PWRIN) for charging according to the following criteria.

Table 3. PWRIN: Charging Power Input Source Selection

V _{IN}	V _{BUS}	PWRIN
VALID	INVALID	V _{IN}
INVALID	VALID	V _{BUS}
VALID	VALID	V _{IN}

If charging is in progress with V_{BUS} and V_{IN} becomes valid, charging from VBUS stops and charging continues from V_{IN}. Charging stops if HZ_VIN is set when V_{IN} becomes valid while charging with V_{BUS}.

If VIN and VBUS are both connected and t_{15MIN} expires, both CE# bits are set. To reinitiate t_{15MIN} charging (autocharge) with a weak battery, both power sources must be unplugged, then a valid power source plugged in. If only one of the two connected sources are removed then connected with a weak battery, both CE# bits remain set.

Fault Reporting and Register Reset

All faults that occur during charging or boost are reported only in the STATUS register (R0) associated with the active charging source at the time of the fault. Any register reset that occurs due to t_{32SEC} overflow resets only the associated with the active charging source.

For example: Assume the IC is charging in 32-Second Mode with V_{IN} as a source. The processor stops setting TMR_RST, so t_{32SEC} expires. The IC then resets only the _V registers and goes into 15-Minute Mode charging with V_{IN}. A timer fault is enunciated, but reported in the CONTROL0_V register. CONTROL0_U is unaffected by this event. When the t_{15MIN} timer expires, the IC sets the CE#_V bit, but leaves the CE#_U bit unchanged.

Battery Charging Curve

If the battery voltage is below V_{SHORT} , a linear current source "pre-charges" the battery until V_{BAT} reaches V_{SHORT} . The PWM charging circuits are then started and the battery is charged with a constant current if sufficient input power is available. The current slew rate is limited to prevent overshoot.

The FAN54300 is designed to work with a current-limited input source at PWRIN. During the current regulation phase of charging, PWRIN current limitations or the programmed charging current limit the amount of current available to charge the battery and power the system. The effect of input power limitations on I_{CHARGE} can be seen in Figure 47.

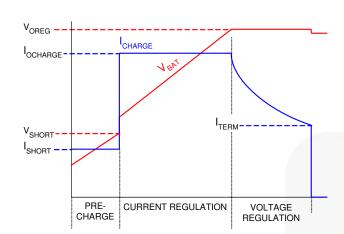
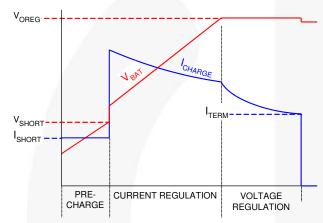



Figure 46. Charge Curve when PWRIN Limitations Don't Limit ICHARGE

Figure 47. Charge Curve when PWRIN Limits I_{CHARGE}

PWRIN limitations are controlled either by:

- IBUSLIM: These bits set the maximum amount of current that the charger draws from VBUS; OR
- SP CHARGER: For power-limited chargers. the FAN54300 limits current draw when the charging source drops to the voltage programmed by the SP CHARGER bits. This allows "travel adapters" to be accommodated without host software overhead. The SP CHARGER control loop applies to both VIN and VBUS.

Assuming VOREG is programmed to the cell's fully charged "float" voltage, the current the battery accepts with the PWM regulator limiting its output (sensed at VBAT) to VOREG declines and the charger enters the voltage regulation phase of charging. When the current declines to the programmed ITERM value, the charge cycle is complete. Charge current termination can be disabled by resetting the TE bit.

Charger Programmability

Throughout this document, any parameter that ends in "U" applies when charging from V_{BUS} and any parameter ending in "V" applies when charging from VIN. Parameters set with slave address D6 are applied when charging from V_{BUS}. Parameters set with slave address D4 are applied when charging from VIN.

The following charging and input power control parameters can be programmed by the host through I^2C .

Table 4. Programmable Charging Parameters

Parameter	Charging Source	Name	Register	
Output Voltage Regulation	Either	OREG	REG2[7:2]	
Battery Charging	V _{BUS}	ICHGU	REG4[6:4]	
Current Limit	V _{IN}	ICHGV	REG4[6:3]	
Input Current Limit	V _{BUS}	IBUSLIM	REG1[7:6]	
Charge Termination Limit	Either	ITERM	REG4[2:0]	
Special Charger Minimum Voltage	Either	VSP	REG5[2:0]	

The charger output or "float" voltage can be programmed by the OREG bits from 3.5 V to 4.44 V in 20 mV increments.

Table 5. OREG Bits (REG2 [7:2]) vs. Charger Vout (V_{OBEG}) Float Voltage

Decimal	Hex	VOREG	Decimal	Hex	VOREG	
0	00	3.50	32	20	4.14	
1	01	3.52	33	21	4.16	
2	02	3.54	34	22	4.18	
3	03	3.56	35	23	4.20	
4	04	3.58	36	24	4.22	
5	05	3.60	37	25	4.24	
6	06	3.62	38	26	4.26	
7	07	3.64	39	27	4.28	
8	08	3.66	40	28	4.30	
9	09	3.68	41	29	4.32	
10	0A	3.70	42	2A	4.34	
11	0B	3.72	43	2B	4.36	
12	0C	3.74	44	2C	4.38	
13	0D	3.76	45	2D	4.40	
14	0E	3.78	46	2E	4.42	
15	0F	3.80	47	2F	4.44	
16	10	3.82	48	30	4.44	
17	11	3.84	49	31	4.44	
18	12	3.86	50	32	4.44	
19	13	3.88	51	33	4.44	
20	14	3.90	52	34	4.44	
21	15	3.92	53	35	4.44	
22	16	3.94	54	36	4.44	
23	17	3.96	55	37	4.44	
24	18	3.98	56	38	4.44	
25	19	4.00	57	39	4.44	
26	1A	4.02	58	ЗA	4.44	
27	1B	4.04	59	3B	4.44	
28	1C	4.06	60	3C	4.44	
29	1D	4.08	61	3D	4.44	
30	1E	4.10	62	3E	4.44	
31	1F	4.12	63	3F	4.44	
Note:						

Note:

6. All register default settings are noted by **bold typeface**.