imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

ON Semiconductor[®] FAN7080-GF085 Half Bridge Gate Driver

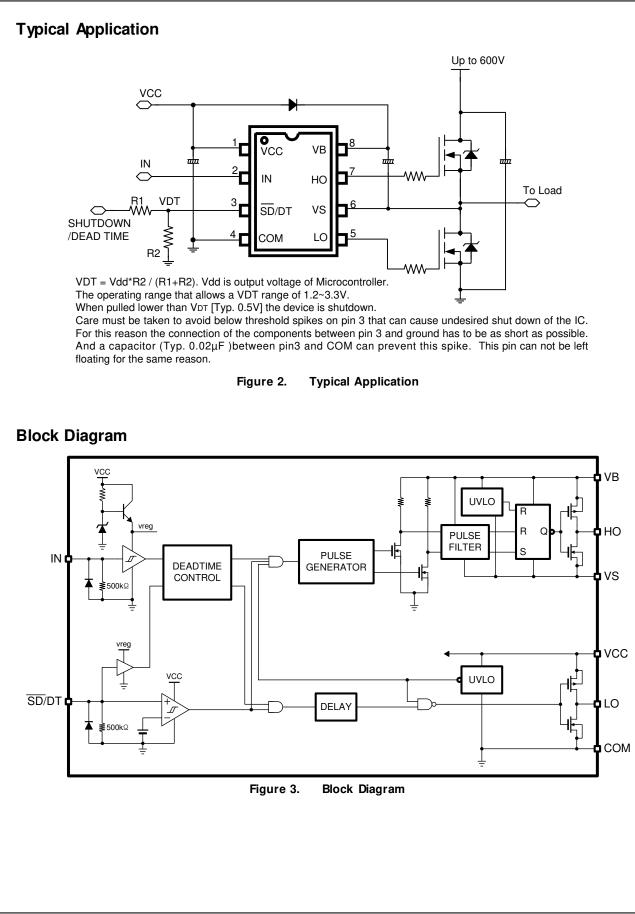
Features

- Automotive Qualified to AEC Q100
- Floating Channel for Bootstrap Operation to +600 V
- Tolerance to Negative Transient Voltage on VS Pin
- VS-pin dv/dt Immune
- Gate Drive Supply Range from 5.5 V to 20 V
- Under-Voltage Lockout (UVLO)
- CMOS Schmitt-triggered Inputs with Pull-down
- . High Side Output In-phase with Input
- IN input is 3.3 V/5 V Logic Compatible and . Available on 15 V Input
- Matched Propagation Delay for both Channels .
- Dead Time Adjustable

Applications

- Junction Box
- Half and full bridge application in the motor drive system Related Product Resources

Description


The FAN7080-GF085 is a half-bridge gate drive IC with reset input and adjustable dead time control. It is designed for high voltage and high speed driving of MOSFET or IGBT, which operates up to 600 V. ON Semiconductor's high-voltage process and commonmode noise cancellation technique provide stable operation in the high side driver under high-dV/dt noise circumstances. An advanced level-shift circuit allows high-side gate driver operation up to $V_{S}=-5 V$ (typical) at V_{BS}=15 V. Logic input is compatible with standard CMOS outputs. The UVLO circuits for both channels prevent from malfunction when V_{CC} and V_{BS} are low er than the specified threshold voltage. Combined pin function for dead time adjustment and reset shutdown make this IC packaged with space saving SOIC-8 Package. Minimum source and sink current capability of output driver is 250 mA and 500 mA respectively, which is suitable for junction box application and half and full bridge application in the motor drive system.

8-Lead, SOIC, Narrow Body Figure 1.

Part Number	Operating Temperature Range	Package	Packing Method			
FAN7080M-GF085		8-Lead, Small Outline Integrated Circuit (SOIC),	Tube			
FAN7080MX- GF085	-40°C ∼ 125°C	JEDEC MS-012, .150 inch Narrow Body	Tape & Reel			

rdaring Information

www.onsemi.com 2

Pin Configuration

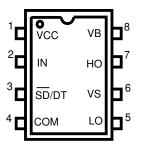


Figure 4. Pin Assignment (Top Through View)

Pin Descriptions

Pin #	Name	I/O	Pin Function Description
1	V _{CC}	Р	Driver Supply Voltage
2	IN	I	Logic input for high and low side gate drive output
3	/SD/DT	I	Shutdow n Input and dead time setting
4	COM	Р	Ground
5	LO	А	Low side gate drive output for MOSFET Gate connection
6	Vs	А	High side floating offset for MOSFET Source connection
7	HO	А	High side drive output for MOSFET Gate connection
8	VB	Р	Driver Output Stage Supply

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Min.	Max.	Unit
Vs	High-Side Floating Offset Voltage	V _B -25	V _B +0.3	V
VB	High-Side Floating Supply Voltage	-0.3	625	V
V _{HO}	High-Side Floating Output Voltage	V _S -0.3	V _B +0.3	V
V _{LO}	Low - Side Floating Output Voltage	-0.3	V _{cc} +0.3	V
Vcc	Supply Voltage	-0.3	25	V
V _{IN}	Input Voltage for IN	-0.3	V _{CC} +0.3	V
l _{IN}	Input Injection Current (1)		+1	mA
PD	Pow er Dissipation ^(2:3)		0.625	W
θја	Thermal Resistance, Junction to Ambient ⁽²⁾		200	°C/W
TJ	Junction Temperature		150	°C
T _{STG}	Storage Temperature	-55	150	°C
ESD	Human Body Model (HBM)		1000	V
EOD	Charge Device Model (CDM)		500	v

Notes:

- 1. Guaranteed by design. Full function, no latchup. Tested at 10 V and 17 V.
- The Thermal Resistance and pow er dissipation rating are measured per below conditions: JESD51-2: Integral circuits thermal test method environmental conditions, natural convection/Still Air JESD51-3: Low effective thermal conductivity test board for leaded surface-mount packages.
- 3. Do not exceed power dissipation $\left(P_{D}\right)$ under any circumstances.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance. ON Semiconductor does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Max.	Unit
V _B ⁽⁴⁾	High-Side Floating Supply Voltage (DC) Transient: -10 V at 0.1 μS	V _S +6	V _S +20	V
Vs	High-Side Floating Supply Offset Voltage (DC) Transient: -25 V(max.) at 0.1 μ S at V _{BS} < 25 V		600	V
V _{HO}	High-Side Output Voltage	Vs	VB	V
V _{LO}	Low - Side Output Voltage	0	Vcc	V
V _{CC}	Supply Voltage for Logic Input	5.5	20	V
VIN	Logic Input Voltage	0	V _{CC}	V
dv/dt	Allow able Offset Voltage Slew Rate ⁽⁵⁾		50	V/nS
T _{PULSE}	Minimum Pulse Width ^(5,6)	1100		nS
Fs	Sw itching Frequency ⁽⁶⁾		200	KHz
TA	Operating Ambient Temperature	-40	125	°C

Notes:

4. The V_S offset is tested with all supplies based at 15 V differential

5. Guaranteed by design.

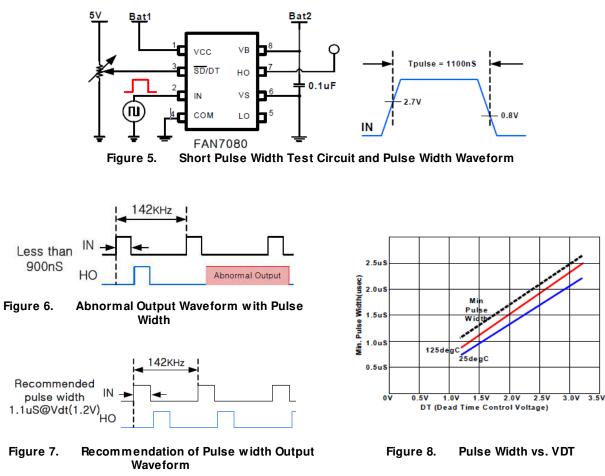
6. When $V_{DT} = 1.2$ V. Refer to Figures 5, 6, 7 and 8.

Electrical Characteristics

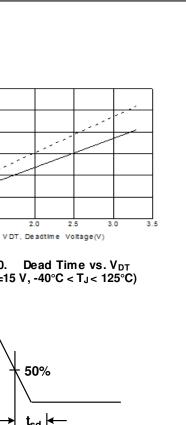
Unless otherwise specified -40°C ≤ $T_A \le 125$ °C, $V_{CC} = 15$ V, $V_{BS} = 15$ V, $V_S = 0$ V, $C_L = 1$ nF

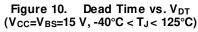
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V _{CC} and V	BS Supply Characteristics					
V _{CCUV+} V _{BSUV+}	V_{CC} and V_{BS} Supply Under-Voltage Positive going Threshold			4.2	5.5	V
V _{CCUV-} V _{BSUV-}	V_{CC} and V_{BS} Supply Under-Voltage Negative going Threshold		2.8	3.6		V
V _{CCUVH} V _{BSUVH}	V _{CC} and V _{BS} Supply Under-Voltage Hysteresis		0.2	0.6		V
tduvcc tduvbs	Under-Voltage Lockout Response Time	$V_{CC}: 6 \lor \rightarrow 2.5 \lor \text{ or } 2.5 \lor \rightarrow 6 \lor$ $V_{BS}: 6 \lor \rightarrow 2.5 \lor \text{ or } 2.5 \lor \rightarrow 6 \lor$	0.5 0.5		20 20	μs
LK	Offset Supply Leakage Current	$V_{\rm B} = V_{\rm S} = 600 \ {\rm V}$		20	50	μA
IQ BS	Quiescent V _{BS} Supply Current	V _{IN} = 0 or 5 V, V _{SDT} = 1.2 V	20	75	150	μA
IQ CC	Quiescent V _{CC} Supply Current	$VI_{N} = 0 \text{ or } 5 \text{ V}, \text{ V}_{SDT} = 1.2 \text{ V}$		350	1000	μA
Input Cha	aracteristics					
VIH	High Logic level Input Voltage		2.7			V
V⊫	Low Logic Level Input Voltage				0.8	V
I _{IN+}	Logic Input High Bias Current	V _{IN} = 5 V		10	50	μA
I _{IN-}	Logic Input Low Bias Current	V _{IN} = 0 V		0	2	μA
V _{DT}	V _{DT} Dead Time Setting Range		1.2		5.0	V
V _{SD}	V _{SD} Shutdow n Threshold Voltage			0.8	1.2	V
RSDT	High Logic Level Resistance for /SD /DT	$V_{SDT} = 5 V$	100	500	1100	kΩ
I _{SDT-}	Low Logic Level Input bias Current for /SD /DT	V _{SDT} = 0 V		1	2	μA
Output Cl	haracteristics	1				
V _{OH(HO)}	High Level Output Voltage (V _{CC} - V _{HO})	lo = 0			0.1	V
V _{OL(HO)}	Low Level Output Voltage (V _{HO})	lo = 0			0.1	V
l _{O+(HO)}	Output High, Short-Circuit Pulse Current		250	300		mA
Ю-(НО)	Output Low, Short-Circuit Pulse Current		500	600		mA
R _{OP(HO)}	Equivalent Output Resistance				60	0
R _{ON(HO)}	Liquivalent Output hesistance				30	Ω
V _{OH(LO)}	High Level Output Voltage ($V_B - V_{LO}$)	lo = 0			0.1	V
V _{OL(LO)}	Low Level Output Voltage (VLO)	lo = 0			0.1	V
l _{O+(LO)}	Output High, Short-Circuit Pulse Current		250			mA
lo-(lo)	Output Low, Short-Circuit Pulse Current		500			mA
R _{OP(LO)}	Equivalent Output Resistance				60	0
R _{ON(LO)}	Lyuvaleni Oulpul nesistance				30	Ω

Dynamic	Electrical	Characteristics
---------	------------	-----------------


Unless otherwise specified -40°C ≤ $T_A \le 125$ °C, $V_{CC} = 15$ V, $V_{BS} = 15$ V, $V_S = 0$ V, $C_L = 1$ nF

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
ton	Turn-On Propagation Delay ⁽⁷⁾	V _S =0 V		750	1500	ns
toff	Turn-Off Propagation Delay	V _S =0 V		130	250	ns
t _R	Turn-On Rise Time			40	150	ns
t⊨	Turn-Off Fall Time			25	400	ns
DT	Dead Time, LS Turn-off to HS Turn-on and HS Turn-on to LS Turn-off	$V_{IN} = 0 \text{ or } 5 \text{ V at } VDT = 1.2 \text{ V}$	250	650	1200	ns
DI		and HS Turn-on to LS Turn-off $V_{IN} = 0$ or 5 V at VDT = 1.2	$V_{IN} = 0 \text{ or } 5 \text{ V at } VDT = 1.2 \text{ V}$	1600	2100	2600
Mрт	Dead Time Matching Time	Dead Time Matching Time		35	110	ns
	Deau Time Matching Time	DT1 - DT2 at VDT = 3.3 V			300	115
M _{TON}	Delay Matching, HS and LS Turn-on	VDT = 1.2 V		25	110	ns
MTOFF	Delay Matching, HS and LS Turn-off	VDT = 1.2 V		15	60	ns
t _{SD}	Shutdow n Propagation Delay			180	330	ns
F _S 1	Switching Frequency	$V_{CC} = V_{BS} = 20$ V			200	Khz
F _S 2		$V_{CC} = V_{BS} = 5.5 V$			200	


Notes:


7. toN includes DT

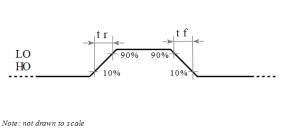
www.onsemi.com 6

3000

2500

2000

1500 1000


500

0 L

SD

1.5

Dead Time(rs)

Input/Output Timing Diagram

Typical Performance Characteristics

IN

но

LO

Figure 9.

SD/DT

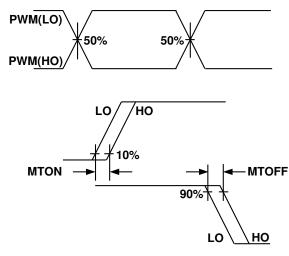


Figure 12. Shutdown Waveform Definitions

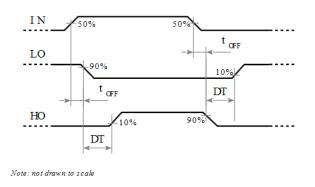


Figure 14. **Dead Time Waveform Definitions**

Typical Performance Characteristics

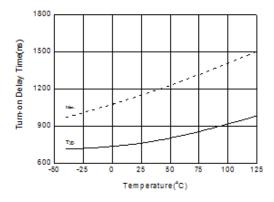


Figure 15. Turn-on Delay Time of HO vs. Temperature ($V_{CC}=V_{BS}=15 V$, $C_{L}=1 nF$)

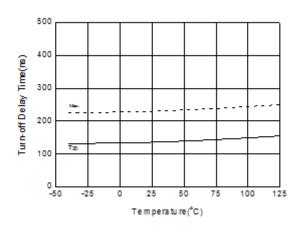
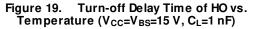




Figure 17. Turn-on Delay Time of LO vs. Temperature ($V_{CC}=V_{BS}=15 V$, $C_{L}=1 nF$)

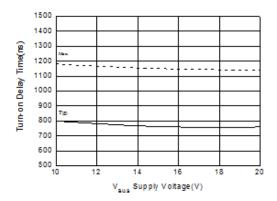


Figure 16. Turn-on Delay Time of HO vs. V_{BS} Supply Voltage (V_{CC}=15 V, C_L=1 nF, T_A=25°C)

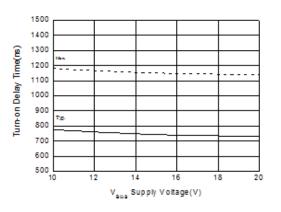
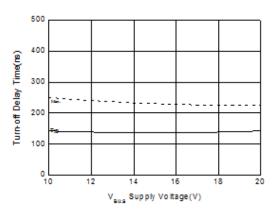
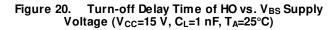
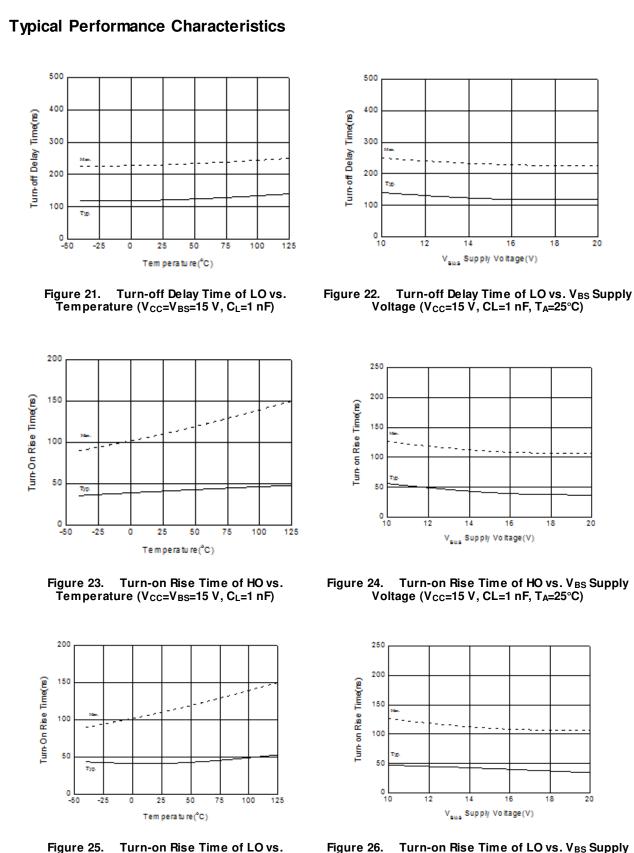
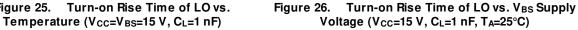
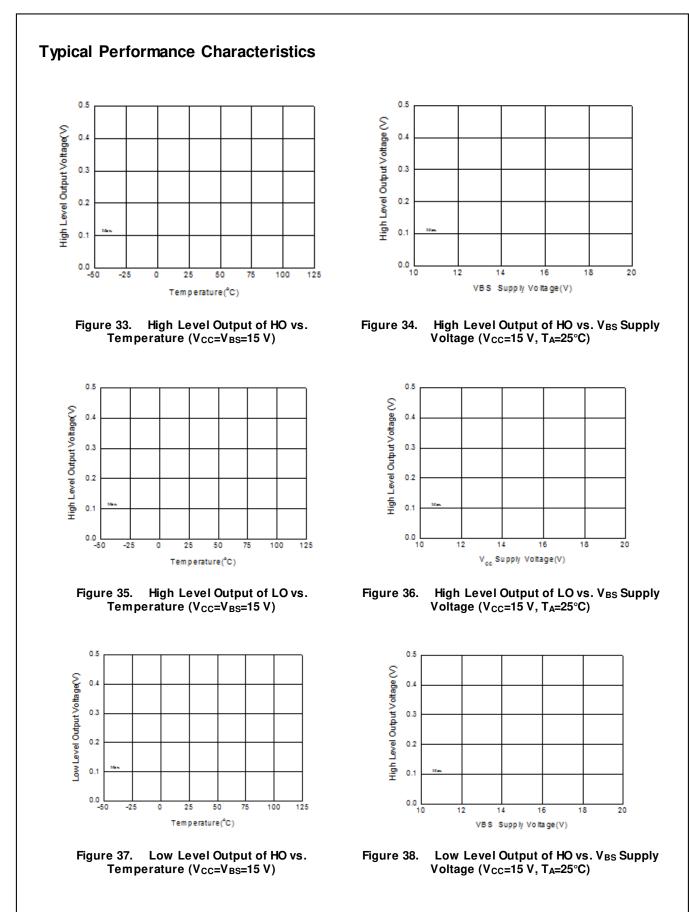
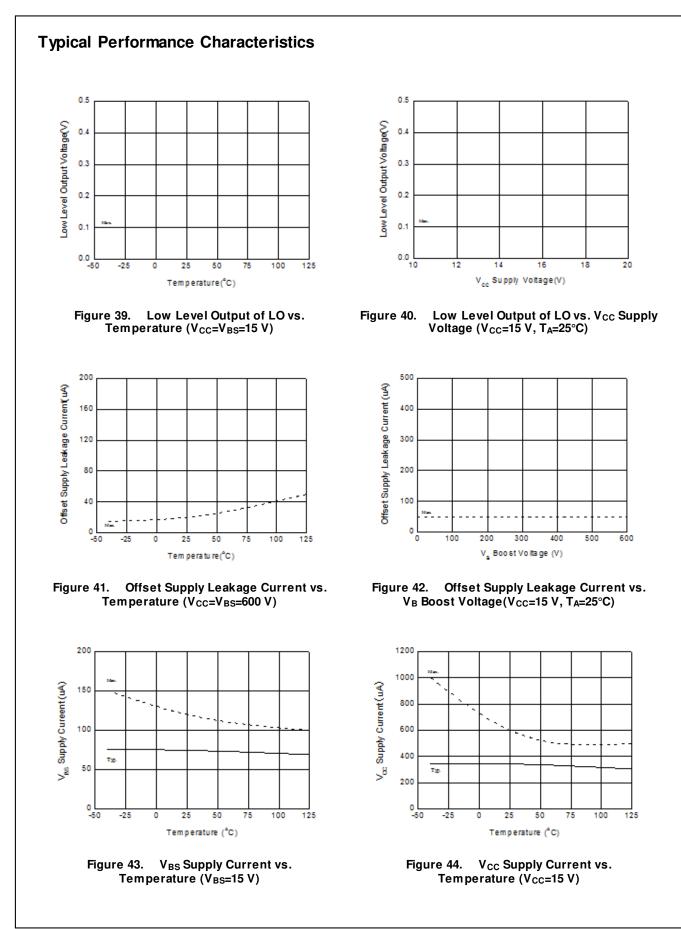






Figure 18. Turn-on Delay Time of LO vs. V_{BS} Supply Voltage (V_{CC}=15 V, C_L=1 nF, T_A=25°C)

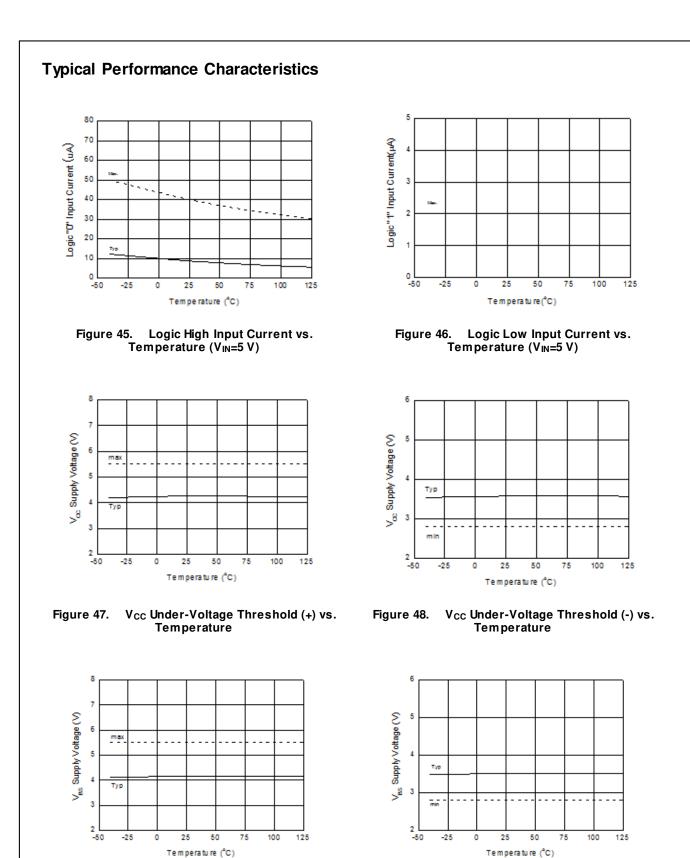
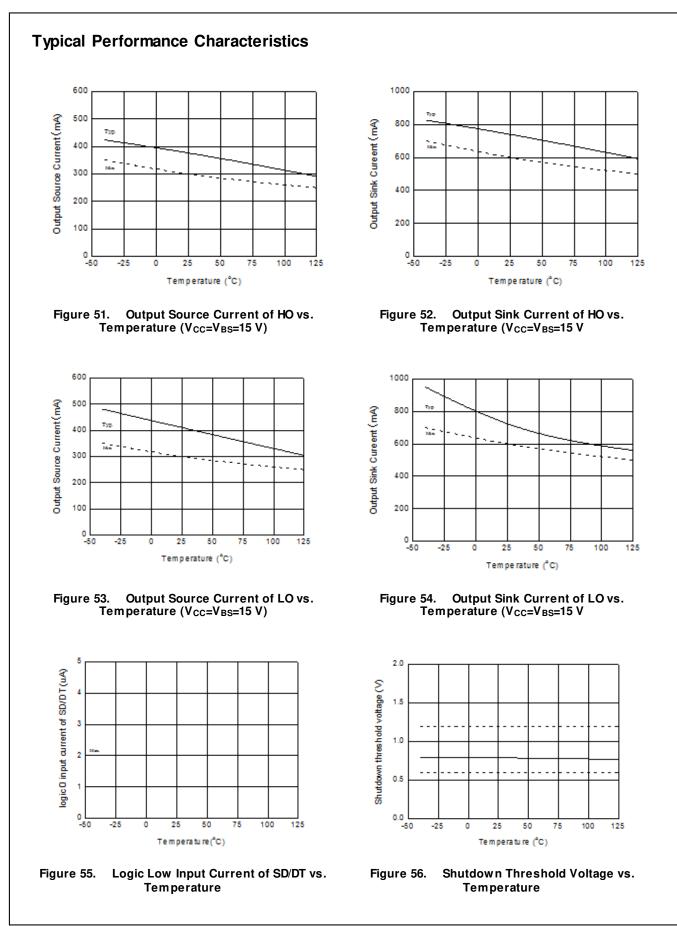


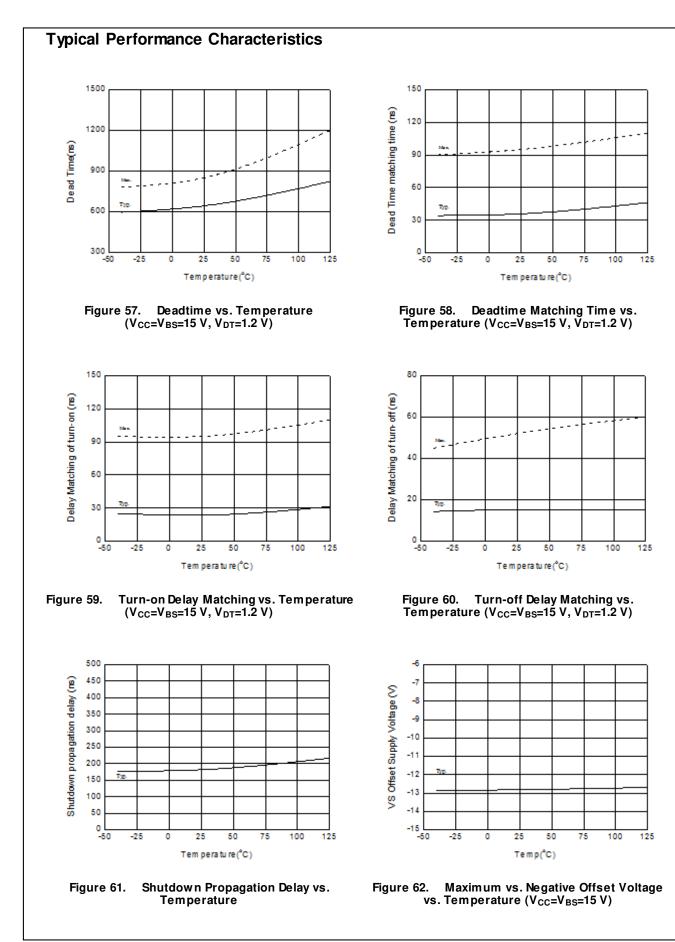

www.onsemi.com

Typical Performance Characteristics Turn-Off Fall Time(ns) Turn-Off Fall Time(ns) тур. -50 -25 V Supply Voltage(V) Tem perature(°C) Figure 27. Turn-off Fall Time of HO vs. Figure 28. Turn-off Fall Time of HO vs. V_{BS} Supply Temperature (V_{CC}=V_{BS}=15 V, C_L=1 nF) Voltage (V_{CC}=15 V, C_L=1 nF, T_A=25°C) Turn-Off Fall Time(ns) Turn-Off Fall Time(ns) тур 0 L -50 -25 V_{BIOS} Supply Voltage(V) Tem perature(°C) Figure 29. Turn-off Fall Time of LO vs. Figure 30. Turn-off Fall Time of LO vs. Temperature (V_{CC}=V_{BS}=15 V, C_L=1 nF) Temperature (V_{CC}=V_{BS}=15 V, C_L=1 nF) Input Voltage(V) Input Voltage(V) Ma. Min. - - -- - -. . . 0 L -50 -25 -25 Temperature (°C) Temperature (°C) Logic Low Input Voltage vs. Figure 31.

Figure 32. Logic High Input Voltage vs. Temperature

Temperature


Figure 50. V_{BS} Under-Voltage Threshold (-) vs. Temperature


V_{BS} Under-Voltage Threshold (+) vs.

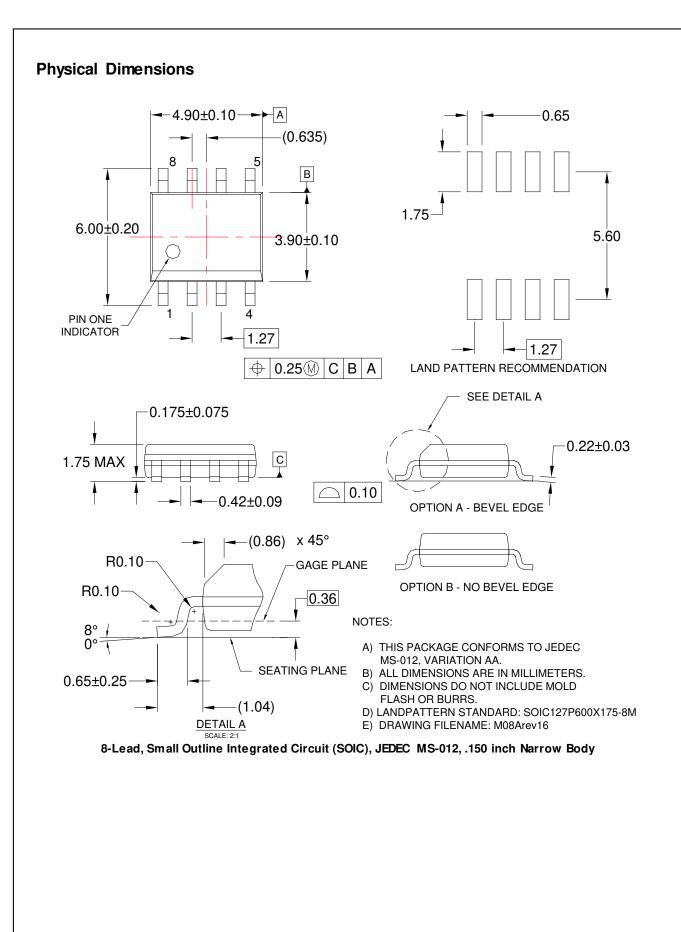

Temperature

Figure 49.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products for any such unintended, or authorized for any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and direibudy in associated with such unintended or unauthorized amages, and reasonable attorney fees arising out of, direct

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada.

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Litserature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative