: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

FAN7393

Half-Bridge Gate Drive IC

Features

- Floating Channel for Bootstrap Operation to +600 V
- Typically 2.5A/2.5A Sourcing/Sinking Current Driving Capability
■ Extended Allowable Negative V_{S} Swing to -9.8V for Signal Propagation at $\mathrm{V}_{\mathrm{BS}}=15 \mathrm{~V}$
- High-Side Output in Phase of IN Input Signal
- 3.3V and 5V Input Logic Compatible
- Matched Propagation Delay for Both Channels
- Built-in Shutdown Function
- Built-in UVLO Functions for Both Channels
- Built-in Common-Mode dv/dt Noise Cancelling Circuit
- Internal 370ns Minimum Dead Time at $\mathrm{R}_{\mathrm{DT}}=0 \Omega$
- Programmable Turn-on Delay Control (Dead-Time)

Applications

■ High-Speed Power MOSFET and IGBT Gate Driver

- Induction Heating
- High-Power DC-DC Converter
- Synchronous Step-Down Converter
- Motor Drive Inverter

Description

The FAN7393 is a half-bridge, gate-drive IC with shutdown and programmable dead-time control functions that can drive high-speed MOSFETs and IGBTs operating up to +600 V . It has a buffered output stage with all NMOS transistors designed for high-pulse-current driving capability and minimum cross-conduction.
Fairchild's high-voltage process and common-mode noise canceling techniques provide stable operation of the high-side driver under high dv/dt noise circumstances. An advanced level-shift circuit offers high-side gate driver operation up to $\mathrm{V}_{S}=-9.8 \mathrm{~V}$ (typical) for $\mathrm{V}_{\mathrm{BS}}=15 \mathrm{~V}$.
The UVLO circuit prevents malfunction when $V_{D D}$ and V_{BS} are lower than the specified threshold voltage.
The high-current and low-output voltage drop feature makes this device suitable for diverse half- and fullbridge inverters; motor drive inverters, switching mode power supplies, induction heating, and high-power DCDC converter applications.

14-SOP

Ordering Information

Part Number	Package	Operating Temperature Range	Eco Status	Packing Method
FAN7393M	14-Lead, Small Outline Integrated Circuit (SOIC), Non-JEDEC, .150 Inch Narrow Body, 225SOP	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	RoHS	Tube
FAN7393MX	Tape \& Reel			

For Fairchild's definition of Eco Status, please visit: http://www.fairchildsemi.com/company/green/rohs green.html.

Typical Application Diagrams

Figure 1. Typical Application Circuit

Internal Block Diagram

Figure 2. Functional Block Diagram

Pin Configuration

Pin Definitions

Pin \#	Name	Description
1	$\overline{I N}$	Logic Input for High-Side and Low-Side Gate Driver Output, In-Phase with HO
2	$\overline{\mathrm{SD}}$	Logic Input for Shutdown
3	$\mathrm{~V}_{\text {SS }}$	Logic Ground
4	DT	Dead-Time Control with External Resistor (Referenced to $\mathrm{V}_{\text {SS }}$)
5	COM	Ground
6	LO	Low-Side Driver Return
7	$\mathrm{~V}_{\mathrm{DD}}$	Supply Voltage
8	NC	No Connection
9	NC	No Connection
10	NC	No Connection
11	V	High-Voltage Floating Supply Return
12	HO	High-Side Driver Output
13	V	High-Side Floating Supply
14	NC	No Connection

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Characteristics	Min.	Max.	Unit
V_{B}	High-Side Floating Supply Voltage	-0.3	625.0	V
$\mathrm{~V}_{\mathrm{S}}$	High-Side Floating Offset Voltage	$\mathrm{V}_{\mathrm{B}}-25$	$\mathrm{~V}_{\mathrm{B}}+0.3$	V
$\mathrm{~V}_{\mathrm{HO}}$	High-Side Floating Output Voltage	$\mathrm{V}_{\mathrm{S}^{-}} 0.3$	$\mathrm{~V}_{\mathrm{B}}+0.3$	V
$\mathrm{~V}_{\mathrm{LO}}$	Low-Side Output Voltage	-0.3	$\mathrm{~V}_{\mathrm{DD}}+0.3$	V
$\mathrm{~V}_{\mathrm{DD}}$	Low-Side and Logic Fixed Supply Voltage	-0.3	25.0	V
$\mathrm{~V}_{\mathrm{IN}}$	Logic Input Voltage (IN)	-0.3	$\mathrm{~V}_{\mathrm{DD}}+0.3$	V
$\mathrm{~V}_{\mathrm{SD}}$	Logic Input Voltage ($\overline{\mathrm{SD}})$	V_{SS}	5.5	V
DT	Programmable Dead-time Pin Voltage	-0.3	$\mathrm{~V}_{\mathrm{DD}}+0.3$	V
$\mathrm{~V}_{\mathrm{SS}}$	Logic Ground	$\mathrm{V}_{\mathrm{DD}}-25$	$\mathrm{~V}_{\mathrm{DD}}+0.3$	V
$\mathrm{~d} \mathrm{~V}_{\mathrm{S}} / \mathrm{dt}$	Allowable Offset Voltage Slew Rate		± 50	$\mathrm{~V} / \mathrm{ns}$
P_{D}	Power Dissipation ${ }^{(1,2,3)}$		1	W
θ_{JA}	Thermal Resistance		110	${ }^{\circ} \mathrm{C} / \mathrm{W}$
T_{J}	Junction Temperature		+150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{STG}}$	Storage Temperature	-55	+150	${ }^{\circ} \mathrm{C}$

Notes:

1. Mounted on $76.2 \times 114.3 \times 1.6 \mathrm{~mm}$ PCB (FR-4 glass epoxy material).
2. Refer to the following standards:

JESD51-2: Integral circuits thermal test method environmental conditions - natural convection, and JESD51-3: Low effective thermal conductivity test board for leaded surface mount packages.
3. Do not exceed maximum P_{D} under any circumstances.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Min.	Max.	Unit
V_{B}	High-Side Floating Supply Voltage	$\mathrm{V}_{\mathrm{S}^{+}}+10$	$\mathrm{~V}_{\mathrm{S}}+20$	V
$\mathrm{~V}_{\mathrm{S}}$	High-Side Floating Supply Offset Voltage	$6-\mathrm{V}_{\mathrm{DD}}$	600	V
$\mathrm{~V}_{\mathrm{HO}}$	High-Side Output Voltage	V_{S}	V_{B}	V
V_{DD}	Low-Side and Logic Fixed Supply Voltage	10	20	V
$\mathrm{~V}_{\mathrm{LO}}$	Low-Side Output Voltage	COM	V_{DD}	V
V_{IN}	Logic Input Voltage (IN)	V_{SS}	V_{DD}	V
V_{SD}	Logic Input Voltage $(\overline{\mathrm{SD}})^{(4)}$	V_{SS}	5	V
DT	Programmable Dead-Time Pin Voltage	V_{SS}	V_{DD}	V
V_{SS}	Logic Ground	-5	+5	V
$\mathrm{~T}_{\mathrm{A}}$	Operating Ambient Temperature	-40	+125	${ }^{\circ} \mathrm{C}$

Note:

4. Shutdown ($\overline{\mathrm{SD}})$ input is internally clamped with 5.2 V .

Electrical Characteristics

$\mathrm{V}_{\mathrm{BIAS}}\left(\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{BS}}\right)=15.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{COM}=0 \mathrm{~V}, \mathrm{DT}=\mathrm{V}_{\mathrm{SS}}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified. The $\mathrm{V}_{I N}$ and $\mathrm{I}_{\mathbb{I N}}$ parameters are referenced to $\mathrm{V}_{\mathrm{SS}} / \mathrm{COM}$ and are applicable to the respective input leads: IN and $\overline{\mathrm{SD}}$. The V_{O} and I_{O} parameters are referenced to COM and are applicable to the respective output leads: HO and LO.

Symbol	Characteristics	Test Condition	Min.	Typ.	Max.	Unit
POWER SUPPLY SECTION						
$\mathrm{I}_{\text {QDD }}$	Quiescent $\mathrm{V}_{\text {DD }}$ Supply Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ or 5 V		0.9	1.5	mA
$\mathrm{I}_{\text {QBS }}$	Quiescent $\mathrm{V}_{\text {BS }}$ Supply Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ or 5 V		50	100	$\mu \mathrm{A}$
$I_{\text {PDD }}$	Operating $\mathrm{V}_{\text {DD }}$ Supply Current	$\mathrm{f}_{\mathrm{IN}}=20 \mathrm{KHz}$, No Load		1.3	1.9	mA
$\mathrm{I}_{\text {PBS }}$	Operating V_{BS} Supply Current	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{f}_{\mathrm{IN}}=20 \mathrm{KHz}$, rms		450	800	$\mu \mathrm{A}$
$I_{\text {SD }}$	Shutdown Mode Supply Current	$\overline{\mathrm{SD}}=\mathrm{V}_{\text {SS }}$		0.95	1.5	mA
lıK	Offset Supply Leakage Current	$\mathrm{V}_{\mathrm{B}}=\mathrm{V}_{\mathrm{S}}=600 \mathrm{~V}$			10	$\mu \mathrm{A}$
BOOTSTRAPPED SUPPLY SECTION						
$\mathrm{V}_{\text {DDUV }+}$ $\mathrm{V}_{\text {BSUV }}+$	$V_{D D}$ and $V_{B S}$ Supply Under-Voltage Positive-Going Threshold Voltage	$\mathrm{V}_{1 \mathrm{~N}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{BS}}=$ Sweep	8.0	9.0	10	V
$\mathrm{V}_{\text {DDUV }}$ $V_{\text {BSUV- }}$	V_{DD} and V_{BS} Supply Under-Voltage Negative-Going Threshold Voltage	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{BS}}=$ Sweep	7.4	8.4	9.4	V
$\mathrm{V}_{\text {DDUVH- }}$ $V_{\text {BSUVH }}$	V_{DD} and V_{BS} Supply Under-Voltage Lockout Hysteresis Voltage	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{BS}}=$ Sweep		0.6		V
INPUT LOGIC SECTION						
V_{IH}	Logic "1" Input Voltage for HO \& Logic "0" for LO		2.5			V
$\mathrm{V}_{\text {IL }}$	Logic "0" Input Voltage for HO \& Logic "1" for LO				0.8	V
$\mathrm{l}_{\mathrm{IN+}}$	Logic Input High Bias Current	$\mathrm{V}_{1 \mathrm{~N}}=5 \mathrm{~V}, \overline{\mathrm{SD}}=0 \mathrm{~V}$		20	50	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IN- }}$	Logic Input Low Bias Current	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \overline{\mathrm{SD}}=5 \mathrm{~V}$			3	$\mu \mathrm{A}$
$\mathrm{R}_{\text {IN }}$	Logic Input Pull-Down Resistance		100	250		$\mathrm{K} \Omega$
$\mathrm{V}_{\text {SDCLAMP }}$	Shutdown ($\overline{\mathrm{SD}}$) Input Clamping Voltage			5.0	5.5	V
$\overline{\mathrm{SD}}+$	Shutdown ($\overline{\mathrm{SD}}$) Input Positive-Going Threshold		2.5			V
$\overline{\mathrm{SD}}$ -	Shutdown ($\overline{\mathrm{SD}}$) input Negative-Going Threshold				0.8	V
$\mathrm{R}_{\mathrm{PSD}}$	Shutdown ($\overline{\text { SD }}$) Input Pull-Up Resistance		100	250		$\mathrm{K} \Omega$
GATE DRIVER OUTPUT SECTION						
V_{OH}	High-Level Output Voltage ($\left.\mathrm{V}_{\text {BIAS }}-\mathrm{V}_{\mathrm{O}}\right)$	No Load			1.5	V
V_{OL}	Low-Level Output Voltage	No Load			100	mV
IO_{+}	Output High, Short-Circuit Pulsed Current ${ }^{(5)}$	$\begin{aligned} & \mathrm{V}_{\mathrm{HO}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{PW} \\ & \leq 10 \mu \mathrm{~s} \end{aligned}$	2.0	2.5		A
I_{0}	Output Low, Short-Circuit Pulsed Current ${ }^{(5)}$	$\begin{aligned} & \mathrm{V}_{\mathrm{HO}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{PW} \\ & \leq 10 \mu \mathrm{~S} \end{aligned}$	2.0	2.5		A
$\mathrm{V}_{\text {S }}$	Allowable Negative V_{S} Pin Voltage for IN Signal Propagation to HO			-9.8	-7.0	V

Note:

5 These parameters guaranteed by design.

Dynamic Electrical Characteristics

$\mathrm{V}_{\mathrm{BIAS}}\left(\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{BS}}\right)=15.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{COM}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}, \mathrm{DT}=\mathrm{V}_{\mathrm{SS}}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
ton	Turn-On Propagation Delay Time ${ }^{(6)}$	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{DT}}=0 \Omega$		550	850	ns
toff	Turn-Off Propagation Delay Time	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$		200	400	ns
t_{SD}	Shutdown Propagation Delay Time			180	270	ns
$\mathrm{Mt}_{\mathrm{ON}}$	Delay Matching, HO \& LO Turn-On			0	100	ns
Mtoff	Delay Matching, HO \& LO Turn-Off			0	50	ns
t_{R}	Turn-On Rise Time	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$		40	60	ns
t_{F}	Turn-Off Fall Time	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$		20	35	ns
DT	Dead Time: LO Turn-Off to HO Turn-On \& HO Turn-Off to LO Turn-On	$\mathrm{R}_{\text {DT }}=0 \Omega$	270	370	470	ns
		$\mathrm{R}_{\mathrm{DT}}=750 \mathrm{~K} \Omega$	1.6	2.0	2.4	$\mu \mathrm{s}$
MDT	Dead Time matching=\|DT ${ }_{\text {LO-HO }}-\mathrm{DT}_{\text {HO-LO }} \mid$	$\mathrm{R}_{\mathrm{DT}}=0 \Omega$		0	50	ns
		$\mathrm{R}_{\mathrm{DT}}=750 \mathrm{~K} \Omega$		0	250	ns

Note:
6 The turn-on propagation delay time includes dead time.

Typical Characteristics

Figure 4. Turn-On Propagation Delay
vs. Temperature

Figure 6. Turn-On Rise Time
vs. Temperature

Figure 8. Dead Time ($\mathrm{R}_{\mathrm{DT}}=0 \Omega$) vs. Temperature

Figure 5. Turn-Off Propagation Delay
vs. Temperature

Figure 7. Turn-Off Fall Time
vs. Temperature

Figure 9. Dead Time Matching ($\mathrm{R}_{\mathrm{DT}}=0 \Omega$)
vs. Temperature

Typical Characteristics (Continued)

Figure 10. Dead Time ($\mathrm{R}_{\mathrm{DT}}=750 \mathrm{~K} \Omega$) vs. Temperature

Figure 12. Delay Matching vs. Temperature

Figure 14. Shutdown Propagation Delay
vs. Temperature

Figure 11. Dead Time Matching ($\mathrm{R}_{\mathrm{DT}}=750 \mathrm{~K} \Omega$)
vs. Temperature

Figure 13. Dead Time vs. R_{DT}

Figure 15. Shutdown Mode Supply Current vs. Temperature

Typical Characteristics (Continued)

Figure 16. Quiescent V_{DD} Supply Current
vs. Temperature

Figure 18. Operating V_{DD} Supply Current
vs. Temperature

Figure 20. V_{DD} UVLO+ vs. Temperature

Figure 17. Quiescent V_{BS} Supply Current
vs. Temperature

Figure 19. Operating V_{BS} Supply Current vs. Temperature

Figure 21. VDD UVLO- vs. Temperature

Typical Characteristics (Continued)

Figure 22. V_{BS} UVLO+ vs. Temperature

Figure 24. High-Level Output Voltage vs. Temperature

Figure 26. Logic High Input Voltage
vs. Temperature

Figure 23. V_{BS} UVLO- vs. Temperature

Figure 25. Low-Level Output Voltage vs. Temperature

Figure 27. Logic Low Input Voltage vs. Temperature

Typical Characteristics (Continued)

Figure 28. Logic Input High Bias Current
vs. Temperature

Figure 30. Turn-On Propagation Delay
vs. Supply Voltage

Figure 32. Turn-On Rise Time
vs. Supply Voltage

Figure 29. Allowable Negative V_{S} Voltage vs. Temperature

Figure 31. Turn-Off Propagation Delay
vs. Supply Voltage

Figure 33. Turn-Off Fall Time
vs. Supply Voltage

Typical Characteristics (Continued)

Figure 34. Quiescent V_{DD} Supply Current vs. Supply Voltage

Figure 36. High-Level Output Voltage vs. Supply Voltage

Figure 35. Quiescent V_{BS} Supply Current vs. Supply Voltage

Figure 37. Low-Level Output Voltage vs. Supply Voltage

Switching Time Definitions

Figure 38. Switching Time Test Circuit

Figure 39. Input/Output Timing Diagram

Figure 40. Switching Time Waveform Definition

Figure 42. Dead Time Waveform Definition

Figure 43. Delay Matching Waveform Definition

Application Information

Negative $\mathbf{V}_{\mathbf{S}}$ Transient

The bootstrap circuit has the advantage of being simple and low cost, but has some limitations. The biggest difficulty with this circuit is the negative voltage present at the emitter of the high-side switching device when the high-side switch is turned off in half-bridge applications.
If the high-side switch, Q1, turns-off while the load current is flowing to an inductive load; a current commutation occurs from high-side switch, Q1, to the diode, D2, in parallel with the low-side switch of the same inverter leg. Then the negative voltage present at the emitter of the high-side switching device, just before the freewheeling diode, D2, starts clamping, causes load current to suddenly flow to the low-side freewheeling diode, D2, as shown in Figure 44.

Figure 44. Half-Bridge Application Circuits
This negative voltage can be trouble for the gate driver's output stage. There is the possibility to develop an overvoltage condition of the bootstrap capacitor, input signal missing, and latch-up problems because it directly affects the source V_{S} pin of the gate driver, as shown in Figure 45 . This undershoot voltage is called "negative V_{S} transient.

Figure 45. $\mathrm{V}_{\mathbf{S}}$ Waveforms During Q1 Turn-Off

Figure 46 and Figure 47 show the commutation of the load current between the high-side switch, Q1, and lowside freewheelling diode, D3, in same inverter leg. The parasitic inductances in the inverter circuit from the die wire bonding to the PCB tracks are jumped together in L_{C} and L_{E} for each IGBT. When the high-side switch, Q1, and low-side switch, Q4, are turned on, the $\mathrm{V}_{\mathrm{S} 1}$ node is below DC+ voltage by the voltage drops associated with the power switch and the parasitic inductances of the circuit due to load current is flows from Q1 and Q4, as shown in Figure 46. When the high-side switch, Q1, is turned off and Q4, remained turned on, the load current to flows the low-side freewheeling diode, D3, due to the inductive load connected to $\mathrm{V}_{\mathrm{S} 1}$, as shown in Figure 47. The current flows from ground (which is connected to the COM pin of the gate driver) to the load and the negative voltage present at the emitter of the high-side switching device.

In this case, the COM pin of the gate driver is at a higher potential than the V_{S} pin due to the voltage drops associated with freewheeling diode, D3, and parasitic elements, $L_{C 3}$ and $L_{E 3}$.

Figure 46. Q1 and Q4 Turn-On

Figure 47. Q1 Turn-Off and D3 Conducting

The FAN7393 has a negative V_{S} transient performance curve, as shown in Figure 48.

Figure 48. Negative $\mathbf{V}_{\mathbf{S}}$ Transient Characteristic

Even though the FAN7393 has been shown able to handle these negative V_{S} transient conditions, it is strongly recommended that the circuit designer limit the negative V_{S} transient as much as possible by careful PCB layout to minimize the value of parasitic elements and component use. The amplitude of negative V_{S} voltage is proportional to the parasitic inductances and the turn-off speed, di/dt, of the switching device.

General Guidelines

Printed Circuit Board Layout

The layout recommended for minimized parasitic elements is as follows:

■ Direct tracks between switches with no loops or deviation.
■ Avoid interconnect links. These can add significant inductance.

- Reduce the effect of lead-inductance by lowering package height above the PCB.
- Consider co-locating both power switches to reduce track length.
- To minimize noise coupling, the ground plane should not be placed under or near the high-voltage floating side.
- To reduce the EM coupling and improve the power switch turn-on/off performance, the gate drive loops must be reduced as much as possible.

Placement of Components

The recommended selection of component is as follows:

- Place a bypass capacitor between the V_{DD} and V_{SS} pins. A ceramic $1 \mu \mathrm{~F}$ capacitor is suitable for most applications. This component should be placed as close as possible to the pins to reduce parasitic elements.
- The bypass capacitor from $V_{D D}$ to $C O M$ supports both the low-side driver and bootstrap capacitor recharge. A value at least ten times higher than the bootstrap capacitor is recommended.
- The bootstrap resistor, $\mathrm{R}_{\mathrm{BOOT}}$, must be considered in sizing the bootstrap resistance and the current developed during initial bootstrap charge. If the resistor is needed in series with the bootstrap diode, verify that V_{B} does not fall below COM (ground). Recommended use is typically $5 \sim 10 \Omega$, which increases the $V_{B S}$ time constant. If the voltage drop of the bootstrap resistor and diode is too high or the circuit topology does not allow a sufficient charging time, a fast recovery or ultra-fast recovery diode can be used.
- The bootstrap capacitor, $\mathrm{C}_{\mathrm{BOOT}}$, uses a low-ESR capacitor, such as a ceramic capacitor.

It is strongly recommended that the placement of components is as follows:

- Place components tied to the floating voltage pins (V_{B} and V_{S}) near the respective high-voltage portions of the device and the FAN7393. NC (not connected) pins in this package maximize the distance between the high-voltage and low-voltage pins (see Figure 3).
- Place and route for bypass capacitors and gate resistors as close as possible to gate drive IC.
- Locate the bootstrap diode, $\mathrm{D}_{\mathrm{BOOT}}$, as close as possible to bootstrap capacitor, $\mathrm{C}_{\mathrm{BOOT}}$.
- The bootstrap diode must use a lower forward voltage drop and minimal switching time as soon as possible for fast recovery or ultra-fast diode.

Package Dimensions

Figure 49. 14-Lead, Small Outline Integrated Circuit (SOIC), Non-JEDEC, .150 Inch Narrow Body, 225SOP

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:
http://www.fairchildsemi.com/packaging/

FAIRCHILD

SEMICONDUCTOR•

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPowertm	FlashWriter ${ }^{\text {®* }}$	Power-SPM ${ }^{\text {TM }}$
Auto-SPM ${ }^{\text {™ }}$	FPS ${ }^{\text {™ }}$	PowerTrench ${ }^{\text {® }}$
Build it Now ${ }^{\text {TM }}$	F-PFS ${ }^{\text {TM }}$	Power $\times S^{\text {TM }}$
CorePLUS'm	FRFET ${ }^{\text {® }}$	Programmable Active Droop ${ }^{\text {™ }}$
CorePOWER ${ }^{\text {™ }}$	Global Power Resource ${ }^{\text {SM }}$	QFET ${ }^{\circ}$
CROSSVOLT ${ }^{\text {TM }}$	Green FPS ${ }^{\text {™ }}$	QS ${ }^{\text {TM }}$
CTLTM	Green FPSS ${ }^{\text {™ }} \mathrm{e}-$ Series ${ }^{\text {™ }}$	Quiet Series ${ }^{\text {TM }}$
Current Transfer Logic ${ }^{\text {TM }}$	G max $^{\text {TM }}$	RapidConfigure ${ }^{\text {TM }}$
DEUXPEED ${ }^{\text {® }}$	GTOm	C)
Dual $\mathrm{Cool}{ }^{\text {TM }}$	IntelliMAX ${ }^{\text {Tm }}$	Sm
Ecospark ${ }^{\text {® }}$	ISOPLANAR ${ }^{\text {m }}$	Saving our world, $1 \mathrm{mW/W/kW}$ at a time ${ }^{\text {TM }}$
EfficientMax ${ }^{\text {TM }}$	MegaBuck ${ }^{\text {TM }}$	SignalWMise ${ }^{\text {TM }}$
EZSWITCH ${ }^{\text {TM }}$	MICROCOUPLER ${ }^{\text {TM }}$	SmartMax ${ }^{\text {TM }}$
$E]^{\text {m* }}$	MicroFET'M	SMART START'M SPM ${ }^{\text {® }}$
5	MicroPak ${ }^{\text {TM }}$	STEALTH ${ }^{\text {TM }}$
	MillerDrive ${ }^{\text {TM }}$	SuperFET ${ }^{\text {Tm }}$
Fairchild ${ }^{\text {® }}$	MotionMax ${ }^{\text {TM }}$	SuperSOTM 3
Fairchild Semiconductor ${ }^{\text {® }}$	Motion-SPM ${ }^{\text {TM }}$	SuperSOTTM-6
FACT Quiet Series ${ }^{\text {TM }}$	OPTOLOGIC ${ }^{\text {® }}$	SuperSOTm-8
$\mathrm{FACT}^{\text {® }}$	OPTOPLANAR	SupreMOS ${ }^{\text {TM }}$
FAST ${ }^{\text {® }}$		SyncFET ${ }^{\text {m }}$
FastvCore ${ }^{\text {Tm }}$		Sync-Lock ${ }^{\text {Tm }}$
FETBench ${ }^{\text {m }}$	PDP SPM ${ }^{\text {TM }}$	

5 Sissienu The Power Franchise ${ }^{\text {© }}$

TinyBoost ${ }^{\text {m }}$
TinyBuck ${ }^{\text {TM }}$
TinyCalc ${ }^{\text {TM }}$
TinyLogic ${ }^{\text {© }}$
TINYOPTOTM
TinyPomertm
TinyPMM ${ }^{\text {TM }}$
TinyMire ${ }^{\text {TM }}$
TriFault Detect ${ }^{\text {TM }}$
TRUECURRENTTm*
μ SerDes ${ }^{\text {TM }}$

Ultra FRFETTM
UniFETTM
VCX ${ }^{\text {тм }}$
VisualMax ${ }^{\text {TM }}$
$X S^{\text {TM }}$

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES MTHOUT FURTHER NOTICE TOANY PRODUCTS HEREIN TO IMPROVE RELIABIUTY, FUNCTION, ORDESIGN. FAIRCHILDDOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPUCATION ORUSE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN: NEITHER DCES IT CONVEY ANY LICENSE UNDERITS PATENTRIGHTS, NOR THERIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHID'SWORLDMDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WTHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTORCORPORATION.

As used herein

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semioonductor Comporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our extemal website, whw.fairchildsemi.com, under Sales Support
Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experienang counterfeting of their parts. Customers who inadvertenty purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our neb page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and enourage our customers to do their part in stopping this practioe by buying direct or from authorized distributors.

PRODUCT STA TUS DEFINITIONS
Definition of Terms

Datasheet Identification	Product Status	\quad Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

