

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

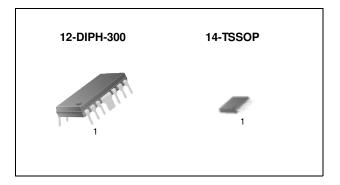
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

FAN8100N/FAN8100MTC

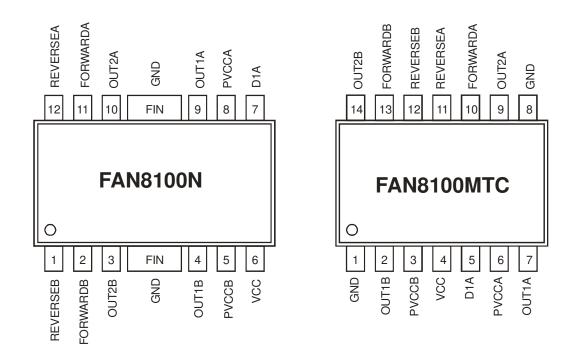

Low Voltage/Low Saturation 2-CH DC Motor Driver

Features

- Two channel H-bridge drivers with built-in NPN and vertical-PNP power transistors
- Four functions for each channel Forward/Reserve/Stop/ Brake functions
- Special output pin for an RC car application for a Turbo function for Ch.A (five-function RF receiver chip RX-2 interface)
- Low stand-by current (typ. 0.1uA)
- Wide supply voltage range (PVCC=1.8V ~ 9.0V) suitable for battery operated applications
- 3.3V and 5V micro-controller interface
- Low output saturation voltage (upper and lower total: typ. 0.15V@ 0.2A)
- High current outputs (max. 1.5A/Ch.)
- Parallel connection (Max Current : 3A)
- High thermal capability for high continuous output currents
- · Built-in spark killing diodes
- Built-in a thermal shutdown(TSD) function with hysteresis
- · Short circuit protected
- Temperature independent internal voltage reference

Description

The FAN8100N/FAN8100MTC is a monolithic two channel dc motor drive IC designed for low voltage operated systems. It has dual H-bridge drivers, using NPN and vertical-PNP power transistors with a low saturation voltage. Power packages with heat sinks endure high continuous output current. The high current and low saturation voltage feature make this device suitable for dc motor applications such as toy cars. It has also a built-in thermal shutdown protection circuit with hysteresis.

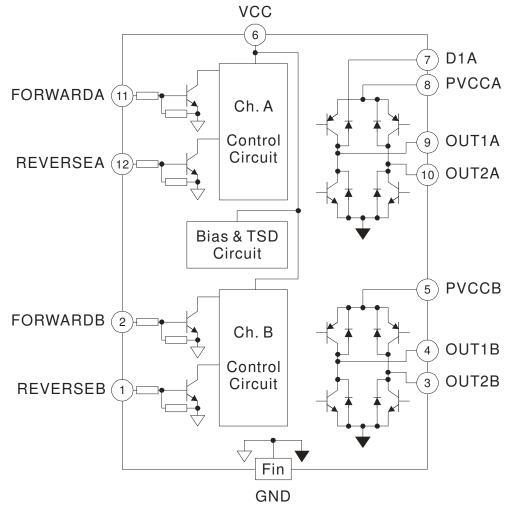

Typical Application

- General purpose dc motor driver
- Electronic toys robots, RC cars
- Digital still camera(DSC) and film camera
- · Home appliances and office equipment
- · Precision instruments

Ordering Information

Device	Package	Operating Temp.
FAN8100N	12-DIPH-300	−20 ~ +75°C
FAN8100MTC	14-TSSOP	–20 ∼ +75°C
FAN8100MTCX	14-TSSOP	–20 ∼ +75°C

Pin Assignments



Pin Definitions

Pin Number	Pin Name	I/O	Pin Function Description
1(12)	REVERSEB	I	Reverse logic input for channel B
2(13)	FORWARDB	I	Forward logic input for channel B
3(14)	OUT2B	0	Output2 of channel B
FIN(1)	GND	-	Ground
4(2)	OUT1B	0	Output1 of channel B
5(3)	PVCCB	-	Supply voltage for channel B output
6(4)	VCC	-	Logic and control circuit supply voltage
7(5)	D1A	0	Cathode of OUT1A upper diode
8(6)	PVCCA	-	Supply voltage for channel A output
9(7)	OUT1A	0	Output1 of channel A
FIN(8)	GND	-	Ground
10(9)	OUT2A	I	Output2 of channel A
11(10)	FORWARDA	I	Forward logic input for channel A
12(11)	REVERSEA	I	Reverse logic input for channel A

Note: () FAN8100MTC

Internal Block Diagram

Note: FAN8100N pin number

Absolute Maximum Ratings (Ta = 25°C)

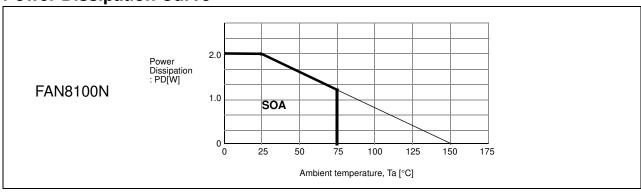
Parameter	Symbol	Value	Unit
Maximum logic and control supply voltage	VCC _(MAX)	10.5	V
Maximum output supply voltage	PVCC _(MAX)	10.5	V
Maximum output applied voltage	VOUT _(MAX)	PVCC + VD	V
Maximum applied input voltage	VIN _(MAX)	10.0	V
Maximum D1A Voltage	VD1A(MAX)	PVCCA + 4.5	V
Peak output current per channel	IOUT(PEAK)	1.5(1.2)	Α

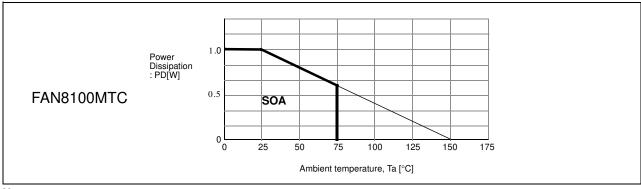
Note: () FAN8100MTC

Recommended Operating Conditions (Ta = 25°C)

Parameter	Symbol	Min.	Тур.	Max	Unit
Logic and control circuit supply voltage	VCC	2.2	-	9.0	V
Output supply voltage	PVCC	1.8	-	9.0	V
D1A Voltage	VD1A	PVCCA	-	PVCCA +3.0	V

Note: See the characteristics graphs.


Typical Thermal Characteristics


Parameter	Symbol	Value	Unit
Power dissipation	PD ^{note1}	FAN8100N: 2.0 FAN8100MTC: 1.0	W
Operating temperature	TA	<i>–</i> 20 ∼ 75	°C
Storage temperature	TSTG	−40 ~ 125	°C
Junction temperature	TJ	150	°C
Thermal shutdown temperature	TSD ^{note2}	150	°C
Thermal shutdown hysteresis temperature	∆TSD ^{note2}	50	°C

Notes:

- 1. When mounted on JEDEC 76.2mm \times 114mm \times 1.57mm PCB (FR-4 glass epoxy material).
- 2. On the junction. These values are design specifications.

Power Dissipation Curve

Notes:

- 1. When mounted on JEDEC 76.2mm \times 114mm \times 1.57mm PCB (FR-4 glass epoxy material).
- 2. Power dissipation reduces 16mW/°C (FAN8100N) and 32mW/°C (FAN8100MTC) for using above Ta=25°C.
- 3. Do not exceed PD and SOA(Safe Operating Area).

Electrical Characteristics

(Ta=25°C, VCC=3V, PVCCA=PVCCB=3V, unless otherwise specified)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Stand-by current (IVCC+IPVCCA+IPVCCB)	ICC0	All input pins=0V, with output pins open	-	0.1	10	uA
VCC supply current 1 (IVCC)	ICC1	Forward or Reverse (single channel)	-	4	6	mA
VCC supply current 2 (IVCC)	ICC2	Brake (single channel)	-	5.5	8	mA
Total supply current 1 (IVCC+IPVCCA+IPVCCB)	ICC3	Forward or Reverse (single channel) with output pins open	-	30(20)	40(27)	mA
Total supply current 2 (IVCC+IPVCCA+IPVCCB)	ICC4	Brake (single channel) with output pins open	-	55(35)	65(45)	mA
Saturation voltage 1 (upper + lower output transistors total)	VSAT1	FORWARDA=3V, other input pins=0V, IOUT=0.2A	-	0.15	0.25	V
Saturation voltage 2 (upper + lower output transistors total)	VSAT2	FORWARDA=3V, other input pins=0V, IOUT=0.4A	-	0.35	0.55	V
Input high level voltage	VINH	-	1.8	-	VCC	V
Input low level voltage	VINL	-	-0.3	-	0.7	٧
Input current	IIN	VIN=3V, per each input pin	-	100	200	uA
Spark-killing diode leakage current	ILEAK	VCC=9V, PVCC=9V	-	-	30	uA
Spark-killing diode voltage drop	VD	IOUT=0.4A	-	-	1.7	V

Note: () FAN8100MTC

Timing Characteristics

(Ta=25°C, VCC=3V, PVCCA=PVCCB=3V, unless otherwise specified)

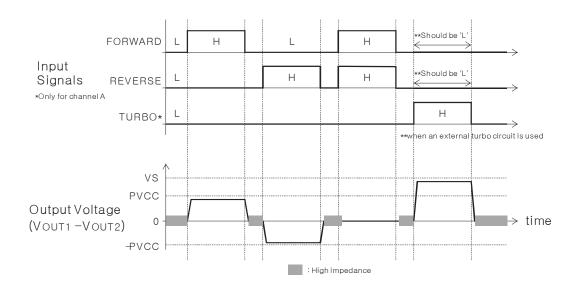
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Output rising time	tR	input rising time = 20ns output voltage 10% to 90%	-	0.3	-	us
Output falling time	tF	input falling time = 20ns output voltage 90% to 10%	-	0.3	-	us
Input to output proposition dolor	tPLH	input rising time = 20ns input 50% to output 50%	-	1	-	us
Input to output propagation delay	tPHL	input falling time = 20ns input 50% to output 50%	-	1	-	us

Note: with 1nF Capacitor Loads

Function Descriptions

Logical Truth Table

Channel A


FORWARDA	REVERSEA	OUT1A	OUT2A	Function
L	L	Z	Z	Stand-by (Stop)
Н	L	Н	L	Forward
L	Н	L	Н	Reverse
Н	Н	L	L	Brake

Channel B

FORWARDB	REVERSEB	OUT1B	OUT2B	Function
L	L	Z	Z	Stand-by (Stop)
Н	L	Н	L	Forward
L	Н	L	Н	Reverse
Н	Н	L	L	Brake

Z: high-impedance

Time Domain Waveforms

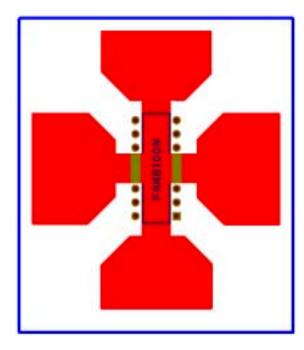
Notes: **See typical application circuits.

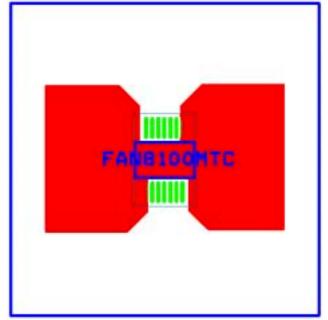
Application Information

1. Thermal Shutdown (TSD)

Thermal Shutdown Circuit turns OFF all outputs when the junction temperature typically reaches 150°C. It is intended to protect the device from failures due to excessive junction temperature.

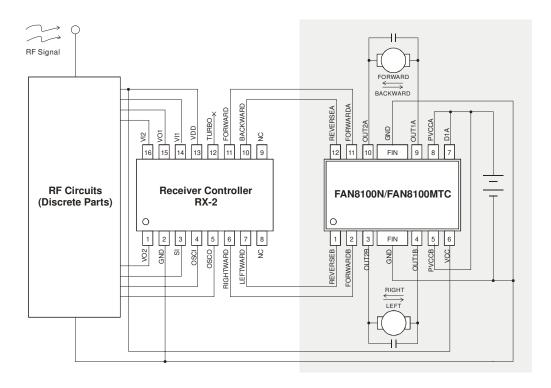
The Thermal Shutdown has the hysteresis of 40°C approximately.

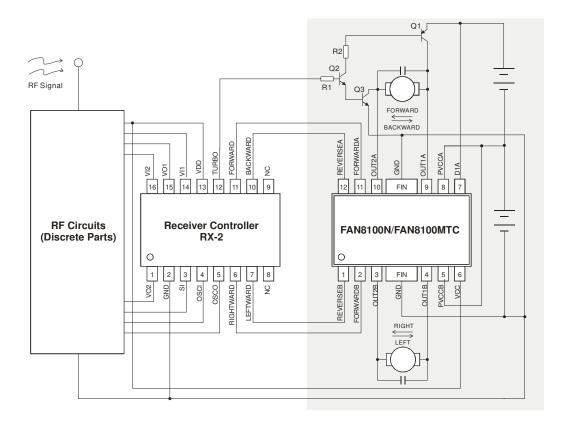

2. Printed Circuit Board (PCB) Layout


If high current flows on the power supply(PVCC) and GND line, it can be misoperated due to the line oscillation. The following points should be kept in mind regarding as the pattern layout to prevent it.

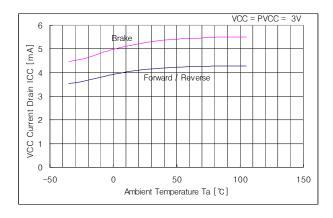
- Making the wiring lines thick and short, especially between power supply (PVCC) and GND.
- Putting a passthrough capacitor near the IC

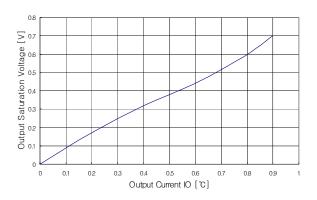
The R_{th-ja} of the FAN8100N/MTC can be reduced by soldering the GND pins to a suitable copper area of the printed circuit board as shown in following figure. It is recommended the copper area is as large as possible.

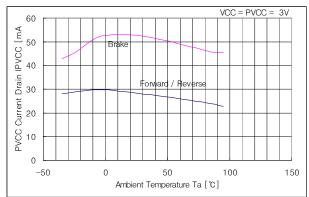

Example of PCB copper area which is used as heatsink

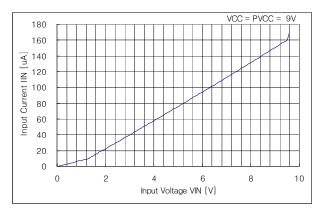


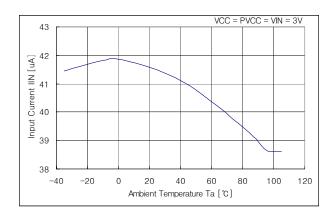
Typical Application Circuits

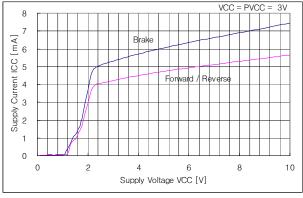

1. RF Remote Controlled Car

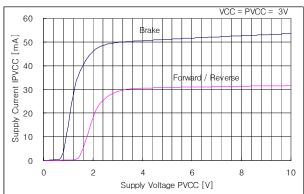


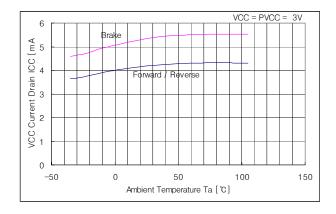

2. RF Remote Controlled Car with a Turbo Function

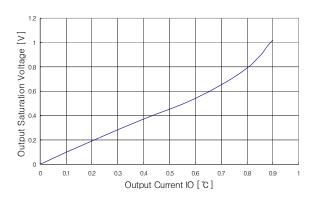


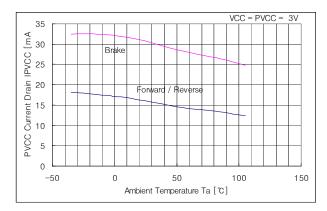

Typical Performance Characteristics (FAN8100N)

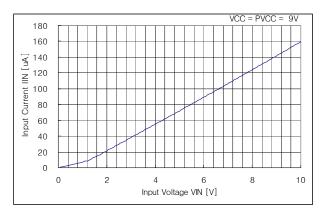


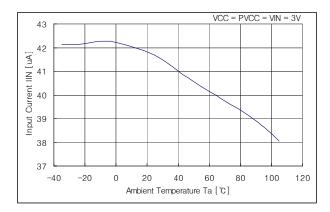


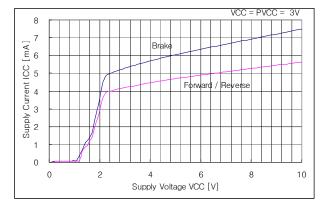


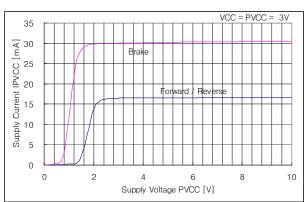


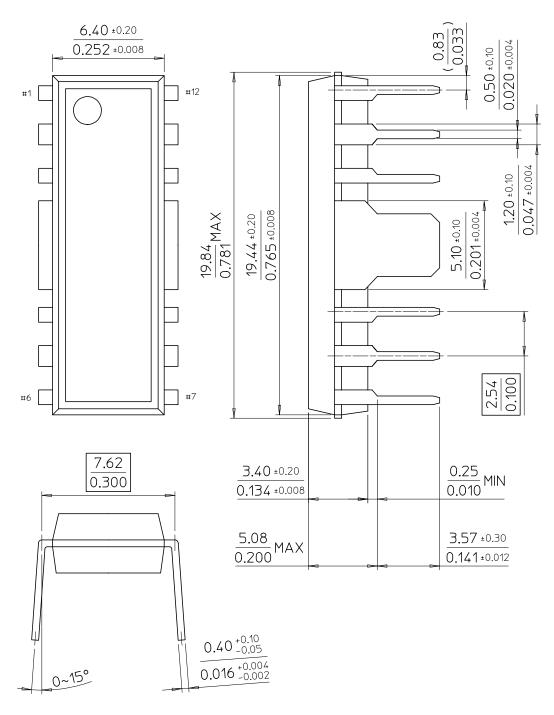





Typical Performance Characteristics(Continued) (FAN8100MTC)

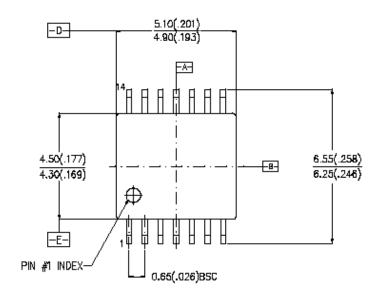


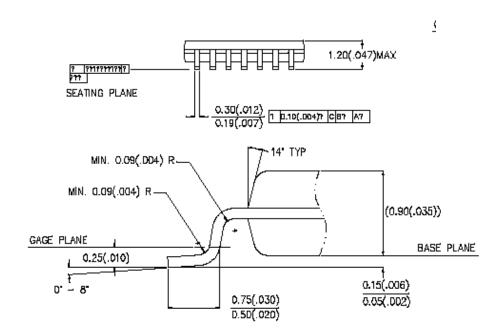




Mechanical Dimensions (Unit: mm)

Package Dimension


12-DIPH-300



Mechanical Dimensions (Unit: mm) (Continued)

Package dimensions

14-TSSOP

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com