

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, emplo

December 2014

FAN8831 Sinusoidal Piezoelectric Actuator Driver with Step-Up DC-DC Converter

Features

Step-Up DC-DC Converter

- Integrated Step-up Power Switch up to 36 V
- Wide Operating Voltage Range of 2.7 to 5.5 V
- Adjustable Step-up Output Voltage
- Adjustable Step-up Current Limit
- Zero Current Detector (ZCD)
- Internal Soft-Start
- Built-in Protection Circuit
 - Over Voltage Protection (OVP)
 - Thermal Shutdown (TSD)

Piezo Actuator Driver

- Integrated Full-Bridge Switches (V_{DS}=75 V)
- Digitally Implemented Sine Modulator

Package Information

■ Small 4.0 mm × 4.0 mm MLP

Applications

Piezo Actuator

Description

The FAN8831 is a single-chip piezoelectric actuator driver consisting of step-up DC-DC converter with integrated 36 V boost switch and a full-bridge output stage. The device is capable of driving a Piezo bidirectionally at 120 V peak-to-peak from a single 3 V lithium cell. The step-up DC-DC converter operates in Critical Conduction Mode (CRM) and is optimized to work in a coupled inductor configuration to provide output voltages in excess of 60 V. Over-voltage protection, over-current protection and thermal shutdown are all provided. An internal ready is used to enable the full-bridge gate driver when step-up DC-DC converter output voltage reaches the proper level with hysteresis.

The boost voltage is set using external resistors, and step-up current limit is programmable via the external resistor at OCP pin.

The output H-bridge features four integrated 75 V P and N-channel for sine wave drive of the Piezo actuator.

Ordering Information

Part Number	Operating Temperature Range	Package	Packing Method
FAN8831MPX	-40°C to +125°C	24-Lead, MLP	Tape & Reel

Application Diagram

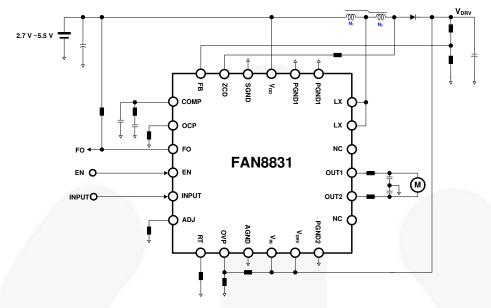


Figure 1. Typical Application Circuit for Piezo Actuator Driver

Internal Block Diagram

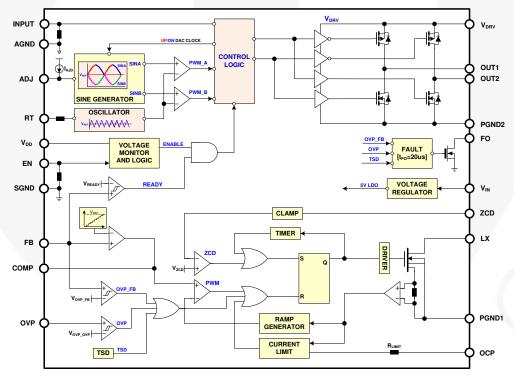
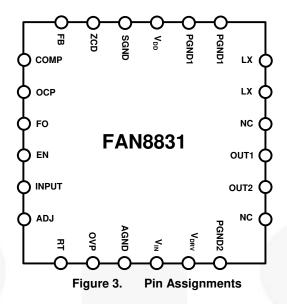



Figure 2. Functional Block Diagram

Pin Configuration

Pin Definitions

Pin#	Name	Description
1,2	PGND1	Power Ground 1. It is connected to the source of the step-up switch.
3	V_{DD}	Power supply of step-up DC-DC converter.
4	SGND	Signal Ground. The signal ground for step-up DC-DC converter circuitry.
5	ZCD	The input of the zero current detection.
6	FB	Step-up DC-DC converter output voltage feedback input.
7	COMP	Output of the transconductance error amplifier.
8	OCP	Sets Step-up DC-DC converter current limit.
9	FO	Fault Output.
10	EN	Enable pin to turn on and off the overall system. (Active Low Shutdown Mode).
11	INPUT	Logic input for sinusoidal waveform.
12	ADJ	Output voltage adjust control pin. Connect to internal current source to change output voltage using an external resistor. Connect a small capacitor (1 nF).
13	RT	Oscillator frequency control pin.
14	OVP	Voltage sense input of Step-up DC-DC converter for Over-Voltage Protection.
15	AGND	Analog Ground. The signal ground for full-bridge driver circuitry.
16	V_{IN}	Power supply of 5 V LDO.
17	V_{DRV}	Power supply of full-bridge driver.
18	PGND2	Power Ground 2. The power ground for full-bridge driver .
19	NC	Not Connected
20	OUT2	Output 2 for full-bridge driver.
21	OUT1	Output 1 for full-bridge driver.
22	NC	Not Connected
23, 24	L _X	Switch Node. This pin is connected to the inductor.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter		Min.	Max.	Unit	
V _{DRV}	DC Link Input Voltage Drain-Source Voltage of each MOSFET				75	V
V _{DD}	DC Supply Voltage for D	OC-DC Conv	verter	-0.3	5.5	V
V _{IN,DCDC}	EN, INPUT, FB and CC	MP to SGN	D	-0.3	V _{DD} +0.3	V
V _{IN}	DC Supply Voltage for L	.DO		-0.3	75	V
V _{LX}	LX to PGND		-0.3	36	V	
Б	P _D Power Dissipation ⁽²⁾		1S0P with thermal vias ⁽³⁾		0.98	14/
PD			1S2P with thermal vias ⁽⁴⁾		2.9	W
0	Theymal Desistance Ivy	A:(2)	1S0P with thermal vias ⁽³⁾		127	00/11/
θ_{JA}	Thermal Resistance Junction-Air ⁽²⁾		1S2P with thermal vias ⁽⁴⁾		43	°C/W
T _A	Operating Ambient Temperature Range		-40	125	°C	
TJ	Operating Junction Temperature		-55	150	°C	
T _{STG}	Storage Temperature Range		-55	150	°C	
ECD.	Electrostatic Discharge	Human Bo	dy Model, JESD22-A114		2	KV
ESD	Capability	Charged D	Pevice Model, JESD22-C101	ı	500	V

Notes:

- 1. All voltage values, except differential voltages, are given with respect to SGND, AGND and PGND pin.
- 2. JEDEC standard: JESD51-2, JESD51-3. Mounted on 76.2×114.3×1.6mm PCB (FR-4 glass epoxy material).
- 3. 1S0P with thermal vias: one signal layer with zero power plane and thermal vias.
- 4. 1S2P with thermal vias: one signal layer with two power plane and thermal vias.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Min.	Тур.	Max.	Unit
V_{DRV}	Supply Voltage for Full-Bridge Driver	30	1	60	V
V_{LX}	Boost Switch Voltage	10		30	V
V_{DD}	Operating Voltage for DC-DC Converter	2.7	3.0	3.3	V
V _{IN}	Operating Voltage for Voltage Regulator	10		60	V
Rocp	Current Limit Control Resistor	7.0		150	kΩ

Electrical Characteristics

 $V_{DD}=3.0$ V, $V_{IN}=15.0$ V, $V_{DRV}=60$ V, $R_{T}=70$ K Ω and $T_{A}=-40$ °C to +125°C. Typical values $T_{A}=25$ °C, unless otherwise specified.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Power Sup	ply Section		•		•	•
$I_{Q,DD}$	Quiescent Current for V _{DD} ⁽⁵⁾	V _{EN} =V _{COMP} =V _{DD} ,		700	1200	μΑ
I _{Q,IN}	Quiescent Current for V _{IN}	V _{FB} =1.0 V		300	500	μΑ
I _{Q,DRV}	Quiescent Current for V _{DRV}	Device not switching		200	300	μΑ
I _{SD,DD}	Shutdown Current for V _{DD}				1	μΑ
I _{SD,IN}	Shutdown Current for V _{IN}	$V_{EN}=0$ V, $V_{DD}=V_{IN}=V_{DRV}=3$ V			1	μΑ
I _{SD,DRV}	Shutdown Current for V _{DRV}	VDD-VIN-VDRV-OV		5	10	μΑ
V _{DDSTART}	Start Threshold Voltage		2.6	2.7	2.8	V
V _{DDUVHYS}	V _{DD} UVLO Hysteresis Voltage		0.1	0.2	0.3	V
Error Ampl	ifier Section					
V_{FB}	Feedback Reference Voltage	T _A =25°C	0.99	1.0	1.01	V
I _{FB}	FB pin Bias Current	V _{FB} =0 V ~ 2 V			1	μΑ
ΔV_{FB1}	Feedback Voltage Line Regulation ⁽⁶⁾	2.7 V < V _{DD} < 5 V		0.5	1.5	%/V
Gm	Transconductance	T _A =25°C		800		μmho
Zero Curre	nt Detect Section			I		
V_{ZCD}	Input Voltage Threshold ⁽⁷⁾		1.65	1.83	2.00	V
V_{CLAMPH}	Input High Clamp Voltage	I _{DET} =2.3 mA	3.0	3.5	4.0	V
V_{CLAMPL}	Input Low Clamp Voltage	I _{DET} = -2.3 mA	-0.30	0.12	0.50	V
I _{ZCD,SR}	Source Current Capability				-2.3	mA
I _{ZCD,SK}	Sink Current Capability				2.3	mA
t _{ZCD,D}	Delay From ZCD to Output Turn-On ⁽⁷⁾			50	200	ns
Maximum (On-Time Section				•	
t _{ON,MAX}	Maximum On-Time		15	25	35	μs
Restart / M	aximum Switching Frequency Limit Section			•		
t _{RST}	Restart Timer		15	25	35	μs
f _{MAX}	Maximum Switching Frequency ⁽⁷⁾			900	1000	KHz
Soft-Start 7	Timer Section		•			
t _{SS}	Internal Soft-Start		16	28	40	ms
Current Lir	nit Comparator Section		•			•
	·	R _{OCP} =3.3 KΩ, V _{DD} =3.3 V	1.85	2.00	2.15	Α
I _{OCP}	OCP Trip Current	R _{OCP} =22 KΩ, V _{DD} =3.3 V	0.9	1.0	1.1	Α
t _{CS BLANK}	Comparator Leading-Edge Blanking Time ⁽⁷⁾		80	130	180	ns

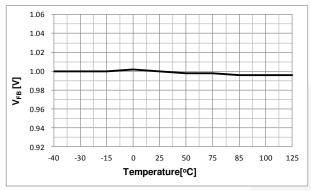
Notes:

5. This is the VDD current consumed when active but not switching. Does not include gate-drive current

$$\frac{\Delta V_{OUT}}{\Delta V_{DV}} \times \frac{1}{V_{OUT}}$$

- 6. The line regulation is calculated based on $\overline{\ }^{\Delta V_{I\!N}}$
- 7. This parameter, although guaranteed by design, is not tested in production.

Electrical Characteristics


 V_{DD} =3.0 V, V_{IN} =15.0 V, V_{DRV} =60 V, R_T =70 K Ω and T_A =-40°C to +125°C. Typical values T_A =25°C, unless otherwise specified.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Step-Up Sw	vitch Section		•	•	•	•
R _{DSON}	N-Channel On Resistance	V _{DD} =3.3 V, T _A =25°C		0.2	0.5	Ω
I _{LK_LX}	LX Leakage Current	V _{LX} =36 V			1.0	μΑ
Oscillator S	Section		•	•	•	•
t	On another Francisco	R _T =58 KΩ	40	50	60	KHz
fosc	Operating Frequency	R _T =121 KΩ	20	25	30	KHz
Logic (EN a	and INPUT) Section		•	•	•	•
V_{INPUT_+}	INPUT Logic High Threshold Voltage		1.34			V
V _{INPUT} -	INPUT Logic Low Threshold Voltage				0.5	V
I _{INPUT}	Input Low Current for INPUT and EN	V _{EN} =0 V			1	μΑ
I _{INPUT+}	Input High Current for INPUT and EN	V _{EN} =V _{DD}	8	12	16	μΑ
RINPUT	Input Logic Pull-Down Resistance	V _{EN} = V _{INPUT} =3 V		250	375	ΚΩ
f _{INPUT}	Input Logic Operating Frequency ⁽⁸⁾		20		1000	Hz
Full-Bridge	Switch Section				1	
R _{DS,ONP}	Output Upper-Side On Resistance	T _A =25°C		3.0	5.0	Ω
R _{DS,ONN}	Output Low-Side On Resistance	T _A =25°C		3.0	5.0	Ω
Output Cor	ntrol Section			U		
$V_{ADJ,MAX}$	Analog Output Control Maximum Voltage ⁽⁸⁾	V _{DRV} =100% of Target		1.0		V
$V_{ADJ,MIN}$	Analog Output Control Minimum Voltage ⁽⁸⁾			0.1		٧
I_{ADJ+}	Internal Current Source for ADJ Pin	T _A =25°C	9	10	11	μΑ
Protection	(Ready, OVP and TSD)	7				
V _{READY}	Output Ready Threshold Voltage		0.75	0.80	0.85	V
HY _{READY}	Output Ready Hysteresis			0.2		٧
V _{OVP_FB}	OVP Threshold Voltage at FB Pin		1.05	1.10	1.15	٧
HY _{OVP_FB}	OVP Hysteresis Voltage at FB Pin			0.1		V
V _{OVP_OVP}	OVP Threshold Voltage at OVP Pin		1.10	1.15	1.20	V
HY _{OVP_OVP}	OVP Hysteresis Voltage at OVP Pin			0.15		V
T _{SD}	Thermal Shutdown Temperature ⁽⁸⁾			150		°C
T _{HYS}	Hysteresis Temperature of TSD ⁽⁸⁾			50		°C
T _{FO}	Fault Output Duration			20	30	μs
V_{FOL}	Fault Output Low Level Voltage	R _{PU} =50 KΩ, V _{PU} =3 V		0.1	0.4	V

Note:

8. This parameter, although guaranteed by design, is not tested in production.

Typical Performance Characteristics

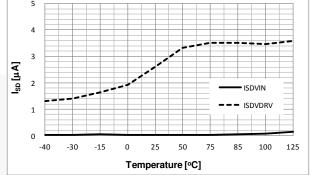
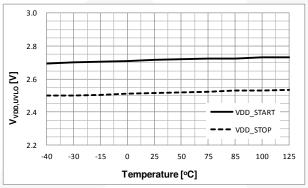



Figure 4. Reference Voltage vs. Temperature

Figure 5. Shutdown Current for V_{DRV} & V_{IN} vs. Temperature

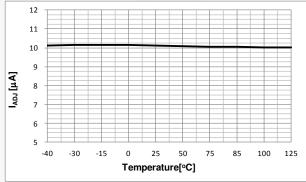
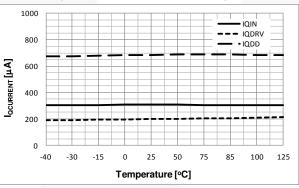



Figure 6. V_{DD} UVLO vs. Temperature

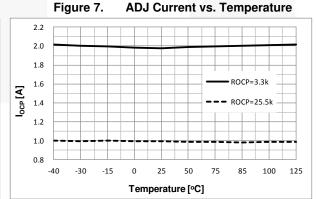


Figure 8. Quiescent Current for V_{DD}, V_{DRV}, & V_{IN} vs. Temperature

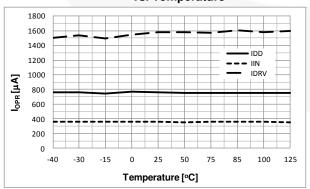


Figure 9. OCP Current vs. Temperature

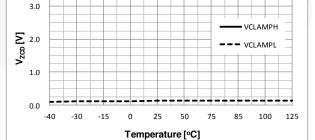
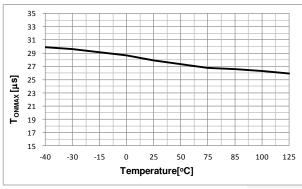



Figure 10. Operating Current for V_{DD}, V_{DRV}, & V_{IN} vs. Temperature

Figure 11. ZDC Clamp Voltage vs. Temperature

4.0

Typical Performance Characteristics

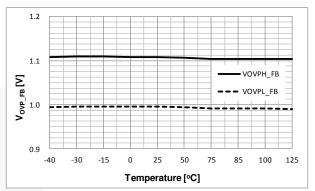
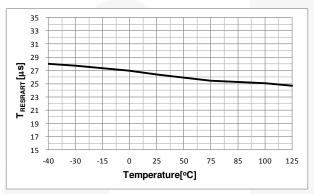



Figure 12. Maximum On-Time vs. Temperature

Figure 13. Fist OVP (FB) vs. Temperature

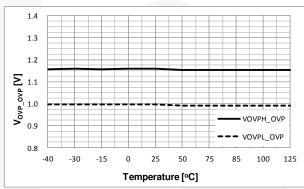
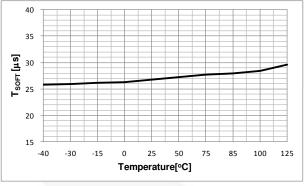



Figure 14. Restart-Time vs. Temperature

Figure 15. Second (OVP) vs. Temperature

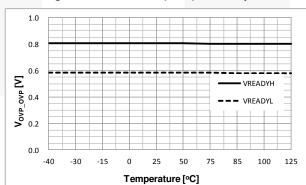
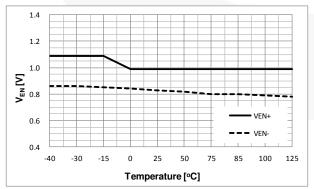



Figure 16. Soft-Start Time vs. Temperature

Figure 17. Ready Voltage vs. Temperature

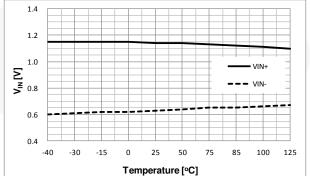


Figure 18. Enable (EN) Threshold Voltage vs. Temperature

Figure 19. INPUT Threshold Voltage vs. Temperature

Typical Performance Characteristics

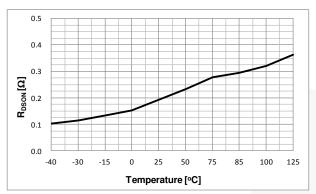


Figure 20. Boost Switch R_{DSON} vs. Temperature

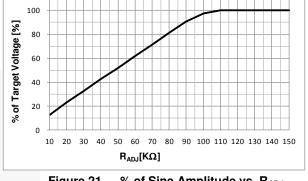


Figure 21. % of Sine Amplitude vs. R_{ADJ}

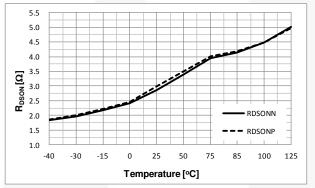


Figure 22. Full-Bridge Switch RDSON vs. Temperature

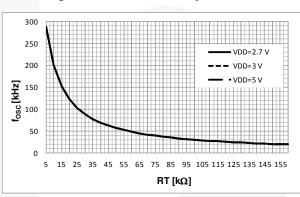
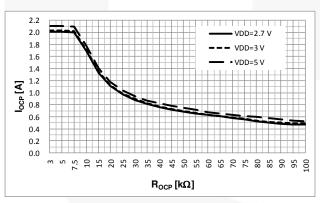
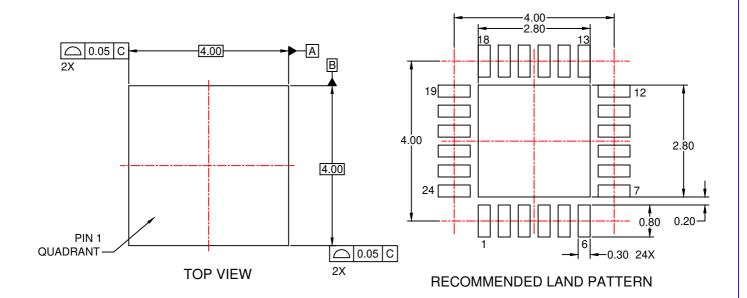
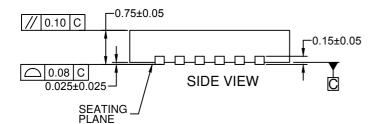
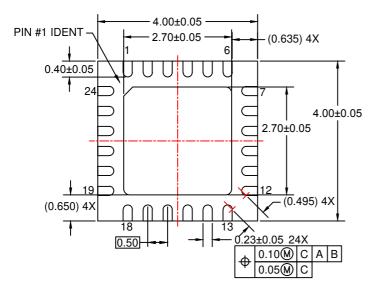
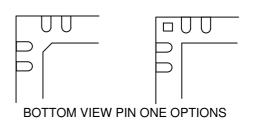


Figure 23. fosc vs. RT


Figure 24. IOCP vs. ROCP

BOTTOM VIEW

NOTES:

- A. CONFORMS TO JEDEC REGISTRATION MO-220, VARIATION WGGD-6.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 2009.
- D. LAND PATTERN IPC REFERENCE : QFN50P400X400X80-25W6N.
- E. DRAWING FILENAME: MKT-MLP24Erev5.

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and h

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Phone: 421 33 790 2910

Japan Customer Focus Center

Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative