

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

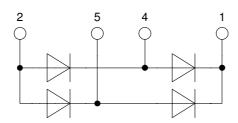
Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Standard Rectifier

1~ Rectifier		
V_{RRM}	=	1200
I_{DAV}	=	40
I_{FSM}	=	300

1~ Rectifier Bridge


Part number

FBO40-12N

Backside: isolated

Features / Advantages:

- Planar passivated chips
- Very low leakage current
- Very low forward voltage drop
- Improved thermal behaviour

Applications:

• Diode Bridge for main rectification

Package: i4-Pac

- Isolation Voltage: 3000 V~
- Industry convenient outline
- RoHS compliant
- Epoxy meets UL 94V-0
- Soldering pins for PCB mounting
- Backside: DCB ceramic
- Reduced weight
- Advanced power cycling

Terms _Conditions of usage:

The data contained in this product data sheet is exclusively intended for technically trained staff. The user will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to his application. The specifications of our components may not be considered as an assurance of component characteristics. The information in the valid application- and assembly notes must be considered. Should you require product information in excess of the data given in this product data sheet or which concerns the specific application of your product, please contact the sales office, which is responsible for you.

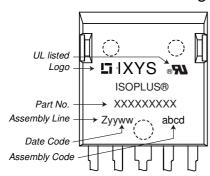
Due to technical requirements our product may contain dangerous substances. For information on the types in question please contact the sales office, which is responsible for you.

Should you intend to use the product in aviation, in health or live endangering or life support applications, please notify. For any such application we urgently recommend

- to perform joint risk and quality assessments;
 the conclusion of quality agreements;
- to establish joint measures of an ongoing product survey, and that we may make delivery dependent on the realization of any such measures.

IXYS reserves the right to change limits, conditions and dimensions.

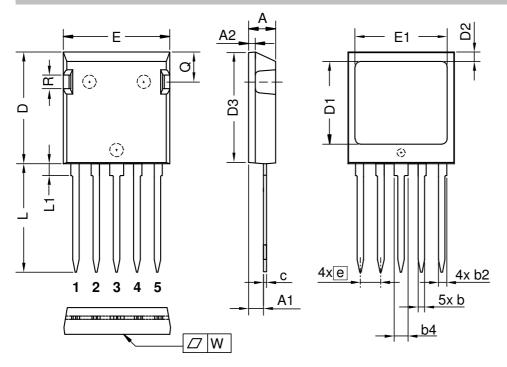
Data according to IEC 60747 and per semiconductor unless otherwise specified



Rectifier			Ratings				
Symbol	Definition	Conditions		min.	typ.	max.	Unit
V _{RSM}	max. non-repetitive reverse bloc	cking voltage	$T_{VJ} = 25^{\circ}C$			1300	V
V _{RRM}	max. repetitive reverse blocking	voltage	$T_{VJ} = 25^{\circ}C$			1200	٧
I _R	reverse current	V _R = 1200 V	$T_{VJ} = 25^{\circ}C$			40	μΑ
		$V_R = 1200 \text{ V}$	$T_{VJ} = 150$ °C			1.5	mΑ
V _F	forward voltage drop	I _F = 20 A	$T_{VJ} = 25^{\circ}C$			1.17	V
		$I_F = 40 \text{ A}$				1.38	٧
		I _F = 20 A	$T_{VJ} = 150 ^{\circ}\text{C}$			1.09	V
		$I_F = 40 \text{ A}$				1.37	V
I _{DAV}	bridge output current	T _C = 130°C	T _{vJ} = 175°C			40	Α
		rectangular d = 0.5					
V _{F0}	threshold voltage		T _{vJ} = 175°C			0.79	V
r _F	slope resistance } for power	loss calculation only				14	mΩ
R _{thJC}	thermal resistance junction to ca	ase				1.5	K/W
R _{thCH}	thermal resistance case to heats	sink			0.20		K/W
P _{tot}	total power dissipation		$T_{C} = 25^{\circ}C$			100	W
I _{FSM}	max. forward surge current	t = 10 ms; (50 Hz), sine	$T_{VJ} = 45^{\circ}C$			300	Α
		t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			325	Α
		t = 10 ms; (50 Hz), sine	T _{vJ} = 150°C			255	Α
		t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			275	Α
l²t	value for fusing	t = 10 ms; (50 Hz), sine	$T_{VJ} = 45^{\circ}C$			450	A ² s
		t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			440	A²s
		t = 10 ms; (50 Hz), sine	$T_{VJ} = 150$ °C			325	A ² s
		t = 8.3 ms; (60 Hz), sine	$V_R = 0 V$			315	A²s
CJ	junction capacitance	$V_{R} = 400 \text{ V}; f = 1 \text{ MHz}$	$T_{VJ} = 25^{\circ}C$		4		pF

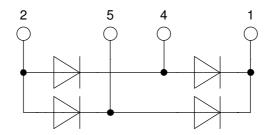
Package i4-Pac					Ratings		
Symbol	Definition	Conditions		min.	typ.	max.	Unit
I _{RMS}	RMS current	per terminal				35	Α
T _{VJ}	virtual junction temperature			-55		175	°C
Top	operation temperature			-55		150	°C
T _{stg}	storage temperature			-55		150	°C
Weight					9		g
F _c	mounting force with clip			20		120	N
d _{Spp/App}	creepage distance on surface striking distance through air		terminal to terminal	1.7			mm
$d_{\text{Spb/Apb}}$			terminal to backside	5.1			mm
V _{ISOL}	isolation voltage	t = 1 second		3000			V
.002		t = 1 minute	50/60 Hz, RMS; I _{ISOL} ≤ 1 mA	2500			٧

Product Marking



Ordering	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	FBO40-12N	FBO40-12N	Tube	25	492256

Equivalent Circuits for Simulation			* on die level	$T_{VJ} = 175 ^{\circ}\text{C}$
$I \rightarrow V_0$	R_0	Rectifier		
V _{0 max}	threshold voltage	0.79		V
$R_{0 \text{ max}}$	slope resistance *	12		mΩ



Outlines i4-Pac

Dim.	Millir	Millimeter Inches		hes
חוווט.	min	max	min	max
Α	4.83	5.21	0.190	0.205
A1	2.59	3.00	0.102	0.118
A2	1.17	2.16	0.046	0.085
b	1.14	1.40	0.045	0.055
b2	1.47	1.73	0.058	0.068
b4	2.54	2.79	0.100	0.110
С	0.51	0.74	0.020	0.029
D	20.80	21.34	0.819	0.840
D1	14.99	15.75	0.590	0.620
D2	1.65	2.03	0.065	0.080
D3	20.30	20.70	0.799	0.815
Е	19.56	20.29	0.770	0.799
E1	16.76	17.53	0.660	0.690
е	3.81	BSC	0.150	BSC
L	19.81	21.34	0.780	0.840
L1	2.11	2.59	0.083	0.102
Q	5.33	6.20	0.210	0.244
R	2.54	4.57	0.100	0.180
W	-	0.10	-	0.004

Die konvexe Form des Substrates ist typ. < 0.05 mm über der Kunststoffoberfläche der Bauteilunterseite The convexbow of substrate is typ. < 0.05 mm over plastic surface level ofdevice bottom side

Rectifier

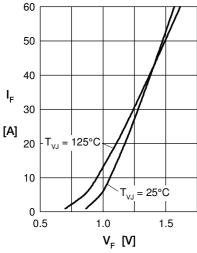


Fig. 1 Forward current versus voltage drop per diode

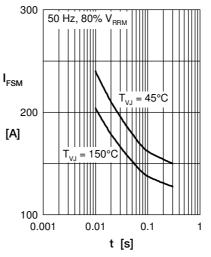


Fig. 2 Surge overload current

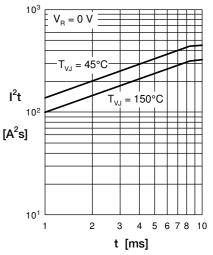


Fig. 3 I²t versus time per diode

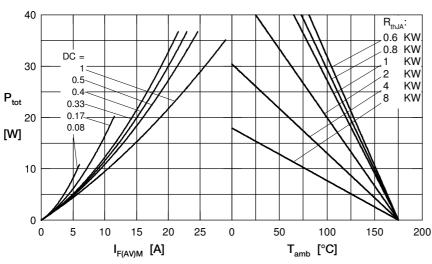


Fig. 4 Power dissipation vs. direct output current and ambient temperature

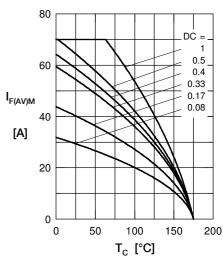


Fig. 5 Max. forward current vs. case temperature

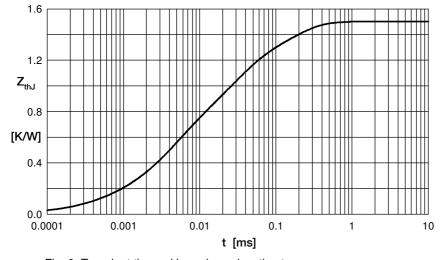


Fig. 6 Transient thermal impedance junction to case

Constants for \mathbf{Z}_{thJC} calculation:

i	R_{thi} (K/W)	t _i (s)
1	0.06075	0.0004
2	0.183	0.00256
3	0.3405	0.0045
4	0.543	0.0242
5	0.3728	0.15