

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Finisar

Product Specification

C.wire® 120 Gb/s Parallel Active Optical Cable

FCBGD10CD1Cxx

PRODUCT FEATURES

- 12-channel full-duplex active optical cable
- Electrical interface only
- Multirate capability: 1.06Gb/s to 10.5Gb/s per channel
- Complies with CXP high-density form factor requirements
- Low power dissipation: <3.5W per cable end
- Requires 3.3V power supply only
- Reliable VCSEL array technology using multimode fiber
- Available in standard lengths of 3, 5, 10, 20, 30, 50 and 100m*
- Hot Pluggable
- Built-in digital diagnostic functions
- Commercial operating temperature range: 0°C to 70°C
- RoHS-6 Compliant (lead-free)

APPLICATIONS

- Infiniband 12xQDR
- 100G Ethernet
- 4G/8G/10G Fibre Channel
- Proprietary Interconnections
- SATA/SAS3

PRODUCT SELECTION

FCBGD10CD1C03	3-meter cable
FCBGD10CD1C05	5-meter cable
FCBGD10CD1C10	10-meter cable
FCBGD10CD1C20	20-meter cable
FCBGD10CD1C30	30-meter cable
FCBGD10CD1C50	50-meter cable
FCBGD10CD1CX0	100-meter cable

^{*}For availability of additional cable lengths, please contact Finisar.

I. Pin Descriptions

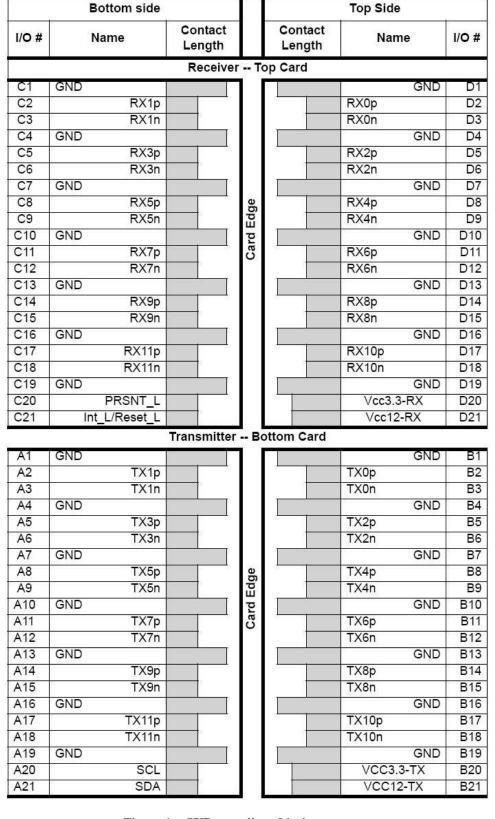


Figure 1 – CXP-compliant 84-pin connector

Pin	Symbol	Name/Description	Notes
A1	GND	Ground	1
A2	Tx1p	Transmitter Non-Inverted Data Input	
A3	Tx1n	Transmitter Inverted Data Input	
A4	GND	Ground	1
A5	Tx3p	Transmitter Non-Inverted Data Input	
A6	Tx3n	Transmitter Inverted Data Input	
A7	GND	Ground	1
A8	Tx5p	Transmitter Non-Inverted Data Input	
A9	Tx5n	Transmitter Inverted Data Input	
A10	GND	Ground	1
A11	Tx7p	Transmitter Non-Inverted Data Input	1
A12	Tx7n	Transmitter Inverted Data Input	
A13	GND	Ground	1
A14	Tx9p	Transmitter Non-Inverted Data Input	1
A15	Tx9n	Transmitter Inverted Data Input Transmitter Inverted Data Input	
A16	GND	Ground	1
A17	Tx11p	Transmitter Non-Inverted Data Input	1
A17	Tx11n	Transmitter Inverted Data Input Transmitter Inverted Data Input	1
A19	GND	Ground	1
A20	SCL	2-wire serial interface clock	1
A20	SDA	2-wire serial interface data	
B1	GND	Ground	1
B2	Tx0p	Transmitter Non-Inverted Data Input	1
B3	Tx0p	Transmitter Inverted Data Input Transmitter Inverted Data Input	
B4	GND	Ground	1
B5	Tx2p	Transmitter Non-Inverted Data Input	1
B6	Tx2p	Transmitter Inverted Data Input Transmitter Inverted Data Input	
B7	GND	Ground	1
B8	Tx4p	Transmitter Non-Inverted Data Input	1
В9	Tx4p	Transmitter Inverted Data Input Transmitter Inverted Data Input	
B10	GND	Ground	1
B10	Тх6р	Transmitter Non-Inverted Data Input	1
B12	Tx6n	Transmitter Inverted Data Input Transmitter Inverted Data Input	
B13	GND	Ground	1
			1
B14 B15	Tx8p	Transmitter Non-Inverted Data Input Transmitter Inverted Data Input	
	Tx8n GND	Transmitter Inverted Data Input Ground	1
B16			1
B17	Tx10p	Transmitter Non-Inverted Data Input Transmitter Inverted Data Input	-
B18	Tx10n	Transmitter Inverted Data Input	1
B19	GND	Ground	1
B20	VCC3.3-TX	+3.3 V Power supply transmitter	1
B21	VCC12-TX	+12.0 V Power supply transmitter - NOT CONNECTED	2
C1	GND B1-	Ground Reseiver New Invented Data Outrant	1
C2	Rx1p	Receiver Non-Inverted Data Output	
C3	Rx1n	Receiver Inverted Data Output	-
C4	GND	Ground	1
C5	Rx3p	Receiver Non-Inverted Data Output	1
C6	Rx3n	Receiver Inverted Data Output	
C7	GND	Ground	1
C8	Rx5p	Receiver Non-Inverted Data Output	

C9	Rx5n	Receiver Inverted Data Output	
C10	GND	Ground	1
C11	Rx7p	Receiver Non-Inverted Data Output	
C12	Rx7n	Receiver Inverted Data Output	
C13	GND	Ground	1
C14	Rx9p	Receiver Non-Inverted Data Output	
C15	Rx9n	Receiver Inverted Data Output	
C16	GND	Ground	1
C17	Rx11p	Receiver Non-Inverted Data Output	
C18	Rx11n	Receiver Inverted Data Output	
C19	GND	Ground	1
C20	PRSNT L	Module Present	
C21	Int L/Reset L	Interrupt / Reset	
D1	GND	Ground	1
D2	Rx0p	Receiver Non-Inverted Data Output	
D3	Rx0n	Receiver Inverted Data Output	
D4	GND	Ground	1
D5	Rx2p	Receiver Non-Inverted Data Output	
D6	Rx2n	Receiver Inverted Data Output	
D7	GND	Ground	1
D8	Rx4p	Receiver Non-Inverted Data Output	
D9	Rx4n	Receiver Inverted Data Output	
D10	GND	Ground	1
D11	Rx6p	Receiver Non-Inverted Data Output	
D12	Rx6n	Receiver Inverted Data Output	
D13	GND	Ground	1
D14	Rx8p	Receiver Non-Inverted Data Output	
D15	Rx8n	Receiver Inverted Data Output	
D16	GND	Ground	1
D17	Rx10p	Receiver Non-Inverted Data Output	
D18	Rx10n	Receiver Inverted Data Output	
D19	GND	Ground	1
D20	Vcc3.3-RX	+3.3 V Power supply receiver	
D21	Vcc12-RX	+12.0 V Power supply receiver - NOT CONNECTED	2

- Notes
 1. Circuit ground is internally isolated from chassis ground.
 2. 12V power supply not required.

General Product Characteristics II.

Parameter	Value	Unit	Notes
Module Form Factor	CXP		
Number of Lanes	12 Tx and 12 Rx		
Maximum Aggregate Data Rate	126	Gb/s	
Maximum Data Rate per Lane	10.5	Gb/s	
Standard Cable Lengths	3, 5, 10, 20, 30, 50, 100	meters	Other lengths may be available upon request, up to 300 meters
Protocols Supported	Typical applications include Infiniband, Fibre Channel, 100G Ethernet, SATA/SAS3		
Electrical Interface and Pin-out	84-pin edge connector		Pin-out as defined in the CXP Specification by the IBTA
Standard Optical Cable Type	Multimode fiber ribbon, flat cable assembly, LSZH/riser-rated		
Maximum Power Consumption per End	3.5	Watts	Varies with output voltage swing and pre-emphasis settings (see Figure 5)
Management Interface	Serial, I2C-based, 400 kHz maximum frequency		As defined by the CXP Specification

Data Rate Specifications	Symbol	Min	Тур	Max	Units	Ref.
Bit Rate per Lane	BR	1000		10500	Mb/sec	1
Bit Error Ratio	BER			10 ⁻¹²		2

- Notes:
 1. Infiniband SDR/DDR/QDR, 1/10 Gigabit Ethernet, 1/2/4/8/10G Fibre Channel.
 2. Tested with a PRBS 2³¹-1 test pattern.

III. **Absolute Maximum Ratings**

Parameter	Symbol	Min	Тур	Max	Unit	Ref.
Maximum Supply Voltage	Vcc1,	-0.5		3.6	V	
	VccTx,					
	VccRx					
Storage Temperature	T_{S}	-40		85	°C	
Case Operating Temperature	T_{OP}	0		70	°C	
Relative Humidity	RH	0		85	%	1

Notes:

1. Non-condensing.

IV. Electrical Characteristics ($T_{OP} = 0$ to 70°C, $V_{CC} = 0$

Parameter	Symbol	Min	Тур	Max	Unit	Ref.				
Supply Voltage	Vcc1,	3.15		3.45	V					
	VccTx,									
	VccRx									
Supply Current	Icc		850	1000	mA					
Link Turn-On Time	Link Turn-On Time									
Transmit Turn-On Time				2000	ms	1				
Transmitter (per Lane)										
Single-ended input voltage tolerance	VinT	-0.3		4.0	V					
Differential data input swing	Vin,pp	120		1200	mVpp	2				
Differential input threshold			50		mV					
Receiver (per Lane)	Receiver (per Lane)									
Differential data output swing	Vout,pp	0		800	mVpp	3,4				
Power Supply Ripple Tolerance	PSR	50			mVpp					

Notes:

- 1. From power-on and end of any fault conditions.
- 2. AC coupled internally. See Figure 2 for input eye mask requirements. Self-biasing 100Ω differential input.
- 3. AC coupled with 100Ω differential output impedance. See Figure 3 for output eye mask.
- 4. Settable in 4 discrete steps. See Figure 5 for Vout settings

V. High-Speed Electrical Characteristics per Lane

 $(T_{OP} = 0 \text{ to } 70^{\circ}\text{C}, V_{CC} = 3.3 \pm 5\% \text{ Volts})$

Parameter –Inputs	Symbol	Conditions	Min	Тур	Max	Units	Ref.
Reference Differential Input Impedance	Z_{d}			100		Ω	
Termination Mismatch	ΔZ_{M}				5	%	1
Input AC Common Mode Voltage					25	mV (RMS)	
Differential Input Peturn Loss	SDD11	0.01-4.1 GHz				dB	2
Differential Input Return Loss	וועענ	4.1 – 11.1 GHz				dB	3
Differential to Common Mode Loss	SCD11	0.01-11.1 GHz			-10	dB	
Jitter Tolerance (Deterministic)	DJ				0.15	UI	
Jitter Tolerance (Total)	TJ				0.30	UI	

Notes:

- 1. See SFF-8431 Rev 3.2 (SFP+) section D.15 Termination Mismatch for definition & test recommendations
- 2. Reflection coefficient given by equation SDD11(dB)< -12+2*SQRT(f), with f in GHz. See Figure 4.
- 3. Reflection coefficient given by equation SDD11(dB)< -6.3+13Log10(f/5.5), with f in GHz. See Figure 4.

Figure 2 – Transmitter Input Differential Signal Mask

Parameter -Outputs	Symbol	Conditions	Min	Тур	Max	Units	Ref.
Reference Differential Output Impedance	Z_d			100		Ω	
Termination Mismatch	ΔZ_{M}				5	%	
Output AC Common Mode Voltage					15	mV_{RMS}	
Output Rise and Fall time (20% to 80%)	t_{RH}, t_{FH}		24			ps	
Differential Output Peturn Less	SDD22	0.01-4.1 GHz				dB	1
Differential Output Return Loss	30022	4.1 – 11.1 GHz				dB	2
Common Mode Output Return Loss	SCC22	0.01-2.5 GHz				dB	3
	SCC22	2.5-11.1 GHz			-3	dB	

Notes:

- 1. Reflection coefficient given by equation SDD22(dB)< -12+2*SQRT(f), with f in GHz. See Figure 4.
- 2. Reflection coefficient given by equation SDD22(dB)< -6.3+13Log10(f/5.5), with f in GHz. See Figure 4
- 3. Reflection coefficient given by equation SCC22(dB)<-7+1.6*f, with f in GHz.

Receiver Output Jitter Specification	Symbol	Min	Тур	Max	Units	Ref.
Deterministic Jitter	$\mathrm{DJ}_{\mathrm{OUT}}$			0.40	UI	1
Total Jitter	TJ_{OUT}			0.72	UI	1

Notes:

1. When transmitter input jitter specs are met. Typical Total Jitter contribution for C.wire is 30 UI (typ).

Other Informational Specifications (not tested)	Symbol	Min	Тур	Max	Units	Ref.
Low Frequency 3dB Cutoff	f_c	175			kHz	
Ch / Ch crosstalk				-26	dB	
			0		mV	
Output Pre-emphasis settings	PE		125		mV	
(user selectable)	PE		175		mV	
			325		mV	
Pre-Emphasis pulse width		60		90	ps	
Channel Latency			f(L)		ps	1
Channels Skew				220	ps	2
Digital clock to data delay				25	ns	
Digital output rise/fall times				5	ns	
Digital input / output Cap				1	pF	
Digital input logic High		2			V	
Digital input logic Low				1	V	
ESD Signal pads				500	V	HBM
ESD (other pads)				2	kV	HBM

Notes:

- 1. Channel latency is a function of cable length L [m]. The typical value is given by the formula L/(0.7*c), where c = 3*10E+8 [m/s].
- 2. The shown maximum skew value corresponds to a cable length of 100 meters. The typical skew in a 5-meter cable is 100 ps and in a 100-meter cable is 200 ps.

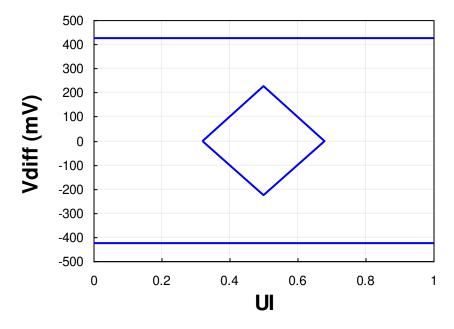


Figure 3 – Receiver Output Differential Signal Mask

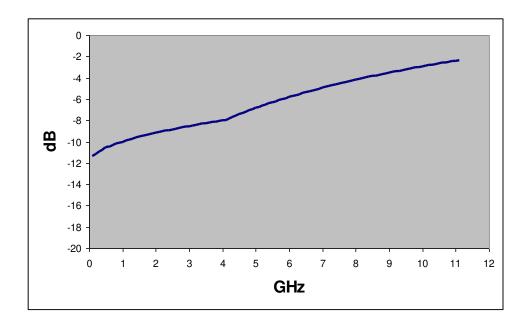


Figure 4 – Maximum Transmitter Input and Receiver Output Differential Return Loss

Power (mW)		Pre-Emphasis into 100ohms (mV)					
		0	125	175	325		
S	0	1189					
(mV)	317	1645	2197	2305	2617		
	422	1753	2305	2413	2725		
%	739	2041	2557	2701	2962		

Figure 5 – Power Dissipation (mW, typical) vs. Rx Output Conditions

VI. Memory Map and Control Registers

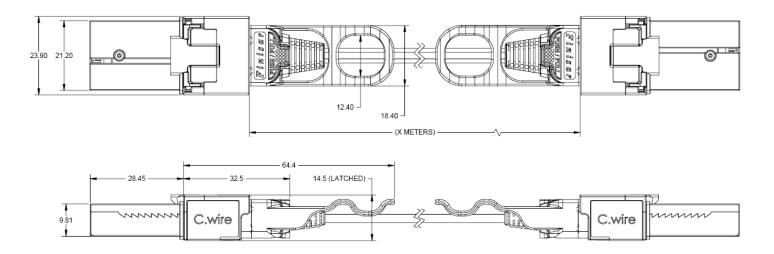
Compatible with the CXP Specification. Please see Finisar Application Note AN-2077.

VII. Environmental Specifications

Finisar C.wire active optical cables have an operating temperature range from 0° C to $+70^{\circ}$ C case temperature.

Environmental Specifications	Symbol	Min	Тур	Max	Units	Ref.
Case Operating Temperature	Top	0		70	°C	
Storage Temperature	T_{sto}	-40		85	°C	

VIII. Regulatory Compliance


Finisar C.wire active optical cables are RoHS-6 Compliant. Copies of certificates are available at Finisar Corporation upon request.

C.wire active optical cables are laser eye safe so long as the fiber cable is intact. In case of a broken cable, the C.wire active optical cable should be treated as Class 1 per EN 60825-2.

Fiber cable type is s LSZH/riser-rated, flat ribbon construction. Other cable types are available upon request.

IX. Mechanical Specifications

The C.wire active optical cable mechanical specifications are based on the CXP Specification, substituting the MPO connectors with a cable connecting both ends.

DIMENSIONS SUBJECT TO CHANGES

Figure 5 – C.wire mechanical drawing

Insertion, Extraction and Retention Forces	Min	Max	Units	Notes
Cable Proof (Tensile) Test (0°)		44.0	Newtons	
Cable Proof (Tensile) Test (90°)		33.0	Newtons	
Impact Test		8	Cycles	1.5m drop
Flex Test		8.9	Newtons	
Twist Test		13.0	Newtons	
Module retention	90	N/A	Newtons	No damage below 90N
Host Connector Retention	180	N/A	Newtons	No damage below 180N

Figure 6 – C.wire production-level product label (20-meter cable shown)

X. References

- 1. Supplement to Infiniband Architecture Specification, Volume 2, Release 1.2.1., Annex A6: "120 Gb/s 12x Small Form-factor Pluggable (CXP) Interface Specification for Cables, Active Cables, & Transceivers", September 10, 2009
- 2. SFF-8431 Rev 3.2 (SFP+ Specification)

XI. For More Information

Finisar Corporation 1389 Moffett Park Drive Sunnyvale, CA 94089-1133 Tel. 1-408-548-1000 Fax 1-408-541-6138 sales@finisar.com www.finisar.com