Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs. With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas. We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry! # Contact us Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China # **Product Specification** # 10Gb/s LaserwireTM Serial Data Link Active Cable ### FCBP110LD1Lxx ### PRODUCT FEATURES - Single 1.0 10.3125 Gb/s bi-directional link. - RoHS-6 compliant (lead-free) - Available in lengths of 3, 5, 10, 20 and 30m - Metal enclosure for low EMI - Single 3.3V power supply - Low power dissipation: <500mW typical per end - Operating temperature range: 0°C to 60°C - RJ-45 width - Red/Green LED indicators ### **APPLICATIONS** - 1/10 Gigabit Ethernet - 1/2/4/8G Fibre Channel - InfiniBand x1 - High Performance Computing Interconnects - SATA/SAS - HDMI - PCI-e x1 Finisar's LaserwireTM active cables provide the lowest-cost serial data link solution for up to 10 Gb/s, while providing a very lightweight, low-EMI and low-power alternative to comparable short reach solutions. LaserwireTM operates independently of protocol and can thus be used in a wide range of applications. LaserwireTM plugs into the LaserwireTM Jack (P/N FCBJ110LE1), a small-footprint host-board connector. In addition, connection to SFP+, QSFP or XFP ports is possible using LaserwireTM SFP+, QSFP or XFP adapters (P/N FTLX0071D4BNL, FTLX00Q1D4BNL or FTLX0011D4BNL, respectively). LaserwireTM utilizes a limiting receiver, avoiding the challenges of a linear receiver interface. ### PRODUCT SELECTION | FCBP110LD1L03 | 3-meter cable | |---------------|----------------| | FCBP110LD1L05 | 5-meter cable | | FCBP110LD1L10 | 10-meter cable | | FCBP110LD1L20 | 20-meter cable | | FCBP110LD1L30 | 30-meter cable | ## I. Pin Descriptions | Pin | Symbol | Name/Description | Ref. | |-----|----------------|---|------| | 1 | $V_{ ext{EE}}$ | Ground | 1 | | 2 | TX- | Transmitter Inverted DATA in | | | 3 | TX+ | Transmitter Non-Inverted DATA in | | | 4 | $V_{ ext{EE}}$ | Ground | 1 | | 5 | V_{CC} | Power Supply $(+3.3V \pm 5\%)$ | | | 6 | F | Fault signal | 2 | | 7 | CAB-ABS | Cable absent, connected to Vee within cable plug via a resistor $< 500\Omega$ | 3 | | 8 | NC | NC | 4 | | 9 | $V_{ ext{EE}}$ | Ground | 1 | | 10 | RX+ | Receiver Non-inverted DATA out | | | 11 | RX- | Receiver Inverted DATA out | | | 12 | $V_{ ext{EE}}$ | Ground | 1 | ### Notes: - 1. Circuit ground is internally isolated from chassis ground. - 2. Open collector output. Should be pulled up with $4.7k\Omega$ $10k\Omega$ on host board to a voltage between 2.0V and 3.6V. High indicates a fault condition. - 3. Should be pulled up with $4.7k\Omega$ $10k\Omega$ on host board to a voltage between 2.0V and 3.6V. High indicates no cable present - 4. Reserved for future applications. No Connect in Host. Figure 1. Pinout: (a) Cable plug end view, (b) host board decal top view. # II. Absolute Maximum Ratings | Parameter | Symbol | Min | Тур | Max | Unit | Ref. | |----------------------------|----------|------|-----|-----|------|------| | Maximum Supply Voltage | Vcc | -0.5 | | 4.0 | V | | | Storage Temperature | T_{S} | -20 | | +70 | °C | | | Case Operating Temperature | T_{OP} | 0 | | 60 | °C | | | Relative Humidity | RH | 0 | | 85 | % | 1 | #### Notes: 1. Non-condensing. ## III. Electrical Characteristics ($T_{OP} = 0$ to 60°C, $V_{CC} = 3.3 \pm 5\%$ Volts) | Parameter | Symbol | Min | Тур | Max | Unit | Ref. | |--------------------------------|---------|-------|-----|-------|------|------| | Supply Voltage | Vcc | 3.135 | | 3.465 | V | | | Supply Current | Icc | | 150 | 200 | mA | | | Link Turn-On Time | | | | | | | | Transmit Turn-On Time | | | | 1 | ms | 1 | | Transmitter | | | | | | | | Differential data input swing | Vin,pp | 180 | | 800 | mVpp | 2 | | Receiver | | | | | | | | Differential data output swing | Vout,pp | 450 | 700 | 850 | mVpp | 3 | | Power Supply Ripple Tolerance | PSR | 33 | | | mVpp | 4 | ### Notes: - 1. From power-on and end of any fault conditions. - 2. DC coupled internally. See Figure 2 for input eye mask requirements. Self-biasing 100Ω differential input. Must be AC-coupled on HOST. - 3. DC Coupled with 100Ω differential output impedance. **Must be AC-coupled on HOST.** See Figure 3 for output eye mask. - 4. All transceiver specifications are guaranteed with the given power supply sinusoidal modulation up to specified amplitude over a range of 10 Hz to 10 MHz applied through the power supply filtering network shown in Figure 6. See SFF-8431 Rev 4.2 (SFP+) specification section D.17.3 Power Supply Tolerance Testing for the test methodology but with the module replaced by a 15Ω load for amplitude calibration. ## IV. High Speed Electrical Characteristics ($T_{OP} = 0$ to 60° C, $V_{CC} = 3.3 \pm 5\%$ Volts) | Parameter – Transmitter Inputs | Symbol | Conditions | Min | Тур | Max | Units | Ref. | |---|-------------------------|----------------|-----|-----|-----|-------------|------| | Reference Differential Input
Impedance | Z_{d} | | | 100 | | Ω | | | Termination Mismatch | ΔZ_{M} | | | | 5 | % | 1 | | Input AC Common Mode Voltage | | | | | 25 | mV
(RMS) | | | Differential Input Peturn Loss | SDD11 | 0.01-1.0 GHz | | | -12 | dB | | | Differential Input Return Loss | SDD11 | 1.0 – 11.1 GHz | | | | dB | 2 | | Differential to Common Mode
Loss | SCD11 | 0.01-11.1 GHz | | | -10 | dB | 3 | ### Notes: - 1. See SFF-8431 Rev 4.2 (SFP+) section D.15 Termination Mismatch for definition & test recommendations - 2. Return Loss given by equation SDD11(dB)= $-12.9 + 0.9 \cdot f$, with f in GHz. See Figure 4 - 3. Common mode reference impedance is 25Ω . Differential to common mode conversion relates to generation of EMI. | Transmitter Input Jitter Specification | Symbol | Min | Тур | Max | Units | Ref. | |--|------------------------------|-----|-----|-------|-------|------| | Total Jitter | TJ_{IN} | | | 0.38 | UI | 1 | | Data Dependent Jitter | $\mathrm{DDJ}_{\mathrm{IN}}$ | | | 0.15 | UI | 1 | | Uncorrelated Jitter | UJ_{IN} | | | 0.029 | UIrms | 1,2 | #### Notes: - 1. Additional host margin to SFF-8431 rev 4.2. Provided to allow use of SFP+ adapters (P/N FTLX0071D4BNL). - 2. Derived here by scaling the SFF-8431 rev4.2 spec of 0.023 by the relative increase in the non-data dependent jitter over the SFF-8431 rev 4.2 spec: [(0.38-0.15)/(0.28-0.10)] * 0.023 UIrms. Figure 2. Transmitter Input Differential Signal Condition Mask | Parameter – Receiver Outputs | Symbol | Conditions | Min | Тур | Max | Units | Ref. | |---|-------------------------|-----------------|-----|-----|-----|------------|------| | Reference Differential Output Impedance | Z_d | | | 100 | | Ω | | | Termination Mismatch | ΔZ_{M} | | | | 5 | % | 1 | | Output AC Common Mode Voltage | | See XFP MSA E.5 | | | 15 | mV_{RMS} | | | Output Rise and Fall time (20% to 80%) | t_{RH}, t_{FH} | | 24 | | | ps | | | Differential Output Peturn Loss | SDD22 | 0.01-1.0 GHz | | | -12 | dB | | | Differential Output Return Loss | SDD22 | 1.0 – 11.1 GHz | | | | dB | 2 | | Common Mode Output Return Loss | SCC22 | 0.01-2.5 GHz | | | -6 | dB | 3 | | Common wode Output Return Loss | SCC22 | 2.5-11.1 GHz | | | -3 | dB | 3 | ### Notes: - 1. See SFF8431 Rev 4.2 (SFP+) section D.15 Termination Mismatch for definition and test recommendations - 2. Differential Return Loss given by equation SDD22(dB)= -12.9 + 0.9·f, with f in GHz. See Figure 4 - 3. Common mode reference impedance is 25 Ω . | Receiver Output Jitter Specification | Symbol | Min | Тур | Max | Units | Ref. | |---|------------------------------|-----|-----|------|-------|------| | Deterministic Jitter | $\mathrm{DJ}_{\mathrm{OUT}}$ | | | 0.38 | UI | 1,2 | | Total Jitter | TJ_{OUT} | | | 0.64 | UI | 1,2 | ### Notes: - 1. When transmitter input jitter specs are met. - 2. Additional host margin to SFF-8431 rev 4.2. Provided also to allow use of passive SFP+ adapters Figure 3. Receiver Output Differential Signal Mask Figure 4. Maximum Transmitter Input and Receiver Output Differential Return Loss ## V. General Specifications | Data Rate Specifications | Symbol | Min | Тур | Max | Units | Ref. | |--------------------------|--------|------|-----|-------------------|--------|------| | Bit Rate | BR | 1000 | | 103125 | Mb/sec | 1 | | Bit Error Ratio | BER | | | 10 ⁻¹² | | 2 | ### Notes: - 1. 1/10 Gigabit Ethernet and 1/2/4/8G Fibre Channel compliant. - 2. Tested with a PRBS 2³¹-1 test pattern. ## VI. Environmental Specifications Finisar active cables have an operating temperature range from 0°C to +60°C case temperature. | Environmental Specifications | Symbol | Min | Тур | Max | Units | Ref. | |-------------------------------------|-----------|-----|-----|-----|-------|------| | Case Operating Temperature | T_{op} | 0 | | 60 | °C | | | Storage Temperature | T_{sto} | -40 | | 85 | °C | | ### VII. Regulatory Compliance The FCBP110LD1Lxx Laserwire, which contains laser devices, is also a Class 1 laser product and complies with 21CFR 1040.10 and 1040.11 except for deviations pursuant to Laser Notice No. 50, dated June 24, 2007, and it complies with EN(IEC) 60825 Edition 1.2 regulations. The FCBP110LD1Lxx Laserwire is also RoHS Compliant. Copies of certificates are available at Finisar Corporation upon request. # VIII. Mechanical Specifications Figure 5. Side and Plug end-views. | Insertion, Extraction and Retention Forces. Bend Radius | Min | Max | Units | Notes | |---|-----|-----|------------|------------------| | Cable Tensile Load (Short Term) | | 100 | Newtons | | | Cable Tensile Load (Long Term) | | 100 | Newtons | | | Crush Resistance | 100 | | Newtons/mm | FOTP-41 | | Impact Resistance | 0.5 | | Newton·m | FOTP-25 | | Flexing | 300 | | Cycles | FOTP-104 | | Twist Bend | | | | Exceeds FOTP-85 | | Cable to Laserwire Plug Connection | | 58 | Newtons | Same as SFP/SFP+ | | Bend Radius | 10 | | mm | | For details of the LaserwireTM Jack (P/N FCBJ110LE1) and recommended PCB layout and bezel recommendations, please refer to the LaserwireTM Jack datasheet. ## IX. LED Operation Figure 6. Laserwire LED operation. The optical Laserwire LEDs are a physical layer indicator and do not indicate actual traffic flow. A green light on both ends signifies that light, not traffic, is being transmitted by the laser in the opposite end. A red light indicates that the laser in the opposite end is not functioning either because it is not inserted and/or not powered. No LED operation signifies that the lasers in both ends are not transmitting light because both ends are either not inserted and/or not powered. ## X. Application Note of Recommended Host-Board Connections. Figure 6. Recommended host board configuration showing power supply filtering, required AC-coupling capacitors, and status pull-up resistors. ### X. References - 1. SFF-8077i rev 4.5 XFP Specifications, SFF Committee, August 2005. - 2. SFF-8431 rev 4.2 SFP+ Specifications, SFF Committee, December 2007. - 3. IEEE Std 802.3ae, 2002 Edition, IEEE Standards Department, 2002. - 4. IEEE Std 802.3, 2002 Edition, IEEE Standards Department, 2002. - 5. "Fibre Channel Physical and Signaling Interface (FC-PH, FC-PH2, FC-PH3)". American National Standard for Information Systems. - 6. "Fibre Channel Physical Interface Specification (FC-PI-4 Rev. 6.1)". American National Standard for Information Systems. ### **XI.** For More Information Finisar Corporation 1389 Moffett Park Drive Sunnyvale, CA 94089-1133 Tel. 1-408-548-1000 Fax 1-408-541-6138 sales@finisar.com www.finisar.com