

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



## Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China









## **Product Specification**

# Quadwire® 40 Gb/s Parallel Active Optical Cable FCCx410QD3Cyy

## PRODUCT FEATURES

- Four-channel full-duplex active optical cable
- Multirate capability: 1.06Gb/s to 10.5Gb/s per channel
- Complies with QSFP MSA highdensity form factor
- Round, plenum-rated (OFNP) and riser-rated (OFNR), low smoke zero halogen (LSZH) cables
- Connectivity Diagnostics® ready
- Rigid pull-tab with embedded LED light
- Hot Pluggable
- Low power dissipation: <1.3W per cable end
- Commercial operating case temperature range: 0°C to 70°C
- RoHS-6 Compliant





## **APPLICATIONS**

- InfiniBand QDR
- 40G Ethernet
- 4G/8G/10G Fibre Channel
- HPC Interconnections
- SATA/SAS3
- PCIe3

## PRODUCT SELECTION (Standard Lengths\*)

## FCCx410QD3Cyy

: N = Plenum-rated (OFNP) cable jacket

R = Riser-rated (OFNR) low smoke zero halogen (LSZH) cable jacket

 $yy^*$ : 03 = 3m length

05 = 5m length

10 = 10m length

15 = 15m length

20 = 20m length

30 = 30m length

50 = 50m length

X0 = 100m length

\*Please contact Finisar for availability of additional cable lengths.

## I. Pin Descriptions

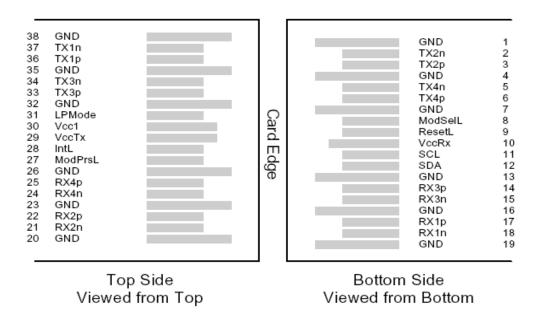



Figure 1 – QSFP MSA-compliant 38-pin connector

| Pin | Symbol  | Name/Description                    | Notes |
|-----|---------|-------------------------------------|-------|
| 1   | GND     | Ground                              | 1     |
| 2   | Tx2n    | Transmitter Inverted Data Input     |       |
| 3   | Tx2p    | Transmitter Non-Inverted Data Input |       |
| 4   | GND     | Ground                              | 1     |
| 5   | Tx4n    | Transmitter Inverted Data Input     |       |
| 6   | Tx4p    | Transmitter Non-Inverted Data Input |       |
| 7   | GND     | Ground                              | 1     |
| 8   | ModSelL | Module Select                       |       |
| 9   | ResetL  | Module Reset                        |       |
| 10  | Vcc Rx  | +3.3 V Power supply receiver        |       |
| 11  | SCL     | 2-wire serial interface clock       |       |
| 12  | SDA     | 2-wire serial interface data        |       |
| 13  | GND     | Ground                              | 1     |
| 14  | Rx3p    | Receiver Non-Inverted Data Output   |       |
| 15  | Rx3n    | Receiver Inverted Data Output       |       |
| 16  | GND     | Ground                              | 1     |
| 17  | Rx1p    | Receiver Non-Inverted Data Output   |       |
| 18  | Rx1n    | Receiver Inverted Data Output       |       |
| 19  | GND     | Ground                              | 1     |
| 20  | GND     | Ground                              | 1     |
| 21  | Rx2n    | Receiver Inverted Data Output       |       |
| 22  | Rx2p    | Receiver Non-Inverted Data Output   |       |
| 23  | GND     | Ground                              | 1     |
| 24  | Rx4n    | Receiver Inverted Data Output       |       |
| 25  | Rx4p    | Receiver Non-Inverted Data Output   |       |
| 26  | GND     | Ground                              | 1     |

| 27 | ModPrsL | Module Present                      |   |
|----|---------|-------------------------------------|---|
| 28 | IntL    | Interrupt                           |   |
| 29 | Vcc Tx  | +3.3 V Power supply transmitter     |   |
| 30 | Vcc1    | +3.3 V Power Supply                 |   |
| 31 | LPMode  | Low Power Mode                      |   |
| 32 | GND     | Ground                              | 1 |
| 33 | Tx3p    | Transmitter Non-Inverted Data Input |   |
| 34 | Tx3n    | Transmitter Inverted Data Input     |   |
| 35 | GND     | Ground                              | 1 |
| 36 | Tx1p    | Transmitter Non-Inverted Data Input |   |
| 37 | Tx1n    | Transmitter Inverted Data Input     |   |
| 38 | GND     | Ground                              | 1 |

## Notes

1. Circuit ground is internally isolated from chassis ground.

#### II. **General Product Characteristics**

| Parameter                         | Value                                                                                 | Unit   | Notes                                                                           |
|-----------------------------------|---------------------------------------------------------------------------------------|--------|---------------------------------------------------------------------------------|
| Module Form Factor                | QSFP                                                                                  |        |                                                                                 |
| Number of Lanes                   | 4 Tx and 4 Rx                                                                         |        |                                                                                 |
| Maximum Aggregate Data Rate       | 42.0                                                                                  | Gb/s   |                                                                                 |
| Maximum Data Rate per Lane        | 10.5                                                                                  | Gb/s   |                                                                                 |
| Standard Cable Lengths            | 3, 5, 10, 15, 20, 30, 50, 100                                                         | meters | Other lengths may be available upon request (<100)                              |
| Protocols Supported               | Typical applications include<br>InfiniBand, Fibre Channel,<br>40G Ethernet, SATA/SAS3 |        |                                                                                 |
| Electrical Interface and Pin-out  | 38-pin edge connector                                                                 |        | Pin-out as defined by the QSFP MSA                                              |
| Standard Optical Cable Type       | Multimode fiber cable assembly                                                        |        |                                                                                 |
| Maximum Power Consumption per End | 1.3                                                                                   | Watts  | Varies with output voltage swing<br>and pre-emphasis settings<br>(see Figure 5) |
| Management Interface              | Serial, I2C-based, 400 kHz<br>maximum frequency                                       |        | As defined by the QSFP MSA                                                      |

| Data Rate Specifications | Symbol | Min  | Тур | Max   | Units  | Ref. |
|--------------------------|--------|------|-----|-------|--------|------|
| Bit Rate per Lane        | BR     | 1000 |     | 10500 | Mb/sec | 1    |
| Bit Error Ratio          | BER    |      |     | 10-12 |        | 2    |

## Notes:

- 1. 1/10 Gigabit Ethernet and 1/2/4/8/10G Fibre Channel compatible.
  Tested with a PRBS 2<sup>31</sup>-1 test pattern.

## III. Connectivity Diagnostics® Features

The FCCx410QD3Cxx Quadwire® are equipped with Finisar's Connectivity Diagnostics®, a technology solution enabling real-time performance monitoring and troubleshooting. The following two features are implemented by default:

## LynkFind<sup>TM</sup>

By manually pushing in the pull tab, both near- and far-end pull tabs will rapidly blink. To reset the pull tab light off, simply push in the pull tab again on either end of the AOC.

## LynkGuardian<sup>TM</sup>

If a digital diagnostic monitor (DDM) triggers an alarm or warning event, or upon a transmitter fault or a receiver loss of signal, the pull tabs of both ends will light up as follows: the near end (where the alarm originates) pull tab will blink slowly, while the far end pull tab will glow solid. Both pull tab lights will alternate blinking and solid in case DDM events occur on both AOCs ends.

## **IV.** Absolute Maximum Ratings

| Parameter                  | Symbol   | Min  | Тур | Max | Unit | Ref. |
|----------------------------|----------|------|-----|-----|------|------|
| Maximum Supply Voltage     | Vcc1,    | -0.5 |     | 3.6 | V    |      |
|                            | VccTx,   |      |     |     |      |      |
|                            | VccRx    |      |     |     |      |      |
| Storage Temperature        | $T_{S}$  | -40  |     | 85  | °C   | 1    |
| Case Operating Temperature | $T_{OP}$ | 0    |     | 70  | °C   |      |
| Relative Humidity          | RH       | 0    |     | 85  | %    | 2    |

#### Notes:

- 1. Assumes no mechanical load force on the unit. Ensuring no mechanical load force requires a cable bend radius of >105 mm within 100 mm of either cable end module and >60 mm on the rest of the cable.
- 2. Non-condensing.

## V. Electrical Characteristics ( $T_{OP} = 0$ to $70^{\circ}$ C, $V_{CC} = 3.3 \pm 5\%$ Volts)

| Parameter                      | Symbol  | Min  | Тур | Max  | Unit | Ref. |
|--------------------------------|---------|------|-----|------|------|------|
| Supply Voltage                 | Vcc1,   | 3.15 |     | 3.45 | V    |      |
|                                | VccTx,  |      |     |      |      |      |
|                                | VccRx   |      |     |      |      |      |
| Supply Current                 | Icc     |      |     | 350  | mA   |      |
| Link Turn-On Time              |         |      |     |      |      |      |
| Transmit Turn-On Time          |         |      |     | 2000 | ms   | 1    |
| Transmitter (per Lane)         |         |      |     |      |      |      |
| Differential data input swing  | Vin,pp  | 180  |     | 1200 | mVpp | 2    |
| Differential input threshold   |         |      | 50  |      | mV   |      |
|                                |         |      |     |      |      |      |
| Receiver (per Lane)            |         |      |     |      |      |      |
| Differential data output swing | Vout,pp | 0    |     | 800  | mVpp | 3,4  |
| Power Supply Ripple Tolerance  | PSR     | 50   |     |      | mVpp |      |

#### Notes:

- 1. From power-on and end of any fault conditions.
- 2. AC coupled internally. See Figure 2 for input eye mask requirements. Self-biasing  $100\Omega$  differential input.
- 3. AC coupled with  $100\Omega$  differential output impedance. See Figure 3 for output eye mask.
- 4. Settable in 4 discrete steps. See Figure 5 for Vo settings

## VI. High-Speed Electrical Characteristics per Lane

 $(T_{OP} = 0 \text{ to } 70^{\circ}\text{C}, V_{CC} = 3.3 \pm 5\% \text{ Volts})$ 

| Parameter –Inputs                         | Symbol                  | Conditions     | Min | Тур | Max  | Units       | Ref. |
|-------------------------------------------|-------------------------|----------------|-----|-----|------|-------------|------|
| Reference Differential Input<br>Impedance | $Z_{d}$                 |                |     | 100 |      | Ω           |      |
| Termination Mismatch                      | $\Delta Z_{\mathrm{M}}$ |                |     |     | 5    | %           | 1    |
| Input AC Common Mode Voltage              |                         |                |     |     | 25   | mV<br>(RMS) |      |
| Differential Innut Datum I aga            | SDD11                   | 0.01-4.1 GHz   |     |     |      | dB          | 2    |
| Differential Input Return Loss            | וועענ                   | 4.1 – 11.1 GHz |     |     |      | dB          | 3    |
| Differential to Common Mode<br>Loss       | SCD11                   | 0.01-11.1 GHz  |     |     | -10  | dB          |      |
| Jitter Tolerance (Total)                  | TJ                      |                |     |     | 0.40 | UI          |      |
| Jitter Tolerance (Deterministic)          | DJ                      |                |     |     | 0.15 | UI          |      |

#### Notes:

- 1. See SFF-8431 Rev 3.2 (SFP+) section D.15 Termination Mismatch for definition & test recommendations
- 2. Reflection coefficient given by equation SDD11(dB)<-12+2\*SQRT(f), with f in GHz. See Figure 4.
- 3. Reflection coefficient given by equation SDD11(dB)< -6.3+13Log10(f/5.5), with f in GHz. See Figure 4.

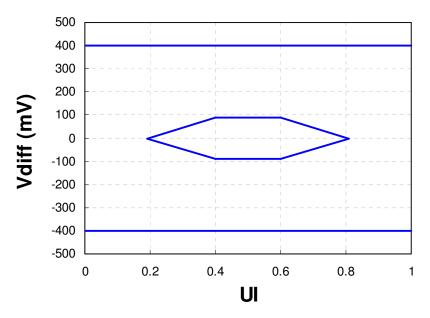



Figure 2 - Transmitter Input Differential Signal Mask

| Parameter -Outputs                      | Symbol              | Conditions     | Min | Тур | Max | Units      | Ref. |
|-----------------------------------------|---------------------|----------------|-----|-----|-----|------------|------|
| Reference Differential Output Impedance | $Z_d$               |                |     | 100 |     | Ω          |      |
| Termination Mismatch                    | $\Delta Z_{M}$      |                |     |     | 5   | %          |      |
| Output AC Common Mode Voltage           |                     |                |     |     | 15  | $mV_{RMS}$ |      |
| Output Rise and Fall time (20% to 80%)  | $t_{RH}$ , $t_{FH}$ |                | 24  |     |     | ps         |      |
| Differential Output Datum Loss          | SDD22               | 0.01-4.1 GHz   |     |     |     | dB         | 1    |
| Differential Output Return Loss         | 30022               | 4.1 – 11.1 GHz |     |     |     | dB         | 2    |
| Common Mode Output Detum Less           | SCC22               | 0.01-2.5 GHz   |     |     |     | dB         | 3    |
| Common Mode Output Return Loss          | SCC22               | 2.5-11.1 GHz   |     |     | -3  | dB         |      |

#### Notes:

- 1. Reflection coefficient given by equation SDD22(dB)< -12+2\*SQRT(f), with f in GHz. See Figure 4.
- 2. Reflection coefficient given by equation SDD22(dB)< -6.3+13Log10(f/5.5), with f in GHz. See Figure 4.
- 3. Reflection coefficient given by equation SCC22(dB)<-7+1.6\*f, with f in GHz.

| Receiver Output Jitter Specification | Symbol                       | Min | Тур | Max  | Units | Ref. |
|--------------------------------------|------------------------------|-----|-----|------|-------|------|
| Deterministic Jitter                 | $\mathrm{DJ}_{\mathrm{OUT}}$ |     |     | 0.38 | UI    | 1    |
| Total Jitter                         | $TJ_{OUT}$                   |     |     | 0.64 | UI    | 1    |

#### Notes:

1. When transmitter input jitter specs are met.

| Other Informational Specifications (not tested) | Symbol  | Min | Тур | Max  | Units | Ref. |
|-------------------------------------------------|---------|-----|-----|------|-------|------|
| Max Bit Rate NRZ                                | В       |     |     | 10.5 | Gb/s  |      |
| Low Frequency 3dB Cutoff                        | $f_{c}$ | 175 |     |      | kHz   |      |
| Ch / Ch crosstalk                               |         |     |     | -26  | dB    |      |
|                                                 |         |     | 0   |      | mV    |      |
| Output Pre-emphasis settings                    | PE      |     | 125 |      | mV    |      |
| (user selectable)                               | FE      |     | 175 |      | mV    |      |
|                                                 |         |     | 325 |      | mV    |      |
| Pre-Emphasis pulse width                        |         | 60  |     | 90   | ps    |      |
| Channel-to-channel skew                         |         |     |     | 24   | ns    | 1    |
| Latency                                         |         | 400 | 495 | 600  | ns    | 1    |
| Digital clock to data delay                     |         |     |     | 25   | ns    |      |
| Digital output rise/fall times                  |         |     |     | 5    | ns    |      |
| Digital input / output Cap                      |         |     |     | 1    | pF    |      |
| Digital input logic High                        |         | 2   |     |      | V     |      |
| Digital input logic Low                         |         |     |     | 1    | V     |      |
| ESD Signal pads                                 |         |     |     | 500  | V     | 2    |
| ESD (other pads)                                |         |     |     | 2    | kV    | 2    |

#### Notes:

- 1. For worst-case 100m length.
- 2. Human Body Model (HBM)

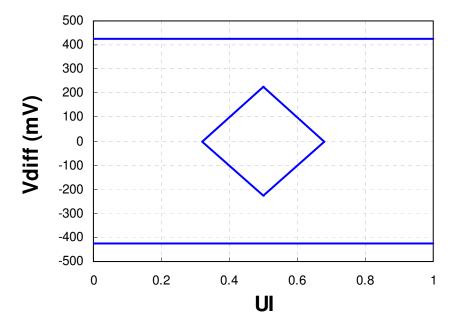



Figure 3 – Receiver Output Differential Signal Mask

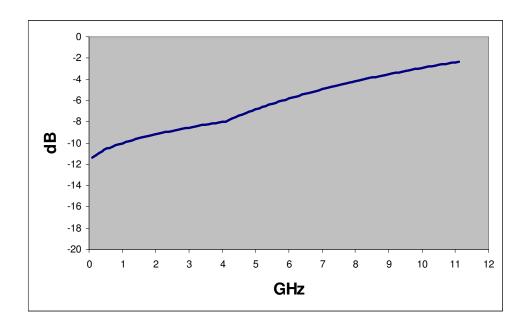



Figure 4 – Maximum Transmitter Input and Receiver Output Differential Return Loss

| Power | (mW)    | Pre-Emphasis into 100ohms (mV) |      |      |      |  |  |  |
|-------|---------|--------------------------------|------|------|------|--|--|--|
| Fower | (11144) | 0                              | 125  | 175  | 325  |  |  |  |
| (     | 0       | 599                            |      |      |      |  |  |  |
| (mV)  | 317     | 751                            | 935  | 971  | 1075 |  |  |  |
| 0     | 422     | 787                            | 971  | 1007 | 1111 |  |  |  |
| >     | 739     | 883                            | 1055 | 1103 | 1190 |  |  |  |

Figure 5 - Power Dissipation (mW, maximum) vs. Rx Output Conditions

## VII. Memory Map and Control Registers

Compatible with SFF-8436.<sup>2</sup> Please see Finisar Application Note AN-2075: Quadwire® EEPROM Mapping<sup>3</sup> for details.

## **VIII.** Environmental Specifications

Finisar Quadwire<sup>®</sup> active optical cables have an operating temperature range from  $0^{\circ}$ C to  $+70^{\circ}$ C case temperature.

| <b>Environmental Specifications</b> | Symbol    | Min | Тур | Max | Units | Ref. |
|-------------------------------------|-----------|-----|-----|-----|-------|------|
| Case Operating Temperature          | $T_{op}$  | 0   |     | 70  | °C    |      |
| Storage Temperature                 | $T_{sto}$ | -40 |     | 85  | °C    | 1    |

1. Assumes no mechanical load force on the unit. Ensuring no mechanical load force requires a cable bend radius of >105 mm within 100 mm of either cable end module and >60 mm on the rest of the cable.

## IX. Regulatory Compliance

Finisar Quadwire<sup>®</sup> active optical cables are RoHS-6 Compliant. Copies of certificates are available at Finisar Corporation upon request.

Quadwire® active optical cables are Class 1 laser eye safety compliant per IEC 60825-1.

The round cable jacket is available in both plenum-rated (OFNP) and riser-rated (OFNR) low smoke zero-halogen (LSZH).

## X. Mechanical Specifications

The Quadwire<sup>®</sup> mechanical specifications are based on QSFP transceiver module specifications, substituting the MPO connectors with a cable connecting both ends. Rigid pull-tab is opaque in non-illuminated mode and amber in illuminated mode.

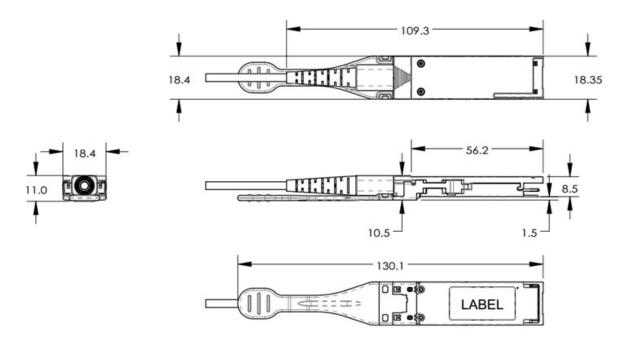



Figure 5 – Quadwire® with Connectivity Diagnostics® mechanical drawing

| <b>Cable Mechanical Specifications</b>                                    | Min | Typical | Max | Units |
|---------------------------------------------------------------------------|-----|---------|-----|-------|
| Minimum bend radius                                                       | 60  |         |     | mm    |
| Minimum bend radius within 100 mm of the Quadwire <sup>®</sup> module end | 105 |         |     | mm    |
| Diameter                                                                  | 3.0 | 3.3     | 3.6 | mm    |

| Insertion, Extraction and Retention<br>Forces | Min | Max  | Units   | Notes                |
|-----------------------------------------------|-----|------|---------|----------------------|
| Cable Proof (Tensile) Test (0°)               |     | 44.0 | Newtons |                      |
| Cable Proof (Tensile) Test (90°)              |     | 33.0 | Newtons |                      |
| Impact Test                                   |     | 8    | Cycles  | 1.5m drop            |
| Flex Test                                     |     | 8.9  | Newtons |                      |
| Twist Test                                    |     | 13.0 | Newtons |                      |
| Module retention                              | 90  | N/A  | Newtons | No damage below 90N  |
| Host Connector Retention                      | 180 | N/A  | Newtons | No damage below 180N |



 $Figure~6-Quadwire^{\tiny \circledR}~production-level~product~label$ 

#### XI. References

- 1. INF-8438i Specification for QSFP (Quad Small Formfactor Pluggable) Transceiver, Rev 1.0, November 2006
- 2. SFF-8636 Specification for QSFP+ Copper and Optical Transceiver, Rev 2.7, January 2016
- 3. Application Note AN-2075: Quadwire® EEPROM Mapping, Rev E
- 4. Application Note AN-2158: Finisar's Connectivity Diagnostics<sup>™</sup> for Active Optical Cables

#### XII. For More Information

Finisar Corporation 1389 Moffett Park Drive Sunnyvale, CA 94089-1133 Tel. 1-408-548-1000 Fax 1-408-541-6138 sales@finisar.com www.finisar.com