imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Is Now Part of

ON Semiconductor®

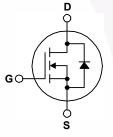
To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconduc

FCH023N65S3 N-Channel SuperFET[®] III MOSFET 650 V, 75 A, 23 mΩ

Features

- 700 V @ T_J = 150°C
- Typ. R_{DS(on)} = 19.5 mΩ
- Ultra Low Gate Charge (Typ. Q_g = 222 nC)
- Low Effective Output Capacitance (Typ. C_{oss(eff.)} = 1980 pF)
- 100% Avalanche Tested
- RoHS Compliant


Applications

- Telecom / Server Power Supplies
 UPS / Solar
- Industrial Power Supply

Description

SuperFET[®] III MOSFET is Fairchild Semiconductor's brandnew high voltage super-junction (SJ) MOSFET family that is utilizing charge balance technology for outstanding low on-resistance and lower gate charge performance. This advanced technology is tailored to minimize conduction loss, provide superior switching performance, and withstand extreme dv/dt rate. Consequently, SuperFET III MOSFET is suitable for various DC/AC power conversion for system miniaturization and higher efficiency.

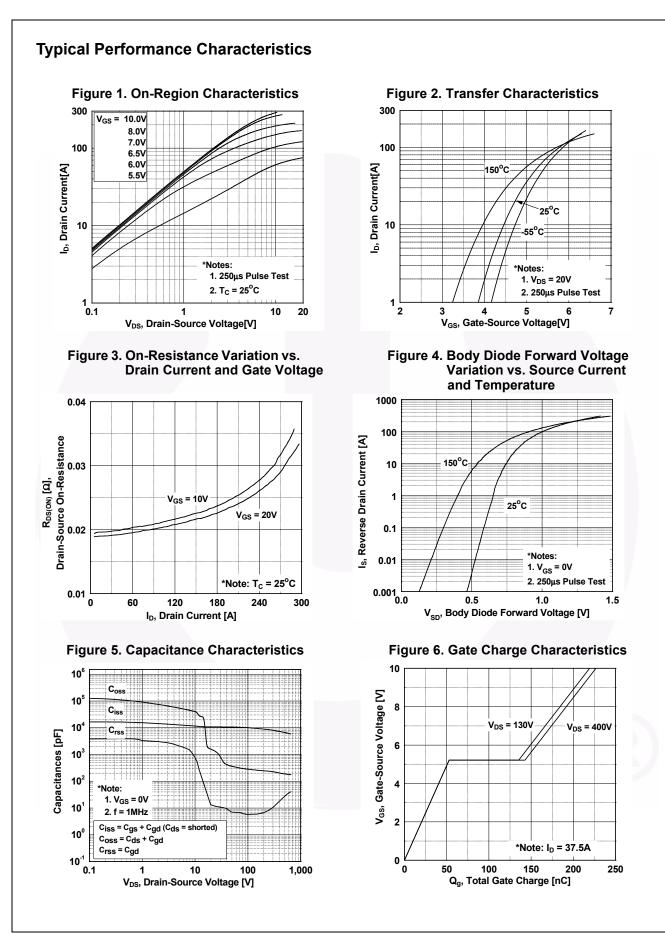
Absolute Maximum Ratings T_C = 25°C unless otherwise noted.

Symbol		FCH023N65S3_F155	Unit			
V _{DSS}	Drain to Source Voltage	650	V			
V _{GSS}	Cata ta Source Maltage	- DC		±30	V	
	Gate to Source Voltage	- AC	(f > 1 Hz)	±30	V	
ID	Drain Current	- Continuous (T _C = 25 ^o C)		75	A	
		- Continuous (T _C = 100°C)		65.8		
I _{DM}	Drain Current	- Pulsed	(Note 1)	300	А	
E _{AS}	Single Pulsed Avalanche Energy (Note 2)			2025	mJ	
I _{AR}	Avalanche Current (Note			15	А	
E _{AR}	Repetitive Avalanche Energy (Note 1)			5.95	mJ	
dv/dt	MOSFET dv/dt			100	V/ns	
	Peak Diode Recovery dv/dt (Note 3)			20		
P _D	Dower Dissinction	(T _C = 25°C)		595	W	
	Power Dissipation	- Derate Above 25°C		4.76	W/ºC	
T _J , T _{STG}	Operating and Storage Temperature Range			-55 to +150	°C	
Τ _L	Maximum Lead Temperature for Soldering, 1/8" from Case for 5 Seconds			300	°C	

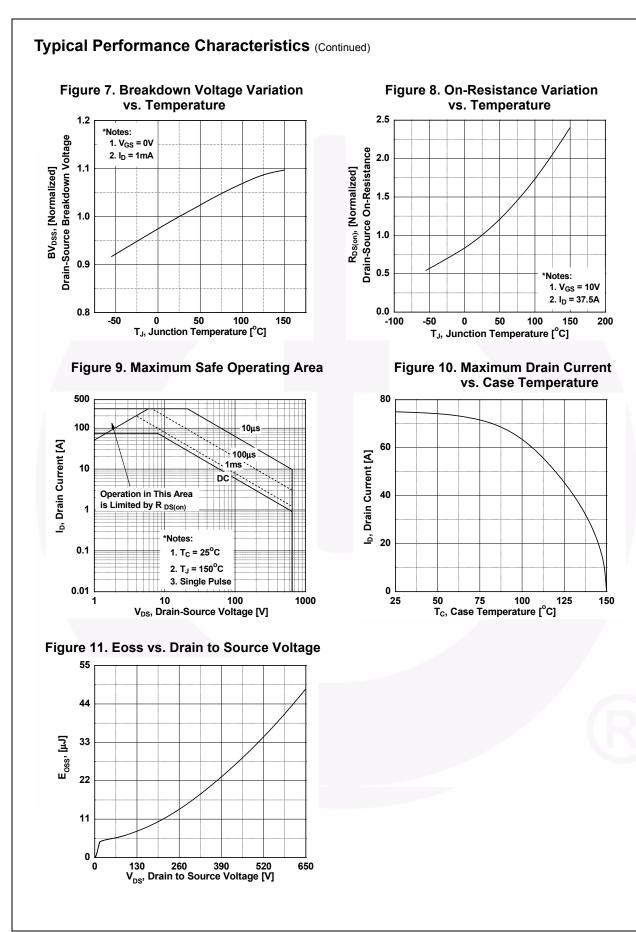
Thermal Characteristics

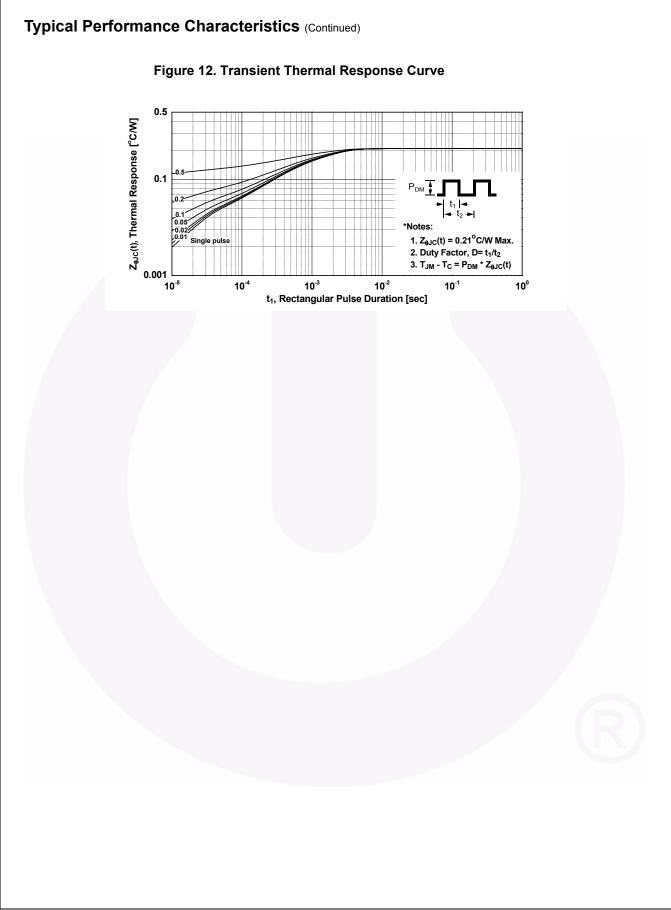
Symbol	Parameter	FCH023N65S3_F155	Unit
$R_{ extsf{ heta}JC}$	Thermal Resistance, Junction to Case, Max.	0.21	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient, Max.	40	0/11

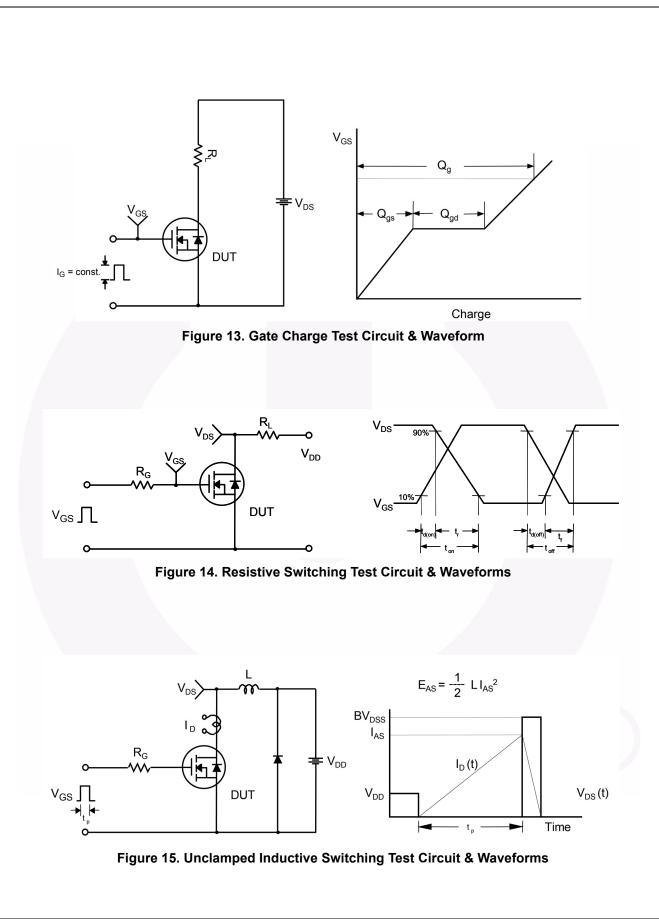
June 2016

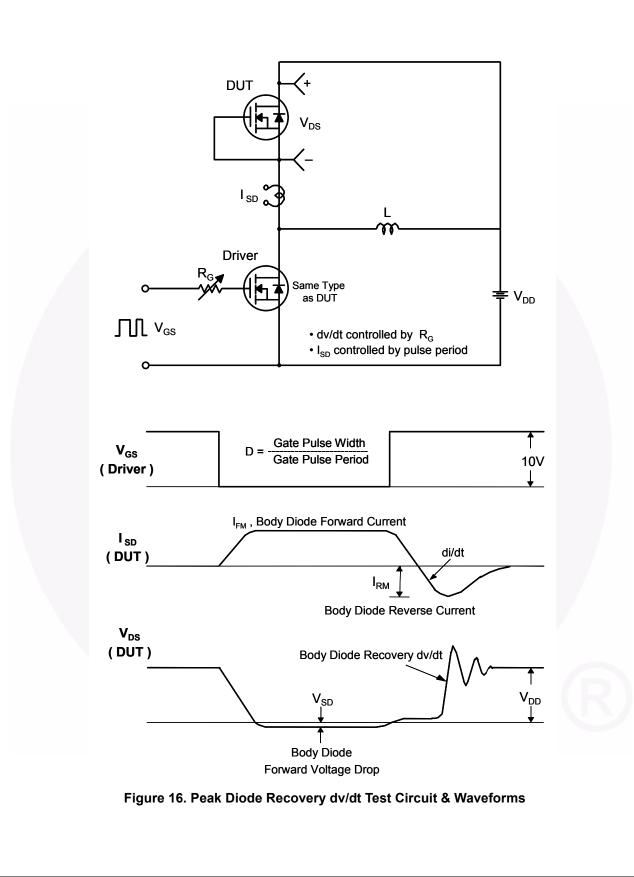

Part Nu	mber	Top Mark	Package	Packing Method	Reel Size	Тар	e Width	Qua	ntity
FCH023N65	FCH023N65S3_F155 FCH023N65S3		TO-247 G03	Tube	N/A	N/A		30 units	
Electrica	l Chara	acteristics T _C	= 25 ^o C unless o	therwise noted.		·			
Symbol	Parameter			Test Conditions			Тур.	Max.	Unit
Off Charad	teristics	5							
	Drain to Source Breakdown Voltage			V _{GS} = 0 V, I _D = 1 mA,	T⊥= 25°C	650	-	-	T
BV _{DSS}				$V_{GS} = 0 V, I_D = 1 mA, T_J = 150^{\circ}C$		700	-	-	V
ΔBV_{DSS}	Breakdo	wn Voltage Tempera	ture	$I_D = 1$ mA, Referenced to 25°C		-	0.72	_	V/ºC
$/\Delta T_{J}$	Coefficient					-	0.72		V/ C
I _{DSS}	Zero Ga	te Voltage Drain Current		V _{DS} = 650 V, V _{GS} = 0 V		-	-	1	μA
				$V_{DS} = 520 \text{ V}, \text{ T}_{C} = 128$		-	6.8	-	
I _{GSS}	Gate to Body Leakage Current $V_{GS} = \pm 30 \text{ V}, \text{ V}_{DS} = 0 \text{ V}$		V	-	-	±100	nA		
On Charac	teristics	j							
V _{GS(th)}	Gate Th	reshold Voltage		V _{GS} = V _{DS} , I _D = 7.5 m	A	2.5	-	4.5	V
R _{DS(on)}	Static Dr	ain to Source On Re	sistance	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 37.5$		-	19.5	23	mΩ
9 _{FS}	Forward Transconductance			V _{DS} = 20 V, I _D = 37.5 A			66	-	S
C _{iss}	Characteristics Input Capacitance			$V_{\rm DS} = 400 \text{ V}, \text{ V}_{\rm GS} = 0 \text{ V},$		-	7160	-	pF
C _{oss}	Output Capacitance			f = 1 MHz		-	195	-	pF
C _{oss(eff.)}	Effective Output Capacitance $V_{DS} = 0 V$ to 400 V, $V_{GS} = 0 V$			1980	-	pF			
C _{oss(er.)}	0,	Related Output Capa	citance	$V_{DS} = 0 V$ to 400 V, V		-	298	-	
Q _{g(tot)}		te Charge at 10V		V _{DS} = 400 V, I _D = 37.5 A, V _{GS} = 10 V (Note 4)			222 54	-	nC
Q _{gs}		Source Gate Charge Drain "Miller" Charge				-	90	-	nC nC
Q _{gd} ESR		nt Series Resistance		f = 1 MHz	(1000-1)	-	0.9	-	Ω
LOR	Equivale		;			-	0.9	-	52
Switching	Charact	eristics							
t _{d(on)}	Turn-On	Delay Time				-	45	-	ns
t _r	Turn-On	Rise Time		V_{DD} = 400 V, I _D = 37.5 A, V_{GS} = 10 V, R _g = 2 Ω		-	55	-	ns
t _{d(off)}		Delay Time				-	140	-	ns
t _f	Turn-Off	Fall Time		(Note 4)			29	-	ns
Drain-Sou	rce Diod	e Characteristic	cs						
I _S	Maximum Continuous Drain to Source Diode Forward Current			_	-	75	Α		
I _{SM}		n Pulsed Drain to So				-	-	300	Α
V _{SD}	Drain to	Source Diode Forwa	rd Voltage	V _{GS} = 0 V, I _{SD} = 37.5	A	-	-	1.2	V
		Recovery Time	-	$V_{GS} = 0 V, I_{SD} = 37.5 A,$ $dI_F/dt = 100 A/\mu s$		-	600	-	ns
t _{rr}	Reverse	Recovery fille							

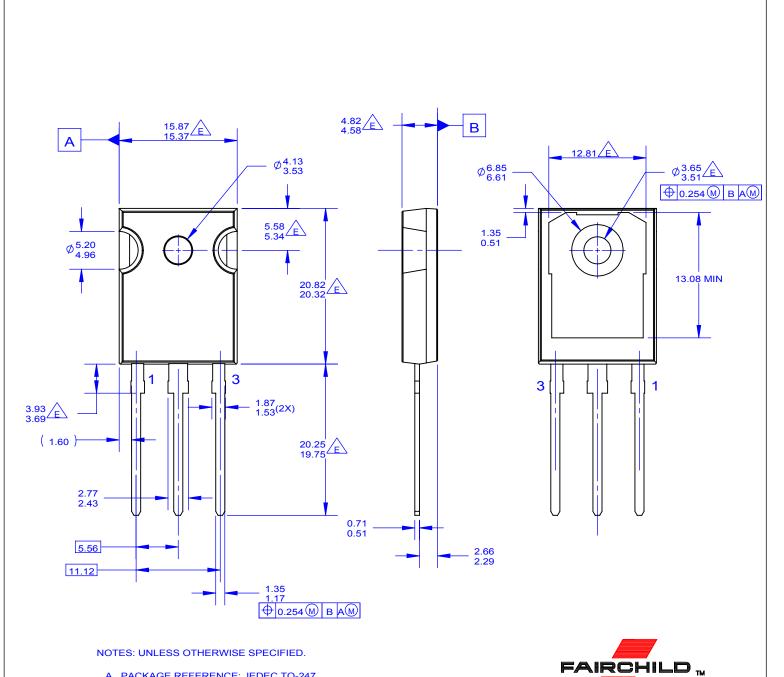
1. Repetitive rating: pulse width limited by maximum junction temperature.


2. I_{AS} = 15 A, R_G = 25 Ω , starting T_J = 25°C.


3. I_{SD} \leq 75 A, di/dt \leq 200 A/µs, V_{DD} \leq BV_{DSS}, starting T_J = 25°C.


4. Essentially independent of operating temperature typical characteristics.




©2016 Fairchild Semiconductor Corporation FCH023N65S3 Rev. 1.1

- A. PACKAGE REFERENCE: JEDEC TO-247, ISSUE E, VARIATION AB, DATED JUNE, 2004.
- B. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.
- C. ALL DIMENSIONS ARE IN MILLIMETERS.
- D. DRAWING CONFORMS TO ASME Y14.5 1994

Le does not comply jedec standard value F. DRAWING FILENAME: MKT-TO247G03_REV02

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC