

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

June 2008
Power-SPMTM

FD6M016N03

30V/80A Synchronous Rectifier Module

General Features

- · Very High Rectification Efficiency at Output 12V
- · Integrated Solution for Saving Board Space
- · RoHS Compliant

MOSFET Features

- VDSS = 30V
- QG(TOTAL) = 132nC(Typ.), VGS = 5V
- $R_{DS(ON)} = 1.3 \text{m}\Omega(\text{Typ.}), V_{GS} = 10 \text{V}, I_D = 40 \text{A}$
- · Low Miller Charge
- Low Q_{rr} Body Diode
- UIS Capability (Single Pulse and Repetitive Pulse)
- · Fully Isolated package

General Description

The FD6M016N03 is one product in the Power-SPMTM family that Fairchild has newly developed and designed to be most suitable for more compact and more efficient synchronous rectification applications such as internet server power supplies and telecom system power supplies. For higher efficiency, it includes built-in very low R_{DS(ON)} MOSFETs. This Power-SPM device can be used in the secondary side of the PWM transformer of forward/bridge converter to provide high current rectification at output voltages ranging from 12 Volts down to 5 Volts. With this product, it is possible to design the secondary side of power supply systems with reduced parasitic elements resulting in minimized voltage spike and EMI noise.

Applications

- · High Current Isolated Converter
- · Distributed Power Architectures
- · Synchronous rectifivation
- DC/DC Converter
- · Battery supplied application
- ORing MOSFET

Block Diagram

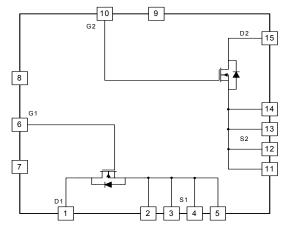


Figure 1. FD6M016N03 Module Block Diagram

Pin Configuration and Pin Description

Top View

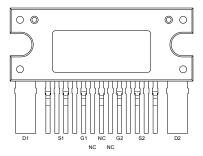


Figure 2. Pinmap of FD6M016N03

Pin Number	Pin Name	Pin Description
1	D1	Drain of Q1, MOSFET
2 ~ 5	S1	Source of Q1, MOSFET
6	G1	Gate of Q1, MOSFET
7	NC	No Connection
8	NC	No Connection
9	NC	No Connection
10	G2	Gate of Q2, MOSFET
11 ~ 14	S2	Source of Q2, MOSFET
15	D2 Drain of Q2, MOSFET	

Absolute Maximum Ratings T_C = 25°C, Unless Otherwise Specified

Symbol	Parameter	Rating	Unit	
V _{DS}	Drain to Source Voltage	(Note1)	30	V
V _{GS}	Gate to Source Voltage		±20	V
I _D	Drain Current, Continuous (V _{GS} = 10V)	(Note1)	80	Α
E _{AS}	Single Pulse Avalanche Energy	(Note1,2)	1584	mJ
T _{J,} T _{STG}	Operating and Storage Temperature Range	-40 ~ 150	°C	

Thermal Resistance

Symbol	Parameter		Тур.	Max.	Unit
$R_{\theta JC}$	Junction to Case Thermal Resistance (Note1)		ı	3.9	°C/W

Note:

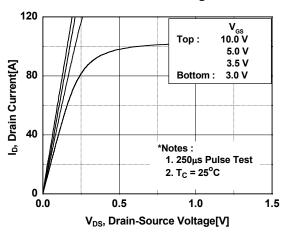
1. Each MOSFET Switch

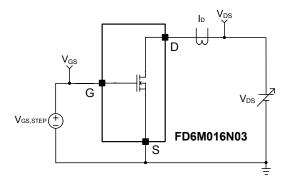
2. Starting T_J = 25°C, V_D = 20V, L = 0.25mH, I_{AS} = 65A

255

Electrical Characteristics $T_C = 25^{\circ}C$, Unless Otherwise Specified

Symbol	Parameter	Parameter Test Conditions		Min.	Тур.	Max.	Units
Synchron	ous Rectifier Switch Part (Each	Switch)					
BV _{DSS}	Drain to Source Breakdown Voltage	I _D = 250μA, V _{GS} = 0V		30	-	-	V
I _{DSS}	Zero Gate Voltage Drain Current	V _{GS} = 0V, V _{DS} = 24V		-	-	1	μА
I _{GSS}	Gate to Source Leakage Current	V _{GS} = ±20V		-	-	±100	nA
V _{GS(TH)}	Gate Threshold Voltage	$V_D = 5V$, $I_{DS} = 250\mu A$		1	-	3	V
R _{DS(ON)}	Drain to Source On Resistance	I _D = 40A, V _{GS} = 10V		-	1.3	1.6	0
		T,	_J = 150°C	-	1.96	-	mΩ
Dynamic	Charateristics		•				
C _{ISS}	Input Capacitance			-	11535	-	pF
C _{OSS}	Output Capacitance	V_{DS} = 15V, V_{GS} = 0V, f = 1MHz		-	2195	-	pF
C _{RSS}	Reverse Transfer Capacitance			-	1580	-	pF
Q _{g(TOT)}	Total Gate Charge at 10V	V _{GS} = 0V to 10V		-	227	295	nC
Q _{g(5)}	Total Gate Charge at 5V	V _{GS} = 0V to 5V		-	121	158	nC
Q _{g(TH)}	Threshold Gate Charge	V _{GS} = 0V to 1V		-	9.3	13	nC
Q _{gs}	Gate to Source Gate Charge	V _{DD} = 15V		-	29	-	nC
Q _{gs2}	Gate Charge Threshold to Plateau	I _D = 40A		-	20	-	nC
Q _{gd}	Gate to Drain "MIller" Charge	I _g = 1.0mA		-	46	-	nC
Switching	Charateristics (Vgs = 5V)						
t _{ON}	Turn-On Time			-	-	165	ns
t _{d(on)}	Turn-On Delay Time			-	26	-	ns
t _r	Rise Time	$I_D = 40A$ $V_{GS} = 5V$, $V_{DD} = 15V$, $R_G = 2.5\Omega$		-	65	-	ns
t _{d(off)}	Turn-Off Delay Time			-	90	-	ns
t _f	Fall Time			-	60	_	ns


Drain-Source Diode Charateristics


Turn-Off Time

V _{SD}	Source to Drain Diode Voltage	I _{SD} = 80A, V _{GS} = 0V	-	-	1.25	V
		I _{SD} = 40A, V _{GS} = 0V	-	-	1.0	v
t _{rr}	Reverse Recovery Time	$I_{SD} = 40A$, $dI_{SD}/dt = 100A/\mu s$	-	38	-	ns
Q _{rr}	Reverse Recovery Charge	$I_{SD} = 40A$, $dI_{SD}/dt = 100A/\mu s$	-	32	-	nC

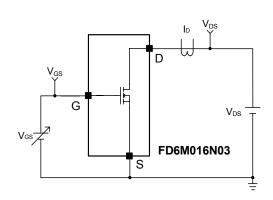

Typical Performance Characteristics 1. Each Switch, Unless Otherwise Specified

Figure 3. On-Region Characteristics

Figure 4. Transfer Characteristics

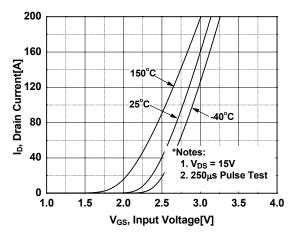


Figure 5. Body Diode Forward Voltage Variation vs. Source Current and Temperature

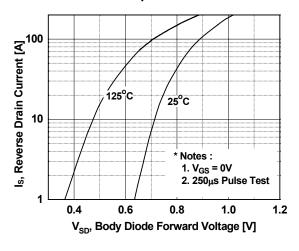
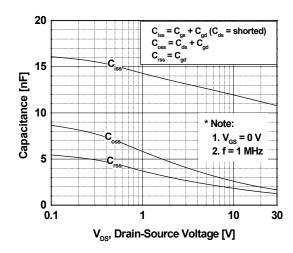



Figure 6. Output Capacitance Characteristic

Typical Performance Characteristics (Continued)

Figure 7. Breakdown Voltage Variation vs. Temperature

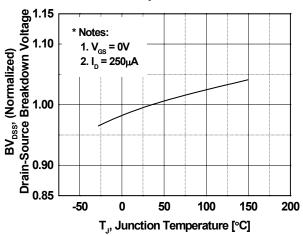


Figure 8. On-Resistance Variation vs. Temperature

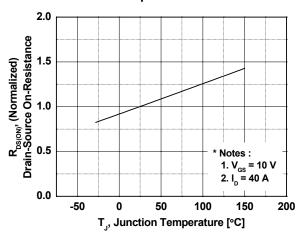


Figure 9. Transient Thermal Response Curve

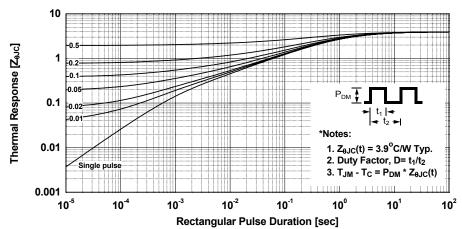


Figure 10. Maximum Safe Operating Area

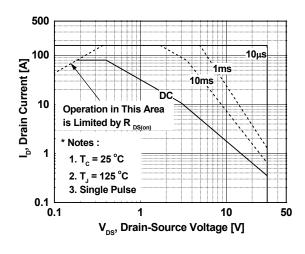
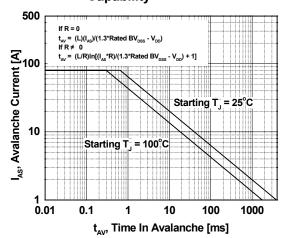



Figure 11. Unclamped Inductive Switching Capability

AC Test Circuits and Waveforms

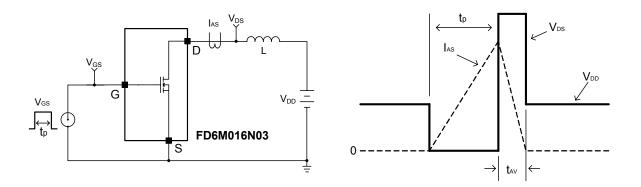


Figure 12. Unclamped Inductive Switching Test Circuit and Waveforms

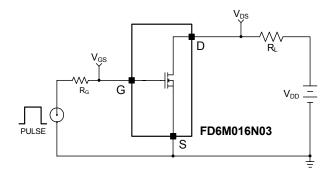


Figure 13. Switching Test Circuit

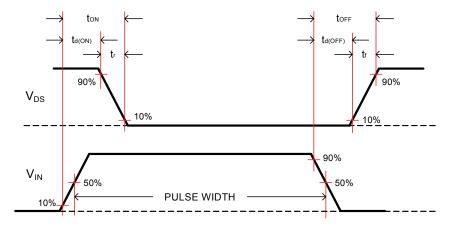


Figure 14. Switching Test Waveforms

Application circuits

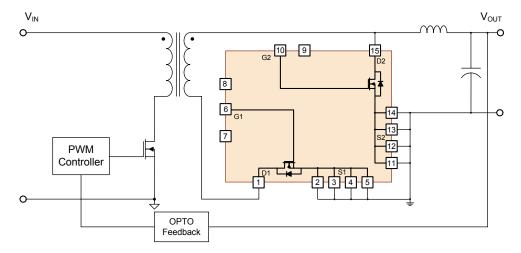


Figure 15. Application Circuit of Forward Converter with FD6M016N03

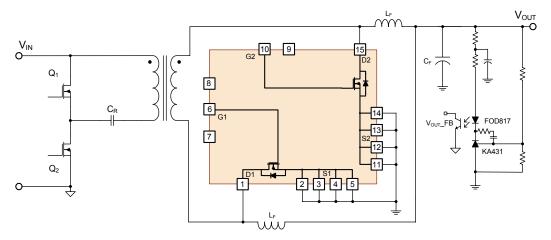


Figure 16. Application Circuit of Asymmetrical HB Converter with FD6M016N03

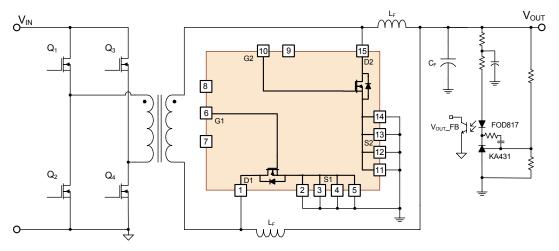
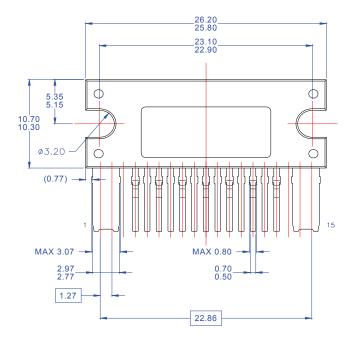
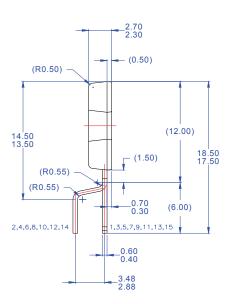




Figure 17. Application Circuit of Full Bridge Converter with FD6M016N03

Detailed Package Outline Drawings

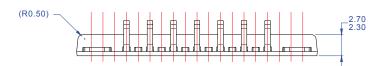


Figure 18. EPM15 Package

Dimensions in Millimeters

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidianries, and is not intended to be an exhaustive list of all such trademarks.

Build it Now™ CorePLUS™ CorePOWER™ $CROSSVOLT^{\text{TM}}$ $\mathsf{CTL^{\mathsf{TM}}}$ Current Transfer Logic™ EcoSPARK® EfficentMax™

Fairchild® Fairchild Semiconductor®

EZSWITCH™ *

FACT Quiet Series™ FACT[®] $\mathsf{FAST}^{\mathbb{R}}$ FastvCore™ FlashWriter® *

FPS™ F-PFS™ **FRFET®**

Green FPS™ Green FPS™ e-Series™

GTO™ IntelliMAX™ **ISOPLANAR™**

MegaBuck™ MICROCOUPLER™ MicroFET™

MicroPak™ MillerDrive™ MotionMax™ Motion-SPM™ OPTOLOGIC® OPTOPLANAR®

Power-SPM™ $\mathsf{PowerTrench}^{\mathbb{R}}$ Global Power ResourceSM Programmable Active Droop™ QFET®

PDP-SPM™

QSTM Quiet Series™ RapidConfigure™

Saving our world 1mW at a time™ SmartMax™ SMART START™

 $\mathsf{SPM}^{\mathbb{R}}$ STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SuperMOS™

SYSTEM ®

The Power Franchise®

bwer TinyBoost™ TinyBuck™ $\mathsf{TinyLogic}^{\circledR}$ TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ µSerDes™

UHC® Ultra FRFET™

UniFET™ VCX™ VisualMax™

* EZSWITCH™ and FlashWriter[®] are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- 1. Life support devices or systems are devices or systems which. (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support. device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	This datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.