imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

FDA903D

1 x 45 W class D digital input automotive power amplifier with I_{Load} current monitoring, wide voltage operation range for car audio and telematic Datasheet - production data

Features

- AEC-Q100 qualified
- Integrated 108 dB D/A conversion
- I²S and TDM digital input (4/8/16CH TDM)
- Input sampling frequency: 44.1 kHz, 48 kHz, 96 kHz, 192 kHz
- Full I²C bus driving (3.3/1.8 V)
- CISPR 25 Class V (Fourth edition)
- Very low quiescent current
- Output lowpass filter included in the feedback allowing outstanding audio performances
- Wide operating supply range from 3.3 to 18 V, suitable for car radio, telematics and e-call
- MOSFET power outputs allowing high output power capability
 - 1 x 25 W /4 Ω @ 14.4 V, 1 kHz THD = 1%
 - 1 x 30 W /4 Ω @ 14.4 V, 1 kHz THD = 10%

- 2 Ω loads driving
- Power limiting function (configurable through I^2C)
- I²C bus diagnostics:
 - Short to V_{CC}/GND
 - Short load and open load detection (also in play mode)
 - Four thermal warnings
- DC offset detector (also in play) and 'hot spot' detection
- Clipping detector
- Integrated thermal protection
- Legacy mode ('no I²C' mode), 4 configurable settings
- Short circuit and ESD integrated protections
- Package: PowerSSO-36 exposed pad down

Table 1. Device summary

Order code	Package	Packing
FDA903D-EHT	PowerSSO-36	Tape & reel
FDA903D-EHX	(exposed pad down)	Tube

This is information on a product in full production.

Contents

1	Dese	Description		
2	Bloc	Block diagram		
3	Pins	Pins description		
4	App	lication diagram	2	
5	Elec	trical specifications13	3	
	5.1	Absolute maximum ratings 13	3	
	5.2	Thermal data	3	
	5.3	Electrical characteristics 14	1	
	5.4	Typical curves of the main electrical parameters	7	
6	Gen	eral information	3	
	6.1	LC filter design	3	
	6.2	Load possibilities	3	
7	Finit	e state machine	ł	
	7.1	Device state and address selection 25	5	
	7.2	Standby state	3	
	7.3	Diagnostic Vcc-Gnd state 26	3	
	7.4	ECO-mode state	3	
	7.5	MUTE-PLAY and diagnostic states	7	
	7.6	Operation compatibility vs battery 28	3	
8	Muti	ng function architecture 29)	
	8.1	Command dependence 29)	
	8.2	Analog-Mute)	
	8.3	Digital-Mute)	
	8.4	Mixed mute advantages 31	1	
9	Harc	lware mute pin	3	
10	Pow	er limiter function	ł	

	10.1	Power limiter control	35
11	Diagn	ostic	36
	11.1	DC diagnostic	36
		11.1.1 Diagnostic control	36
		11.1.2 Relation with short circuit protection activation	37
		11.1.3 Load range	37
	11.2	Short to Vcc / GND diagnostic	38
	11.3	Diagnostic time-line diagrams	38
	11.4	Open load in play detector	41
		11.4.1 Open load in play detector operation overview	41
		11.4.2 Processing bandwidth range	41
		11.4.3 Audio signal evaluation	42
		11.4.4 Impedance threshold	42
		11.4.5 I ² C control and timing	43
	11.5	Input offset detector	43
	11.6	Output voltage offset detector	44
	11.7	Output current offset detector	45
		11.7.1 Output current offset detector operation principle	45
		11.7.2 Result communication and I ² C control	45
		11.7.3 Hot spot detection	45
	11.8	PWM pulse skipping detector	46
	11.9	Thermal protection	47
	11.10	Watch-dog	48
	11.11	Error frame check	48
12	Addit	ional features	49
	12.1	AM operation mode	49
	12.2	Noise gating	50
	12.3	Dither PWM	50
	12.4	Real time load current monitoring	51
		12.4.1 Result communication and I ² C control	51
		12.4.2 Current sensing limitations	52
13	l ² S bι	Is interface	53
-	13.1	I ² S standard mode description	54
			- 1

	13.2	TDM 4CH mode description	. 54
	13.3	TDM 8CH mode description	. 55
	13.4	TDM 16CH mode description	. 56
	13.5	Timing requirements	. 57
	13.6	Group delay	. 58
14	l ² C b	us interface	. 59
	14.1	Writing procedure	. 60
	14.2	Reading procedure	. 60
	14.3	Data validity	. 61
	14.4	Start and stop conditions	. 61
	14.5	Byte format	. 61
	14.6	Acknowledge	. 61
	14.7	I ² C timing	. 62
	14.8	I ² S, I ² C and Enable relationship	. 63
15	l ² C re	egister	. 64
	15.1	Instruction bytes- "I00xxxxx"	. 64
	15.2	Data bytes - "I01xxxxx"	. 73
16	Pack	age information	. 77
	16.1	PowerSSO-36 (exposed pad) package information	. 77
	16.2	Package marking information	. 80
17	Revis	sion history	. 81

List of tables

Table 1.	Device summary
Table 2.	Pins list function
Table 3.	Absolute maximum ratings
Table 4.	Thermal data - PowerSSO36 slug-down package
Table 5.	Electrical characteristics
Table 6.	Operation mode
Table 7.	Command dependence
Table 8.	Power limiter function
Table 9.	Open load in play detector impedance and validity thresholds
Table 10.	I ² S Interface timings
Table 11.	Group delay dependency from input sampling frequency
Table 12.	I ² C bus interface timing
Table 13.	IB0-ADDR: "I0000000"
Table 14.	IB1-ADDR: "I0000001"
Table 15.	IB2-ADDR: "I0000010"
Table 16.	IB3-ADDR: "I0000011"
Table 17.	IB4-ADDR: "I0000100" - CDDiag pin configuration
Table 18.	IB5-ADDR: "I0000101" - CDDiag pin configuration
Table 19.	IB6-ADDR: "I0000110"
Table 20.	IB7-ADDR: "I0000111"
Table 21.	IB8-ADDR: "I0001000" - CHANNEL CONTROLS
Table 22.	IB9-ADDR: "I0001001"
Table 23.	IB10-ADDR: "I0001010"
Table 24.	IB11-ADDR: "I0001011"
Table 25.	IB12-ADDR: "I0001100"
Table 26.	IB13-ADDR: "I0001101"
Table 27.	IB14-ADDR: "I0001110"
Table 28.	DB0-ADDR: "I0100000"
Table 29.	DB1-ADDR: "I0100001"
Table 30.	DB2-ADDR:"I0100010"
Table 31.	DB3-ADDR: "I0100011" DC Diagnostic Error code
Table 32.	DB4-ADDR:"I0100100" - Current Sensing data (10-8)
Table 33.	DB5-ADDR:"I0100101" - Current Sensing data (7-0)
Table 34.	DB6-ADDR:"I0100110"
Table 35.	PowerSSO-36 exposed pad (D1 and E2 use the option variation B) package
	mechanical data
Table 36.	Document revision history

List of figures

Figure 1.	Block diagram	. 9
Figure 2.	Pins connection diagram.	10
Figure 3.	Application diagram	12
Figure 4.	Efficiency and power dissipation ($V_s = 14.4 \text{ V}$, $R_l = 1 \times 4 \Omega$, $f = 1 \text{ kHz}$ sine wave)	17
Figure 5.	Efficiency and power dissipation ($V_s = 14.4 \text{ V}$, $R_l = 1 \times 4 \Omega$, f = 1 kHz pink noise)	17
Figure 6.	Efficiency and power dissipation ($V_s = 14.4 \text{ V}$, $R_1 = 1 \times 2 \Omega$, f = 1 kHz sine wave)	17
Figure 7.	Efficiency and power dissipation ($V_s = 14.4 \text{ V}$, $R_1 = 1 \text{ x } 2 \Omega$, f = 1 kHz pink noise)	17
Figure 8.	Efficiency and power dissipation ($V_s = 14.4 \text{ V}$, $R_1 = 1 \times 8 \Omega$, f = 1 kHz sine wave)	17
Figure 9.	Efficiency and power dissipation ($V_s = 14.4 \text{ V}$, $R_1 = 1 \times 8 \Omega$, f = 1 kHz pink noise)	17
Figure 10.	Efficiency and power dissipation ($V_{e} = 18 V$, $R_{i} = 1 \times 4 \Omega$, $f = 1 \text{ kHz}$ sine wave)	18
Figure 11.	Efficiency and power dissipation ($V_c = 18 V$, $R_1 = 1 \times 4 \Omega$, $f = 1 \text{ kHz pink noise}$)	18
Figure 12.	Efficiency and power dissipation ($V_c = 16 V$, $R_1 = 1 \times 2 \Omega$, $f = 1 \text{ kHz sine wave}$)	18
Figure 13.	Efficiency and power dissipation ($V_0 = 16 V$, $R_1 = 1 \times 20$, $f = 1 \text{ kHz pink noise}$).	18
Figure 14	Efficiency and power dissipation ($V_{e} = 18 \text{ V}$, $R_{i} = 1 \times 8 \text{ O}$, $f = 1 \text{ kHz}$ sine wave)	18
Figure 15	Efficiency and power dissipation ($V_s = 18 \text{ V}$, $R_1 = 1 \times 8 \text{ O}$, $f = 1 \text{ kHz}$ pink noise)	18
Figure 16	Efficiency and power dissipation (V = 3.3 V R = 1.440 f = 1 kHz sine wave)	19
Figure 17	Efficiency and power dissipation ($V_s = 3.3$ V, $R_t = 1.4$ A, $f = 1.4$ Hz nink noise)	19
Figure 18	Efficiency and power dissipation ($V_s = 3.3$ V, $R_t = 1 \times 2.0$ f = 1 kHz sine wave)	19
Figure 10.	Efficiency and power dissipation ($V_s = 3.3$ V, $R_t = 1 \times 2.0$, $f = 1$ kHz sine wave)	10
Figure 20	Efficiency and power dissipation ($V_s = 3.3$ V, $R_t = 1 \times 2.0$, $f = 1$ kHz sine wave)	10
Figure 21	Efficiency and power dissipation ($V_s = 3.3$ V, $P_s = 1 \times 8.0$ f = 1 kHz sine wave)	10
Figure 22	Enclored y and power dissipation ($v_s = 3.5 v$, $N_L = 1 \times 0.52$, $1 = 1 \times 12$ pink holse) Output power vs. supply voltage ($P_c = 4.0$, sine wave)	20
Figure 22.	Output power vs. supply voltage ($R_{L} = 4.22$, sine wave)	20
Figure 23.	Output power vs. supply voltage ($R_L = 2.02$, sine wave)	20
Figure 24.	Output power vs. supply voltage ($R_L = 0.2$, sine wave)	20
Figure 25.	THD vs. output power ($V_S = 14.4$ V, $R_L = 4.0$)	20
Figure 20.	THD vs. output power ($V_S = 14.4$ V, $R_L = 2.0$).	20
Figure 27.	THD vs. output power ($v_{\rm S} = 14.4$ V, $\kappa_{\rm L} = 0.22$)	20
Figure 20.	THD vs. frequency ($V_{\rm S} = 14.4$ V, $R_{\rm L} = 4 \Omega$, $P_{\rm O} = 1$ VV)	21
Figure 29.	THD vs. frequency ($V_{\rm S} = 14.4$ V, $R_{\rm L} = 2 \Omega$, $P_{\rm O} = 1$ W)	21
Figure 30.	THD vs. frequency ($v_s = 14.4$ v, $R_L = 8 \Omega$, $P_O = 1$ vv)	21
Figure 31.	Frequency response (1 W, $R_L = 4 \Omega$, f = 1 kHz).	21
Figure 32.	Frequency response (1 W, $R_L = 2 \Omega$, f = 1 kHz)	21
Figure 33.	Frequency response (1 w, $R_L = 8 \Omega$, f = 1 kHz)	21
Figure 34.	PSRR vs. frequency	22
Figure 35.		22
Figure 36.		22
Figure 37.	FFT - Output spectrum (-60 dBFS input signal)	22
Figure 38.		24
Figure 39.	Operation vs. battery charge.	28
Figure 40.	Analog-Mute diagram	30
Figure 41.	Digital-Mute diagram.	31
Figure 42.	Mixed mute diagram	31
Figure 43.	Analog-Mute vs. Mixed-Mute	32
Figure 44.	HWMute pin schematic	33
Figure 45.	Response obtained with a limitation corresponding to 80% of the full-scale	35
Figure 46.	Load range detection configured properly setting IB5 d7-d6	37
Figure 47.	DC diagnostic before turn on	38
Figure 48.	Short to VCC at device turn on	39

ent 40 42 42 42
42
42
. 43
44
45
46
46
47
49
. 49
50
. 57
. 57
. 59
. 60
. 61
. 62
77
80

1 Description

The FDA903D is a single bridge class D amplifier, designed in the most advanced BCD technology, intended for any automotive audio application (car radio, telematics and e-call, noise and tone generators, etc).

The FDA903D integrates a high performance D/A converter together with powerful MOSFET outputs in class D, so it is very compact and powerful, moreover reaches outstanding efficiency performances (90%).

It has a very wide operating range: it can be operated both with standard car battery levels (5.5-18 V operating, compatible to load dump pulse) and with external step-down generated voltages or emergency battery (since it is compatible to minimum 3.3 V operative).

The feedback loop is including the output L-C low-pass filter, allowing superior frequency response linearity and lower distortion.

FDA903D is configurable through I²C bus interface and is integrating a complete diagnostics array specially intended for automotive applications including innovative open load and DC offset detection in play mode.

Thanks to the solutions implemented to solve the EMI problems, the device is intended to be used in the standard single DIN car-radio box together with the tuner.

Moreover FDA903D features a configurable power limiting function, and can be optionally operated under no I^2C mode ('legacy mode').

2 Block diagram

3 **Pins description**

Figure 2. Pins connection diagram

Table 2. Pins list function

Pin #	Pin name	Function
1	TAB	Device slug connection
2	GNDM	Channel half bridge minus, Power Ground
3	VCCM	Channel half bridge minus, Power Supply
4	OUTM	Channel half bridge minus, Output
5	OUTM	Channel half bridge minus, Output
6	FBM	Channel half bridge minus, Feedback
7	NC	Not connected
8	DGnd	Digital ground
9	DVdd	Digital supply
10	Enable1	Enable 1
11	Enable2	Enable 2
12	Enable3	Enable 3
13	Enable4	Enable 4
14	NC	Not connected
15	CDDiag	Clipping detector and diagnostic output pin

Table	2.	Pins	list	function
10010	_			1011011011

Pin #	Pin name	Function	
16	NC	Not connected	
17	D1V8SVR	Positive digital supply V(SVR)+0.9V (Internally generated)	
18	DGSVR	Negative digital supply V(SVR)-0.9V (Internally generated)	
19	I2Cdata	I2C Data	
20	I2Cclk	I2C Clock	
21	I2Stest	test pin, left open	
22	I2Sdata	I2S/TDM data	
23	I2Sclk	I2S/TDM Clock input	
24	I2Sws	I2S/TDM Sync input /Word Select input	
25	AGnd	Analog ground	
26	AVdd	Analog supply	
27	A5VSVR	Positive Analog Supply V(SVR)+2.5V (Internally generated)	
28	AGSVR	Negative Analog Supply V(SVR)-2.5V (Internally generated)	
29	SVR	Supply Voltage Ripple Rejection Capacitor	
30	HWMute	Hardware mute pin	
31	FBP	Channel half bridge plus, Feedback	
32	OUTP	Channel half bridge plus, Output	
33	OUTP	Channel half bridge plus, Output	
34	NC	Not connected	
35	VCCP	Channel half bridge plus, Power Supply	
36	GNDP	Channel half bridge plus, Power Ground	

4 Application diagram

Figure 3. Application diagram

5 Electrical specifications

5.1 Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{CC} [V _{CCP} ,V _{CCM} , A _{VDD} ,	DC supply voltage	-0.3 to 28	V
D _{VDD}]	Transient supply voltage for t = $100 \text{ ms}^{(1)}$	-0.3 to 40	V
GND _{max} [D _{GND} , A _{GND} , GNDP, GNDM]	Ground pin voltage difference	-0.3 to 0.3	V
I ² C _{data,} I ² C _{clk}	I ² C bus pins voltage	-0.3 to 5.5	V
I ² S _{test} , I ² S _{data} , I ² S _{clk} , I ² S _{ws}	I ² S bus pins voltage	-0.3 to 5.5	V
Enable _{1,2,3,4}	Enables	-0.3 to 5.5	V
HWMute	Hardware mute	-0.3 to 7	V
CDDiag	Clip detection	-0.3 to 5.5	V
Ι _ο	Output current (repetitive f > 10 Hz)	Internally limited	А
T _{amb}	Ambient operating temperature	-40 to 125	°C
T _{stg} , T _j	Storage and junction temperature	-55 to 150	°C
ESDHBM	ESD protection HBM	2000	V
ESDCDM	ESD protection CDM	500	V

Table 3. Absolute maximum ratings

1. V_{CC} = 35 V for t < 400 ms as per ISO16750-2 load dump with centralized load dump suppression.

5.2 Thermal data

Table 4. Thermal data - PowerSSO36	slug-down package
------------------------------------	-------------------

Symbol	Parameter	Value	Unit
R _{th j-a-2s}	Thermal resistance junction-to-ambient (2s board)	56	°C/W
R _{th j-a-2s2p}	Thermal resistance junction-to-ambient (2s2p board)	31	°C/W
R _{th j-a-2s2pv}	Thermal resistance junction-to-ambient (2s2p+vias)	26	°C/W

5.3 Electrical characteristics

 V_{cc} = 14.4 V; R_L = 4 Ω ; f = 1 kHz; T_{amb} = 25 °C; I²C defaults, unless otherwise specified. LC filter: L = 10 µH, C = 3.3 µF. PWM in In-phase modulation, feedback connected after the filter.

Symbol	Parameter	Test condition	Min	Тур	Max	Unit
N		$R_L = 4 \Omega$	3.3	-	18	V
V CC	Supply voltage range	$R_L = 2 \Omega^{(1)}$	3.3	-	16	
		Device in Standby	-	1	5	μA
I _{VCC}	Quiescent current	Device on (MUTE state)	-	35	-	mA
		ECO MODE	-	22	-	mA
V _{os}	Offset voltage	Mute & Play	-10	-	+10	mV
D _{VDD}	Digital supply voltage range	-	3.3	-	18	V
A _{VDD}	Analog supply voltage range	-	3.3	-	18	V
		IB11 D5-4 = 00	9.5	11	12.5	A
		IB11 D5-4 = 01	6.7	8	9.3	А
Чор		IB11 D5-4 = 10	5	6	7	А
		IB11 D5-4 = 11	3	4	5	А
I _{AVDD}	Analog current	Device on (MUTE state)	-	9	20	mA
I _{DVDD}	Digital current	Device on (MUTE state)	-	13	20	mA
-	Overvoltage shutdown	Attenuation = 0.5 dB ⁽²⁾	18.5	19.5	20.5	V
N	V _{cc} low supply mute	Attenuation <0.5 dB Low voltage mode (IB0D0=1)	2.7	2.9	3.3	V
V lowM	threshold	Attenuation <0.5 dB Standard mode (IB0D0=0)	4.5	4.7	5	V
V _{highM}	V _{cc} high voltage mute ⁽²⁾	-	18	18.9	20.3	V
	V _{cc} supply UVLO	Standard mode (IB0D0=0)	4.4	4.6	4.8	V
UVLOVCC	threshold	Low voltage mode (IB0D0=1)	2.55	2.7	2.85	V
T _{sh}	Thermal shutdown	-	165	175	185	°C
Т _{рі}	Thermal protection junction temperature	Attenuation = 0.5 dB	150	160	170	°C
T _{w1}		-	-	Tpl-5	-	°C
T _{w2}	Thermal warning	-	-	Tpl-15	-	°C
T _{w3}	junction temperature ⁽³⁾	-	-	Tpl-35	-	°C
T _{w4}		-	-	Tpl-50	-	°C

Table 5.	Electrical	characteristics
	LICOUIDUI	onaraotoristios

Symbol	Parameter	Test condition	Min	Тур	Max	Unit
Audio perf	ormances			1		<u> </u>
		THD = 10 %	-	30	-	W
		THD = 1 %		25	-	W
		Max power; V _{cc} = 15.2 V	-	50	-	W
	Output power	R_L = 2 Ω THD = 10% ⁽¹⁾		55	-	W
		R_{L} = 2 Ω THD = 1% ⁽¹⁾	-	45	-	W
		$R_L = 2 \Omega$, max power ⁽¹⁾	-	80	-	W
		THD = 10% V _{cc} = 5 V	-	3.8	-	W
	Output power	THD = 10% V _{cc} = 3.3 V	-	1.6	-	W
PSRR	Power supply rejection ratio	f = 1 kHz; Vr = 1Vpk;	70	80	-	-
THD	Total harmonic distortion	P _O = 1 W, f = 1 kHz	-	0.01	0.05	%
Cain	Standard gain	at Amplituda - 10 dPEa	5.5	5.9	6.3	Vp
Gain	Low gain ⁽⁴⁾		3.3	3.6	3.9	Vp
DR	Dynamic range	A-wtd and brickwall 20 kHz filter	102	107.5	-	dB
SNR	Signal to noise ratio	A-wtd and brickwall 20 kHz filter	107	112	-	dB
Eout1	Output noise	A-wtd and brickwall 20 kHz filter used, no output signal;	-	35	55	μV
Eout2	Output noise	CCIR 468 filtered	-	84	130	μV
Δν _{οιτυ}	ITU Pop filter output voltage	Standby to Mute and Mute to Standby transition	-7.5	-	+7.5	mV
Mute						
V (5)	Mute pin voltage	Attenuation <0.5 dB, and digital mute disabled	2.3	-	-	
V Mth` ′	threshold	Attenuation ≥60 dB, and digital mute disabled	-	-	1	
I _M	Mute pin source current	-	9	11	13	μA
V _{Mcl}	Mute pin internal clamp voltage	-	5.5	6	6.5	V
I _{feed}	Peak current flowing in the feedback pins	Standby condition, all feedbacks forced to V_{cc} , output floating	-	110	130	μA
I ² C bus int	erface					
f _{SCL}	Clock frequency	-	-	-	400	kHz
V _{IL}	I2C pins low voltage	-	-	-	0.8	V
V _{IH}	I2C pins high voltage	-	1.3	-	-	V
V _{OLMAX}	Maximum I2C data pin low voltage when current I _{sink} is sinked	I _{sink} = 4 mA	-	0.12	0.5	V
I _{LIMAX}	Maximum input leakage current	V = 3.6 V	-	-	1	μA

Table 5. Electrical characteristics	(continued)
	(0011111000)

Symbol	Parameter	Test condition	Min	Тур	Мах	Unit
I ² S bus int	erface					
V _{IL-I2S}	I2S pins low voltage	-	-	-	0.8	V
١L	Input logic current, low	V _I = 0 V	-	-	500	nA
V _{IH-I2S}	I2S pins high voltage	-	1.3	-	-	V
I _Н	Input logic current, high	V _I = TBD	-	-	500	nA
Control pir	s characteristics					
V _{ENL}	Enable pins low voltage	-	-	-	0.9	V
V _{ENH}	Enable pins high voltage	-	2.4	-	-	V
Clipping a	nd offset detector				•	
CD _{THD}	Clip det THD ⁽⁶⁾	THD @ 100 Hz with average V _{clipdet} = 2 V	5	7	9	%
CDSAT	Clip det sat. voltage	CD on; I _{CD} = 1 mA	-	150	300	mV
CD _{LK}	Clip det leakage current	CD pin at 3.6 V	-	-	15	μA
V _{offlin}	Input DC offset detection threshold	Theshold at which an offset present at inputs is detected	-	-18	-	dB
V _{offout}	Output DC offset detection threshold ⁽⁷⁾	Input high pass filter disable	±1.4	±2	±2.6	V

1. If outphase modulation selected, slow slope configuration must be used (IB11,D3)

2. Parameter values based on bench measurements (guaranteed by correlation with overvoltage shutdown).

3. The thermal warnings are always in tracking.

4. When selecting the low gain, also the thresholds for "DC diagnostic" function and "Open load in play detector" function scale of the same factor with respect to standard gain configuration.

5. See Chapter 8: Muting function architecture for more details.

6. Guaranteed by correlation.

7. Measured at bench during product validation.

5.4 Typical curves of the main electrical parameters

6.0

GADG2211171240PS

DocID031502 Rev 2

0.0

1.0

2.0

3.0

Po - 1CH [W]

4.0

5.0

0

5

10

Po - 1CH [W]

20

15

25

GADG2211171227PS

-60 -80

-100

-120 -140

-160

-180

0

5000

10000

Frequency [Hz]

15000

20000

GADG2201180729PS

0

-40

-60

-80

-100

-120

-120

-100

-80

-60

Amplitude [dBFs]

-40

-20

GADG0612171136PS

6 General information

6.1 LC filter design

The audio performance of a Class D amplifier are heavily influenced by the characteristics of the output LC filter. The choice of its components is quite critical because a lot of constraints have to be fulfilled at the same time: size, cost, filter for EMI suppression, efficiency. In particular, both the inductor and the capacitor exhibit a non linear behavior: the value of the inductance is a function of the instantaneous current in it and similarly the value of the capacitor is a function of the voltage across it.

In the classical approach, where the feedback loop is closed right at the output of the power stage, the LC filter is placed outside the loop and these nonlinearities cause the Total Harmonic Distortion (THD) to increase. The only way to avoid this phenomenon would be to use components which are highly linear, but this means they are also bigger and/or more expensive.

Furthermore, when the LC filter is outside the loop, its frequency response heavily depends on the impedance of the loudspeaker; this is one of the most critical aspects of Class-D amplifiers. In standard class D this can be mitigated, but not solved, by means of additional damping networks, increasing cost, space and power dissipation. FDA903D, instead, provides a very flat frequency response over audio-band which can not be achieved by standard class D without feedback after LC filter.

Since the demodulator group is now in the feedback path, some constraints regarding the inductor and capacitor choice are still present but of course less stringent than in the case of a typical switching application.

Moreover FDA903D can be used with the 'classical' configuration of feedback on output (before LC filter), through I²C configuration, allowing the maximum flexibility. The choice depends mainly on EMI target /requirements and could slightly affect other performances (like damping factor, or THD).

6.2 Load possibilities

FDA903D supports several load possibilities, driving 2 Ω , 4 Ω and higher ohmic loads.

Possible channel configurations are:

- 1 x 4 ohm (or higher) (up to 18 V)
- 1 x 2 ohm (up to 16 V)

7 Finite state machine

FDA903D has a finite state machine which manages amplifier functionality, reacting to user and system inputs

7.1 Device state and address selection

Through Enable pins configuration it is possible to select different I^2C addresses (up to 8) or to configure the device in 4 different legacy ('no I^2C' modes) according to table 6.

	Enable 1	Enable 2	Enable 3	Enable 4
Stand By	0	0	0	0
Amplifier ON address 1 = '1110000'	0	1	0	0
Amplifier ON address 2 = '1110001'	1	1	0	0
Amplifier ON address 3 = '1110010'	0	0	1	0
Amplifier ON address 4 = '1110011'	0	1	1	0
Amplifier ON address 5 = '1110100'	0	1	0	1
Amplifier ON address 6 = '1110101'	1	1	0	1
Amplifier ON address 7 = '1110110'	0	0	1	1
Amplifier ON address 8 = '1110111'	0	1	1	1
Legacy mode: low voltage mode; in-phase	1	1	1	0
Legacy mode: low voltage mode; out-phase	1	1	1	1
Legacy mode: standard voltage mode; in-phase	1	0	0	0
Legacy mode: standard voltage mode; out-phase	1	0	0	1

Table 6. Operation mod

In this way, up to 8 devices can be easily used in the same application with a single I^2C bus.

Moreover it is possible to work without I²C configuring the voltage range and switching mode to be used.

When a valid combination of Enable 1/2/3/4 is recognized the device turns on all the internal supply voltages and outputs are biased to Vcc/2.

The internal I²C registers are pre-settled in "default condition", waiting for the I²C next instruction.

The return in the Standby condition, (all enable pins at 0), will cause the reset of the amplifier. As defined in the finite state machine, The same event will happen if PLL is not locked, I^2S is missing or not correct, Vcc for system reset.

FDA903D can work only in I²C slave mode.

