

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

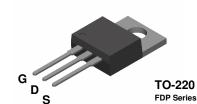
Email & Skype: info@chipsmall.com Web: www.chipsmall.com

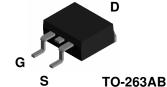
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

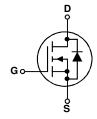
FDP2670/FDB2670

200V N-Channel PowerTrench® MOSFET

General Description


This N-Channel MOSFET has been designed specifically for switching on the primary side in the isolated DC/DC converter application. Any application requiring a 200V MOSFETs with low on-resistance and fast switching will benefit.


These MOSFETs feature faster switching and lower gate charge than other MOSFETs with comparable RDS_(ON) specifications.


The result is a MOSFET that is easy and safer to drive (even at very high frequencies), and DC/DC power supply designs with higher overall efficiency.

Features

- 19 A, 200 V. $R_{DS(ON)} = 130 \text{ m}\Omega$ @ $V_{GS} = 10 \text{ V}$
- Low gate charge (27 nC typical)
- · Fast switching speed
- High performance trench technology for extremely low $R_{\mbox{\scriptsize DS(ON)}}$
- · High power and current handling capability

Absolute Maximum Ratings T_A=25°C unless otherwise noted

Symbol	Parameter		Ratings	Units
V _{DSS}	Drain-Source Voltage		200	V
V _{GSS}	Gate-Source Voltage		± 20	V
I _D	Drain Current - Continuous	(Note 1)	19	Α
	- Pulsed	(Note 1)	40	Α
P _D	Total Power Dissipation @ T _C = 25°C		93	W
	Derate above 25°C		0.63	W°/C
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	3.2	V/ns
T_J, T_{STG}	Operating and Storage Junction Temperature Range		-65 to +175	°C

FDB Series

Thermal Characteristics

R _{θJC}	Thermal Resistance, Junction-to-Case	1.6	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	62.5	°C/W

Package Marking and Ordering Information

Device Marking	Device	Reel Size	Tape width	Quantity
FDB2670	FDB2670	13"	24mm	800 units
FDP2670	FDP2670	Tube	n/a	45 units

Electric Symbol	Parameter	T _A = 25°C unless otherwise noted Test Conditions	Min	Тур	Max	Units
	Urce Avalanche Ratings (Note	0	1	71		
W _{DSS}	Single Pulse Drain-Source Avalanche Energy	$V_{DD} = 100 \text{ V}, \qquad I_{D} = 10 \text{ A}$			375	mJ
I _{AR}	Maximum Drain-Source Avalanche Current				10	Α
Off Char	acteristics					1
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_{D} = 250 \mu\text{A}$	200			V
$\frac{\Delta BV_{DSS}}{\Delta T_J}$	Breakdown Voltage Temperature Coefficient	I _D = 250 μA, Referenced to 25°C		241		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 160 \text{ V}, V_{GS} = 0 \text{ V}$			1	μΑ
I _{GSSF}	Gate-Body Leakage, Forward	$V_{GS} = 20 \text{ V}, \qquad V_{DS} = 0 \text{ V}$			100	nA
I _{GSSR}	Gate-Body Leakage, Reverse	V _{GS} = -20 V V _{DS} = 0 V			-100	nA
On Char	acteristics (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu\text{A}$	2	4	4.5	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	I_D = 250 μ A, Referenced to 25°C		-9		mV/°C
R _{DS(on)}	Static Drain–Source On–Resistance	$V_{GS} = 10 \text{ V}, \qquad I_D = 10 \text{ A}$ $V_{GS} = 10 \text{ V}, I_D = 10 \text{ A}, T_J = 125^{\circ}\text{C}$		98 205	130 285	mΩ
I _{D(on)}	On-State Drain Current	$V_{GS} = 10 \text{ V}, \qquad V_{DS} = 10 \text{ V}$	20			Α
g _{FS}	Forward Transconductance	$V_{DS} = 10 \text{ V}, \qquad I_{D} = 10 \text{ A}$		24		S
Dvnamio	Characteristics					
C _{iss}	Input Capacitance	$V_{DS} = 100 \text{ V}, V_{GS} = 0 \text{ V},$		1320		pF
Coss	Output Capacitance	f = 1.0 MHz		71		pF
C _{rss}	Reverse Transfer Capacitance			24		pF
Switchin	g Characteristics (Note 2)					
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 100 \text{ V}, \qquad I_{D} = 1 \text{ A},$		14	25	ns
t _r	Turn-On Rise Time	$V_{GS} = 10 \text{ V}, \qquad R_{GEN} = 6 \Omega$		5	10	ns
t _{d(off)}	Turn-Off Delay Time			26	41	ns
t _f	Turn-Off Fall Time			23	37	ns
Q _g	Total Gate Charge	$V_{DS} = 100 \text{ V}, \qquad I_{D} = 10 \text{ A},$		27	38	nC
Q _{gs}	Gate-Source Charge	V _{GS} = 10 V		7		nC
Q_{gd}	Gate-Drain Charge]		10		nC
Drain-Se	ource Diode Characteristics	and Maximum Ratings				
Is	Maximum Continuous Drain-Source	Ţ			19	Α
V _{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0 \text{ V}, I_S = 10 \text{ A}$ (Note 2)		0.8	1.3	V

Notes:

- 1. Calculated continuous current based on maximum allowable junction temperature.
- 2. Pulse Test: Pulse Width < 300 μ s, Duty Cycle < 2.0%
- 3. $I_{SD} \leq 3A$, di/dt $\leq 100A/\mu s$, $V_{DD} \leq BV_{DSS}$, Starting $T_J = 25^{\circ}C$

Typical Characteristics

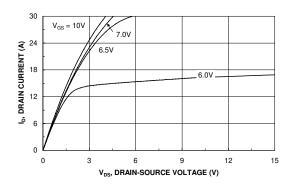
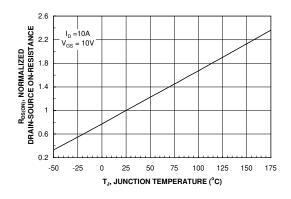



Figure 1. On-Region Characteristics.

Figure 2. On-Resistance Variation with Drain Current and Gate Voltage.

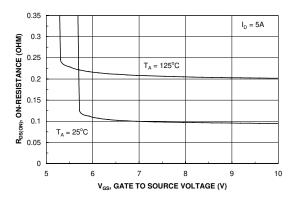
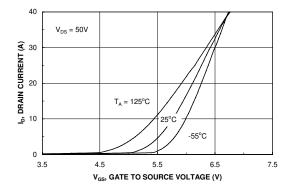



Figure 3. On-Resistance Variation with Temperature.

Figure 4. On-Resistance Variation with Gate-to-Source Voltage.

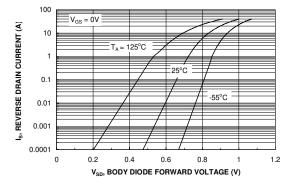
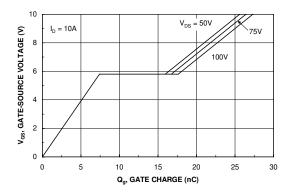



Figure 5. Transfer Characteristics.

Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature.

Typical Characteristics

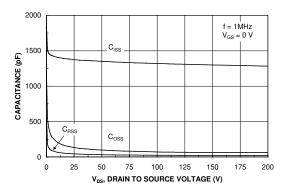


Figure 7. Gate Charge Characteristics.

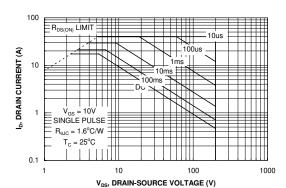


Figure 8. Capacitance Characteristics.

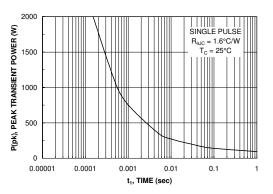


Figure 9. Maximum Safe Operating Area.

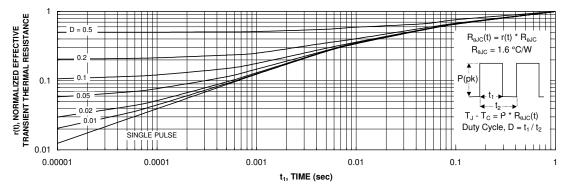


Figure 11. Transient Thermal Response Curve.

Thermal characterization performed using the conditions described in Note 1. Transient thermal response will change depending on the circuit board design.

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

FAST ® SMART START™ VCX^{TM} ACEx™ OPTOLOGIC™ STAR*POWER™ FASTr™ Bottomless™ OPTOPLANAR™ Stealth™ CoolFET™ FRFET™ PACMANTM SuperSOT™-3 CROSSVOLT™ GlobalOptoisolator™ POP™ SuperSOT™-6 DenseTrench™ GTO™ Power247™ $\mathsf{HiSeC^{\mathsf{TM}}}$ SuperSOT™-8 DOME™ PowerTrench® SyncFET™ ISOPLANAR™ EcoSPARK™ QFET™ TinyLogic™ E²CMOSTM LittleFET™ OS^{TM} EnSigna™ MicroFET™ TruTranslation™ QT Optoelectronics™ MicroPak™ UHC™ **FACT™** Quiet Series™ UltraFET® FACT Quiet Series™ MICROWIRE™ SILENT SWITCHER®

STAR*POWER is used under license

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS. NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Rev. H4