imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Is Now Part of

ON Semiconductor®

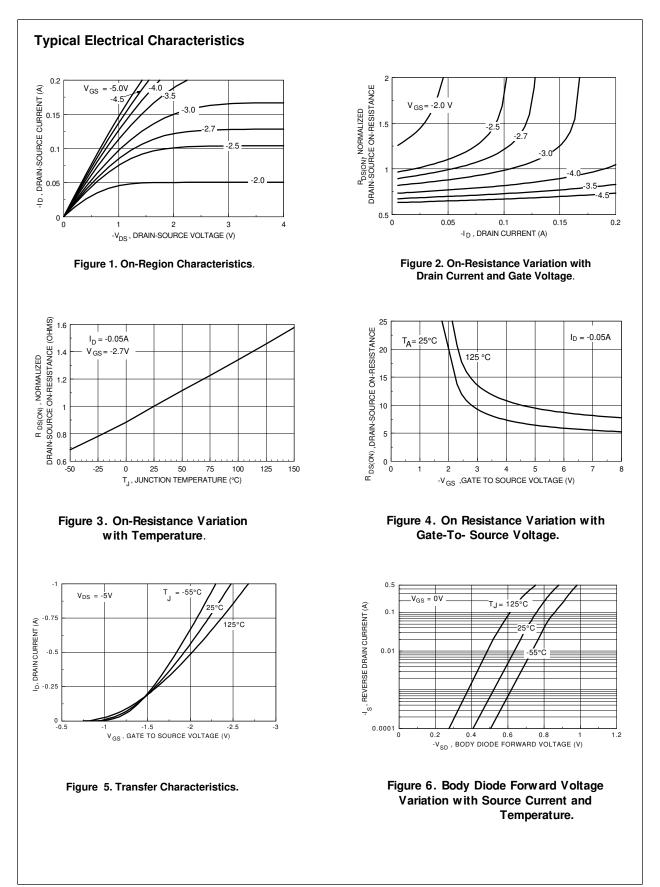
To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconduc

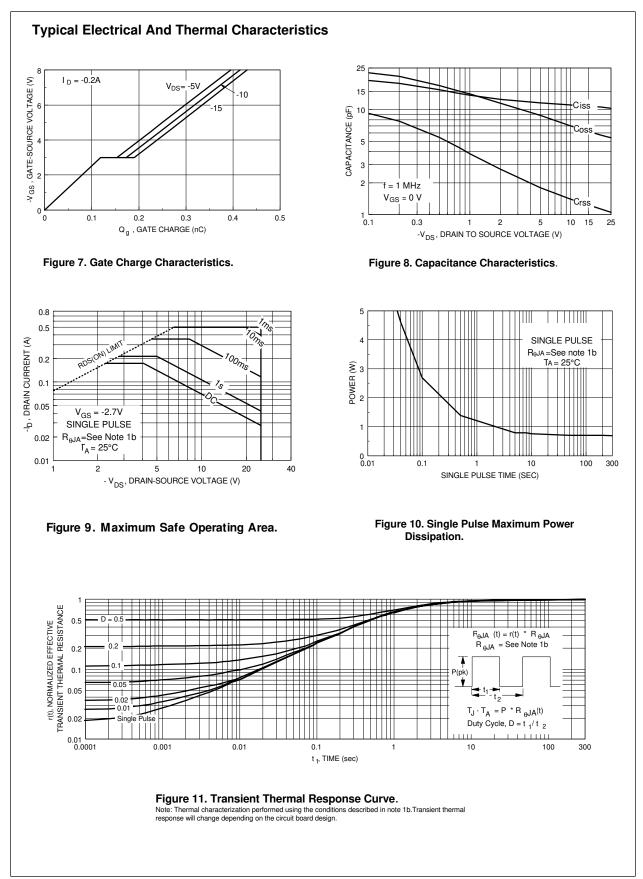
					October 1997		
	6302P	_					
Digi	tal FET, Dual P-Chanr	nel					
Gener	al Description		Features				
These Dual P-Channel logic level enhancement mode field effect transistors are produced using Fairchild's proprietary, high cell density, DMOS technology. This very high density process is especially tailored to minimize on-state resistance. This device has been designed especially for low voltage applications as a replacement for digital transistors in load switchimg applications. Since bias resistors are not required this one P-Channel FET can replace several digital transistors with different bias resistors like the IMBxA series.			 -25 V, -0.12 A continuous, -0.5 A Peak. R_{DS(ON)} = 13 Ω @ V_{GS}= -2.7 V R_{DS(ON)} = 10 Ω @ V_{GS} = -4.5 V. Very low level gate drive requirements allowing direct operation in 3V circuits. V_{GS(th)} < 1.5V. Gate-Source Zener for ESD ruggedness. >6kV Human Body Model Replace multiple PNP digital transistors (IMHxA series) v one DMOS FET. 				
		4004					
			нннн		0000000		
	S1				3		
	D1 302 SuperSOT™-6 ^{pin 1} G1	G2 S2			2		
	D1 302	S2	ed		2		
ymbol	D1 SuperSOT TM-6 Plm 1 G1 ute Maximum Ratings $T_A =$	S2	ed		2		
ymbol	$D1 \xrightarrow{392}_{pin1} G1$ SuperSOT TM -6 ^{pin1} G1 Ute Maximum Ratings T _A = Parameter	S2	ed	5 6 FDC6302P	2		
ymbol DSS GSS	$D1 \qquad \qquad 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\$	S2	ed	5 6 FDC6302P -25	2		
ymbol DSS GSS	D1 SuperSOT TM-6 $pin 1$ G1 Ute Maximum Ratings $T_A =$ Parameter Drain-Source Voltage Gate-Source Voltage Drain Current - Contin	S2	od	5 6 FDC6302P -25 -8 -0.12	2 1 1 V V V		
ymbol DSS GSS D	$\begin{array}{c} D1 \\ SuperSOT^{TM}-6 \end{array} \begin{array}{c} pin 1 \\ mathbf{T} \\ mathbf{S} \\ mathbf{T} \\$	S2 25°C unless other wise note uous (Note 1a) (Note 1b)	ed	5 6 6 -25 -8 -0.12 -0.5 0.9	2 1 V V V A		
ymbol DSS GSS	D1 333 SuperSOT TM-6 $pin 1$ G1 ute Maximum Ratings $T_a =$ Parameter Drain-Source Voltage Gate-Source Voltage Contin Drain Current - Contin - Pulsec Maximum Power Dissipation	S2	ed	5 6 -25 -8 -0.12 -0.5 0.9 0.7	2 1 V V V A W		
ymbol DSS GSS D D J,T _{STG} SD	D1 p_{in1} G1 SuperSOT TM-6 p_{in1} G1 ute Maximum Ratings $T_a =$ Parameter Drain-Source Voltage Gate-Source Voltage Drain Current - Contin Drain Current - Contin Pulsec Maximum Power Dissipation Operating and Storage Temperature Electrostatic Discharge Rating MI	S2	ed	5 6 6 -25 -8 -0.12 -0.5 0.9 0.7 -55 to 150	2 1 V V V A W C		
ymbol pss sss p ,T _{stg} SD	D1 $pin1$ G1 SuperSOT TM-6 $pin1$ G1 Ute Maximum Ratings $T_A =$ Parameter Drain-Source Voltage Gate-Source Voltage Gate-Source Voltage Drain Current - Contin - Pulsec Maximum Power Dissipation Operating and Storage Temperature Electrostatic Discharge Rating MII Human Body Model (100pf / 1500) Human Body Model (100pf / 1500)	S2 25°C unless other wise note uous (Note 1a) (Note 1b) re Range STD-883D Ohm)	ed	5 6 6 -25 -8 -0.12 -0.5 0.9 0.7 -55 to 150	2 1 V V V A W C		

(Note 1)

©1997 Fairchild Semiconductor Corporation


Thermal Resistance, Junction-to-Case

FDC6302P Rev.C


°C/W

60

	Parameter	Conditions	Min	Тур	Max	Units
OFF CHARA	CTERISTICS					
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 V, I_{D} = -250 \mu A$	-25			V
$\Delta BV_{DSS} / \Delta T_{J}$	Breakdown Voltage Temp. Coefficient	$I_{\rm D}$ = -250 μ A, Referenced to 25 °C		-20		mV /° C
DSS	Zero Gate Voltage Drain Current	$V_{DS} = -20 V, V_{GS} = 0 V$			-1	μA
		$T_{J} = 55^{\circ}C$			-10	μA
GSS	Gate - Body Leakage Current	$V_{GS} = -8 V, V_{DS} = 0 V$			-100	nA
ON CHARAC	TERISTICS (Note 2)					
$\Delta V_{GS(th)} / \Delta T_{J}$	Gate Threshold Voltage Temp. Coefficient	$I_{_D}\text{=}$ -250 $\mu\text{A},$ Referenced to $~25^{\circ}\text{C}$		1.9		mV /° C
V _{GS(th)}	Gate Threshold Voltage	$V_{\rm DS} = V_{\rm GS}, \ I_{\rm D} = -250 \ \mu {\rm A}$	-0.65	-1	-1.5	V
R _{DS(ON)}	Static Drain-Source On-Resistance	$V_{GS} = -2.7 \text{ V}, \ I_{D} = -0.05 \text{ A}$		10.6	13	Ω
		$V_{GS} = -4.5 \text{ V}, \ I_{D} = -0.2 \text{ A}$		7.9	10	
		T _J =125°C		12	18	
D(ON)	On-State Drain Current	$V_{GS} = -2.7 V, V_{DS} = -5 V$	-0.05			Α
9 _{FS}	Forward Transconductance	$V_{DS} = -5 V, I_{D} = -0.2 A$		0.135		S
DYNAMIC CH	HARACTERISTICS		T	1		
C _{iss}	Input Capacitance	$V_{DS} = -10 \text{ V}, V_{GS} = 0 \text{ V},$ f = 1.0 MHz		11		pF
C _{oss}	Output Capacitance	f = 1.0 MHz		7		pF
C _{rss}	Reverse Transfer Capacitance			1.4		pF
	CHARACTERISTICS (Note 2)		r			1
D(on)	Turn - On Delay Time	$V_{DD} = -6 \text{ V}, \text{ I}_{D} = -0.2 \text{ A},$ $V_{GS} = -4.5 \text{ V}, \text{ R}_{GEN} = 50 \Omega$		5	12	ns
r	Turn - On Rise Time	$v_{GS} = -4.5 v, \ n_{GEN} = 50.52$		8	16	ns
D(off)	Turn - Off Delay Time			9	18	ns
f f	Turn - Off Fall Time			5	10	ns
Q ^ª	Total Gate Charge	$V_{DS} = -5 V, I_{D} = -0.2 A,$ $V_{GS} = -4.5 V$		0.22	0.31	nC
Q _{gs}	Gate-Source Charge			0.12		nC
	Gate-Drain Charge RCE DIODE CHARACTERISTICS AND MAXIM			0.05		nC
1	Maximum Continuous Drain-Source Diode Forwa				-0.7	A
s V _{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0 \text{ V}, \text{ I}_{S} = -0.7 \text{ A} \text{ (Note 2)}$		-1	-0.7	V
V _{SD} Notes:	Brain Gource Block Forward Vollage	$v_{GS} = 0 v, r_{S} = 0.7 A (noie 2)$			1.0	v
design while R _e	of the junction-to-case and case-to-ambient thermal resistance where c_{n} is determined by the user's board design. 40°C/W on a 0.125 in ² pad of 0 b. 180°C/W of 20z copper. See Width \leq 300µs, Duty Cycle \leq 2.0%.	on a 0.005 in ² of pad		ne uran pins	. n _{euc} is gua	aneed by

FDC6302P Rev.C

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™ Bottomless™ CoolFET™ *CROSSVOLT*™ DenseTrench™ DOME™ **EcoSPARK™** E²CMOS[™] EnSigna™ FACT™ FACT Quiet Series[™] FAST ® FASTr™ FRFET™ GlobalOptoisolator[™] POP[™] GTO™ HiSeC™ ISOPLANAR™ LittleFET™ MicroFET™ MicroPak™ MICROWIRE™

OPTOLOGIC™ OPTOPLANAR™ PACMAN™ Power247™ PowerTrench[®] QFET™ OS™ QT Optoelectronics[™] Quiet Series[™] SILENT SWITCHER®

SMART START™ VCX™ STAR*POWER™ Stealth™ SuperSOT™-3 SuperSOT[™]-6 SuperSOT[™]-8 SyncFET™ TinyLogic™ TruTranslation™ UHC™ UltraFET[®]

STAR*POWER is used under license

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY. FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS. NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Product Status	Definition			
Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.			
First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.			
Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.			
Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.			
	Formative or In Design First Production Full Production			

Rev. H4

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC