imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconduc

April 1999

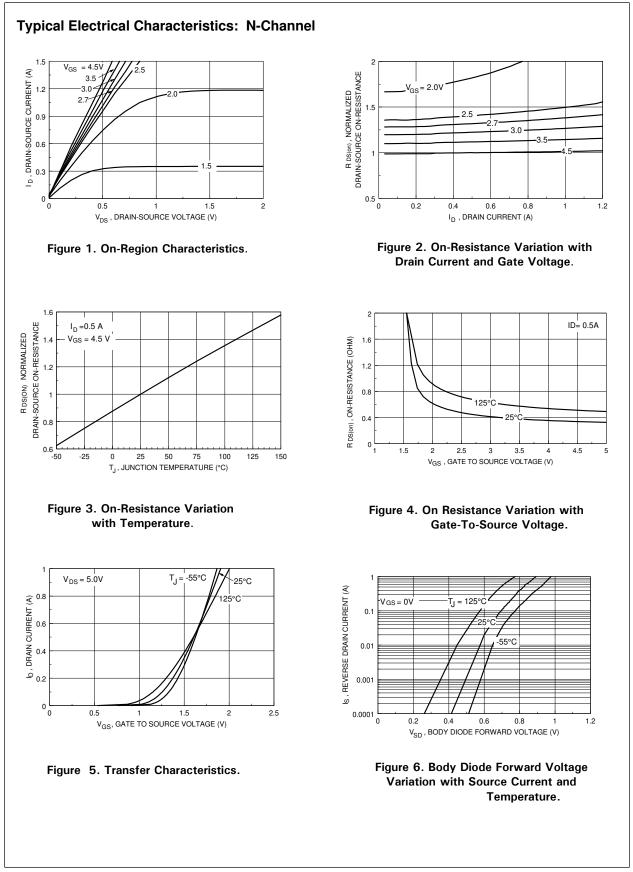
SEMICONDUCTOR TM

FDC6321C Dual N & P Channel , Digital FET

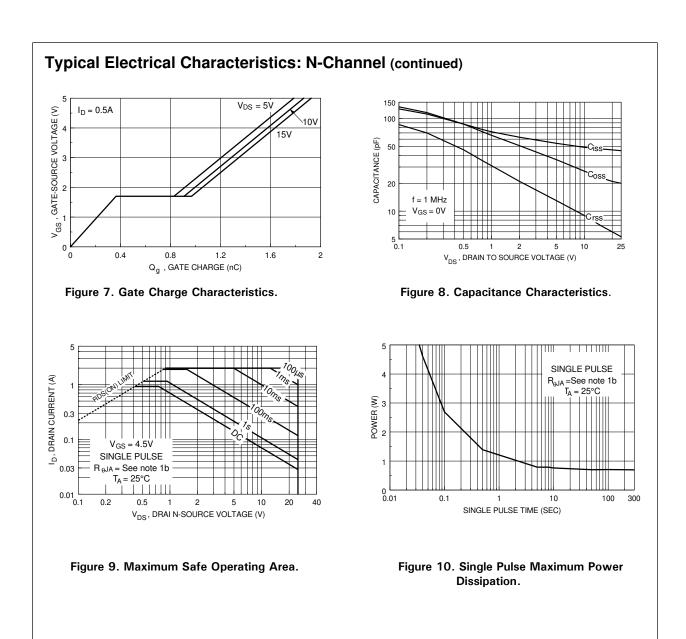
General Description

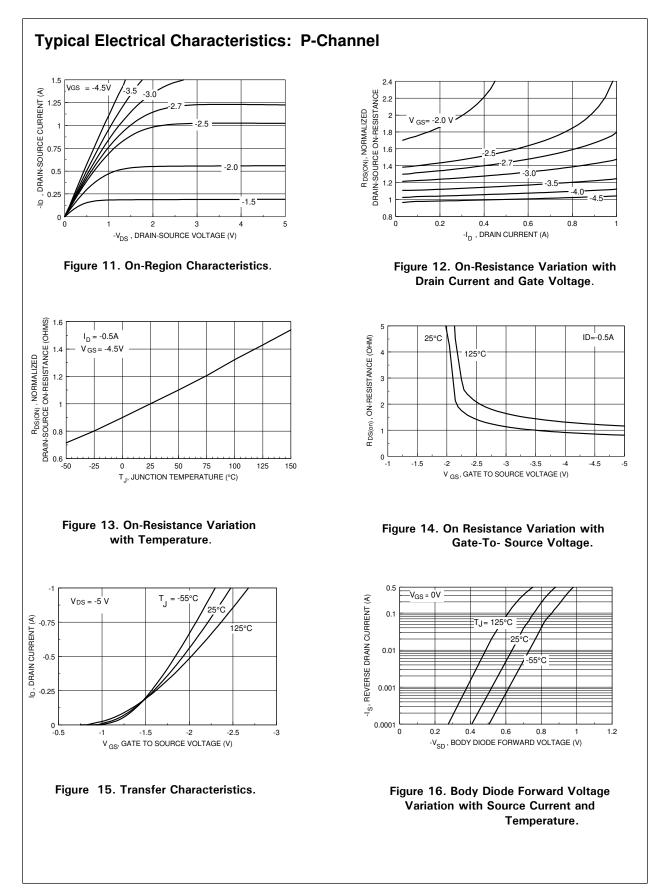
These dual N & P Channel logic level enhancement mode field effect transistors are produced using Fairchild's proprietary, high cell density, DMOS technology. This very high density process is especially tailored to minimize on-state resistance. This device has been designed especially for low voltage applications as a replacement for digital transistors in load switching applications. Since bias resistors are not required this dual digital FET can replace several digital transistors with different bias resistors.

Features

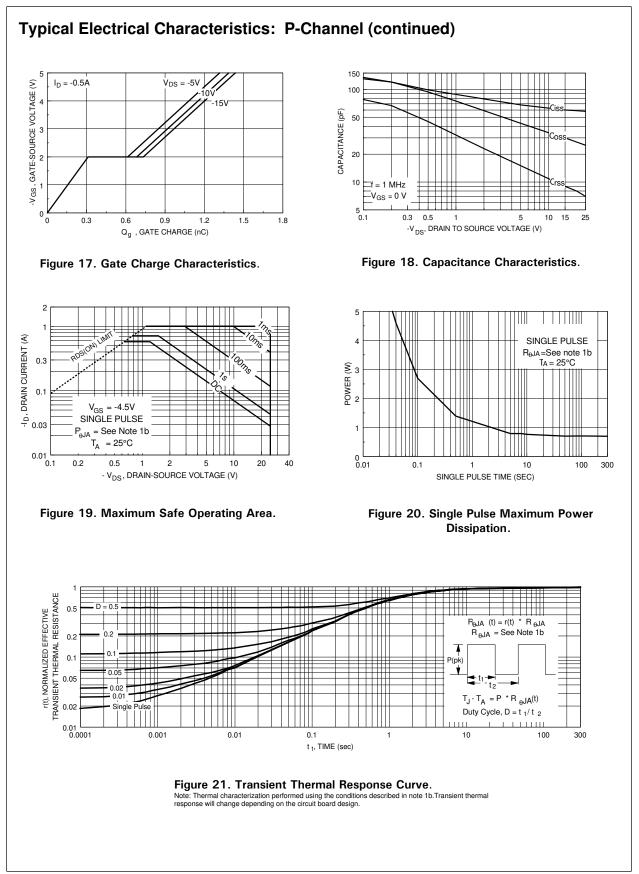

- N-Ch 25 V, 0.68 A, R_{DS(ON)} = 0.45 Ω @ V_{GS}= 4.5 V
- P-Ch -25 V, -0.46 A, $R_{DS(ON)} = 1.1 \Omega @ V_{GS} = -4.5 V.$
- Very low level gate drive requirements allowing direct operation in 3 V circuits. V_{GS(th)} < 1.0V.
- Gate-Source Zener for ESD ruggedness.
 >6kV Human Body Model
- Replace multiple dual NPN & PNP digital transistors.

						0000000
SOT-2	3	SuperSOT [™] -6	SuperSOT [™] -8	SO-8	SOT-223	SOIC-16
		Mark:.321				
		D2 D1 D1 SOT ™-6	G2 S2 S1	4 5 6		2
	ute Maxim	um Ratings	$\Gamma_{\rm A} = 25^{\circ}$ C unless other wise	e noted N-Channel	P-Cha	annel Units
ymbol	Parameter	um Ratings			P-Cha	
ymbol _{DSS} , V _{CC}	Parameter	e Voltage, Power S		N-Channel		25 V
ymbol _{DSS} , V _{CC} _{GSS} , V _{IN}	Parameter Drain-Sourc	ce Voltage, Power S e Voltage,		N-Channel 25	-2	25 V 8 V
ymbol _{DSS} , V _{CC} _{GSS} , V _{IN}	Parameter Drain-Sourc Gate-Sourc	ce Voltage, Power S e Voltage,	upply Voltage	N-Channel 25 8	-2	25 V 3 V 46 A
ymbol _{DSS} , V _{CC} _{GSS} , V _{IN} , I _O	Parameter Drain-Source Gate-Source Drain/Outpu	e Voltage, Power S e Voltage, ut Current - Cor	upply Voltage	N-Channel 25 8 0.68	-2 -2 -6.	25 V 3 V 46 A
ymbol $_{DSS}, V_{CC}$ $_{GSS}, V_{IN}$ $, I_{O}$	Parameter Drain-Sourc Gate-Sourc Drain/Outpu Maximum F	e Voltage, Power S e Voltage, ut Current - Cor - Pul:	iupply Voltage ntinuous sed (Note 1a) (Note 1b)	N-Channel 25 8 0.68	-2 -2 -0.4 -0.4 -1. 0.9	25 V 3 V 46 A .5
ymbol _{DSS} , V _{CC} _{GSS} , V _{IN} , I _O D J,T _{STG}	Parameter Drain-Sourc Gate-Sourc Drain/Outpu Maximum F Operating a Electrostatic	ce Voltage, Power S e Voltage, ut Current - Cor - Pul: Power Dissipation	tupply Voltage ntinuous sed (Note 1a) (Note 1b) ure Ranger MIL-STD-883D	N-Channel 25 8 0.68	-2 -2 -6 -0.4 -1. 0.9 0.7	25 V 3 V 46 A .5 W
ymbol _{DSS} , V _{CC} _{GSS} , V _{IN} , I ₀ D , T _{STG} SD	Parameter Drain-Sourc Gate-Sourc Drain/Outpu Maximum F Operating a Electrostatic	e Voltage, Power S e Voltage, ut Current - Cor - Pul: Power Dissipation and Storage Tempat c Discharge Rating dy Model (100pf / 15	tupply Voltage ntinuous sed (Note 1a) (Note 1b) ure Ranger MIL-STD-883D	N-Channel 25 8 0.68	-2 -2 -0.4 -0.4 -1. 0.9 0.7 -55 to 150	25 V 3 V 46 A .5 W
ymbol (_{DSS} , V _{CC} (_{GSS} , V _{IN} (_D), I ₀ (D)	Parameter Drain-Source Gate-Source Drain/Outpu Maximum F Operating a Electrostatice Human Boo	e Voltage, Power S e Voltage, ut Current - Cor - Pul: Power Dissipation and Storage Tempat c Discharge Rating dy Model (100pf / 15	iupply Voltage ntinuous sed (Note 1a) (Note 1b) ure Ranger MIL-STD-883D 500 Ohm)	N-Channel 25 8 0.68	-2 -2 -0.4 -0.4 -1. 0.9 0.7 -55 to 150	25 V 3 V 46 A .5 W C


© 1999 Fairchild Semiconductor Corporation


Symbol	Parameter	Conditions	Туре	Min	Тур	Max	Units
OFF CHARA	ACTERISTICS					I	
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 V, I_{D} = 250 \mu A$	N-Ch	25			V
200	, i i i i i i i i i i i i i i i i i i i	$V_{GS} = 0 \text{ V}, \text{ I}_{D} = -250 \mu\text{A}$	P-Ch	-25			-
$\Delta BV_{DSS} / \Delta T_{J}$	Breakdown Voltage Temp. Coefficient	I_{D} = 250 μ A, Referenced to 25 °C	N-Ch		26		mV /°C
		$I_{\rm D}$ = -250 μ A, Referenced to 25 °C	P-Ch		-22		-
DSS	Zero Gate Voltage Drain Current	$V_{\rm DS} = 20 \text{ V}, \ V_{\rm GS} = 0 \text{ V},$	N-Ch			1	μA
		$T_{\rm I} = 55^{\circ}{\rm C}$;			10	1
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -20 \text{ V}, V_{GS} = 0 \text{ V},$	P-Ch			-1	μA
		$T_{J} = 55^{\circ}C$;			-10	1
I _{GSS}	Gate - Body Leakage Current	$V_{GS} = 8 V, V_{DS} = 0 V$	N-Ch			100	nA
		$V_{GS} = -8 V, V_{DS} = 0 V$	P-Ch			-100	nA
ON CHARAC	CTERISTICS (Note 2)						
$\Delta V_{GS(th)} / \Delta T_J$	Gate Threshold Voltage Temp. Coefficient	I_{D} = 250 μ A, Referenced to 25 °C	N-Ch		-2.6		mV / °C
GO(81) 0		I_{D} = -250 μ A, Referenced to 25 °C	P-Ch		2.1		
V _{GS(th)}	Gate Threshold Voltage	$V_{\rm DS} = V_{\rm GS}, \ I_{\rm D} = 250 \ \mu A$	N-Ch	0.65	0.8	1.5	V
		$V_{\rm DS} = V_{\rm GS}, \ I_{\rm D} = -250 \ \mu A$	P-Ch	-0.65	-0.86	-1.5	
R _{DS(ON)}	Static Drain-Source On-Resistance	$V_{GS} = 4.5 \text{ V}, \ I_{D} = 0.5 \text{ A}$	N-Ch		0.33	0.45	Ω
		T _J =125°C	>		0.51	0.72	
		$V_{GS} = 2.7 \text{ V}, \ I_{D} = 0.25 \text{ A}$			0.44	0.6	
		$V_{GS} = -4.5 \text{ V}, I_{D} = -0.5 \text{ A}$	P-Ch		0.87	1.1	
		T _J =125°C			1.21	1.8	1
		$V_{GS} = -2.7 \text{ V}, \ I_{D} = -0.25 \text{ A}$			1.22	1.5	
D(ON)	On-State Drain Current	$V_{GS} = 4.5 \text{ V}, \ V_{DS} = 5 \text{ V}$	N-Ch	1			A
		$V_{GS} = -4.5 \text{ V}, \ V_{DS} = -5 \text{ V}$	P-Ch	-1			
9 _{FS}	Forward Transconductance	$V_{DS} = 5 \text{ V}, \ \text{I}_{D} = 0.5 \text{ A}$	N-Ch		1.45		S
		$V_{DS} = -5 V, I_{D} = -0.5 A$	P-Ch		0.8		
	HARACTERISTICS	1		1		1	1
C _{iss}	Input Capacitance	N-Channel	N-Ch		50		pF
		$V_{DS} = 10 V, V_{GS} = 0 V,$	P-Ch		63		
C _{oss}	Output Capacitance	f = 1.0 MHz	N-Ch		28		pF
		P-Channel	P-Ch		34		
C _{rss}	Reverse Transfer Capacitance	V_{DS} = -10 V, V_{GS} = 0V, f = 1.0 MHz	N-Ch P-Ch		9 10		pF
				L		1	I

	NG CHARACTERISTICS (Note 2)						
Symbol	Parameter	Conditions	Туре	Min	Тур	Max	Units
D(on)	Turn - On Delay Time	N-Channel	N-Ch		3	6	nS
		$V_{\text{DD}} = 6 \text{ V}, \text{ I}_{\text{D}} = 0.5 \text{ A},$	P-Ch		7	20	
	Turn - On Rise Time	$V_{Gs} = 4.5 \text{ V}, \text{ R}_{GEN} = 50 \Omega$	N-Ch		8	16	nS
			P-Ch		9	18	
D(off)	Turn - Off Delay Time	P-Channel	N-Ch		17	30	nS
		$V_{DD} = -6 \text{ V}, \text{ I}_{D} = -0.5 \text{ A},$	P-Ch		55	110	
	Turn - Off Fall Time	$V_{\text{Gen}} = -4.5 \text{ V}, \text{ R}_{\text{GEN}} = 50 \ \Omega$	N-Ch		13	25	nS
			P-Ch		35	70	
ک ^و	Total Gate Charge	N-Channel	N-Ch		1.64	2.3	nC
		$V_{\rm DS} = 5 \text{ V}, \text{ I}_{\rm D} = 0.5 \text{ A},$	P-Ch		1.1	1.5	
ک _{gs}	Gate-Source Charge	$V_{GS} = 4.5 V$	N-Ch		0.38		nC
		P- Channel	P-Ch		0.32		
¢ _{gd}	Gate-Drain Charge	V _{DS} = -5 V,	N-Ch		0.45		nC
		$I_{\rm D} = -0.25 \text{ A}, V_{\rm GS} = -4.5 \text{ V}$	P-Ch		0.25		
ORAIN-SC	URCE DIODE CHARACTERISTICS AND MA	AXIMUM RATINGS			1	1	
6	Maximum Continuous Drain-Source Diod	e Forward Current	N-Ch			0.3	A
			P-Ch			-0.5	
/ _{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0 V, I_{S} = 0.5 A$ (Note)	N-Ch		0.83	1.2	V
		T _J =125%			0.69	0.85	
		$V_{GS} = 0 \text{ V}, \text{ I}_{S} = -0.5 \text{ A} \text{ (Note)}$ $T_{J} = 125^{\circ}\text{C}$	P-Ch		-0.89 -0.75	-1.2 -0.85	
	a. 140°C/W on a 0.125 in² pad of time to be a component of the second se	b. 180°C/W on a 0.005 in ² of pad of 2oz copper.					
999 8	60D						



FDC6321C.RevB

FDC6321C.RevB

FDC6321C.RevB

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx[™] CoolFET[™] CROSSVOLT[™] E²CMOS[™] FACT[™] FACT Quiet Series[™] FAST[®] FAST[®] FAST[®] FAST[™] GTO[™] HiSeC[™] ISOPLANAR™ MICROWIRE™ POP™ PowerTrench™ QFET™ QS™ Quiet Series™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8

TinyLogic™ UHC™ VCX™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Product Status	Definition				
Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.				
First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.				
Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.				
Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.				
	Formative or In Design First Production Full Production				

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC