## : ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!


## Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

## FDC6901L

Integrated Load Switch

## Features

－Three Programmable Slew Rates
－Reduces Inrush Current
－Minimizes EMI
－Normal Turn－Off Speed
■ Low－Power CMOS Operates Over Wide Voltage Range
■ High Performance Trench Technology for Extremely low $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$
－RoHS Compliant

## General Description

This device is particularly suited for compact power management．In portable electronic equipment where 2.5 V to 6 V input capability is needed．This load switch integrates a Slew Rate Control Driver that drives a P－Channel Power MOSFET in one tiny SuperSOT ${ }^{\text {TM }}-6$ package．The integrated slew rate control driver is specifically designed to control the turn on of the P－Channel MOSFET in order to limit the inrush current in battery switching applications with high capacitance loads．For turn－off，the IC pulls the MOSFET gate up quickly．

## Applications

－Load switch
－Power management

Pin 1


SuperSOT ${ }^{\text {TM }}$－ 6

## Package Marking and Ordering Information

| Device Marking | Device | Reel Size | Tape Width | Quantity |
| :---: | :---: | :---: | :---: | :---: |
| .901 | FDC6901L | $7^{\prime \prime}$ | 8 mm | 3000 units |

## Pin Configuration



## Absolute Maximum Ratings

| Parameter | Min. | Max. | Unit |
| :--- | :---: | :---: | :---: |
| Supply Voltage | -0.5 | 10 | V |
| DC Input Voltage (Logic Inputs) | -0.7 | 9 | V |
| Power Dissipation |  |  |  |
| Storage Junction Temperature | -55 | 150 | ${ }^{\circ} \mathrm{C}$ |
| Thermal Resistance, Junction to Ambient |  | 180 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| Thermal Resistance, Junction to Case |  | 60 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |

Recommended Operating Range

| Parameter | Min. | Max. | Unit |
| :--- | :---: | :---: | :---: |
| Supply Voltage | 2.7 | 6 | V |
| Operating Junction Temperature | -55 | 150 | ${ }^{\circ} \mathrm{C}$ |

## Electrical Characteristics

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted

| Parameter | Symbol | Conditions |  | Min. | Typ. | Max. | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Logic Levels |  |  |  |  |  |  |  |
| Logic High Input Voltage | $\mathrm{V}_{\mathrm{IH}}$ | $\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 6.0 V |  | $\begin{aligned} & \hline 70 \% \\ & V_{D D} \end{aligned}$ |  |  | V |
| Logic Low Input Voltage | $\mathrm{V}_{\text {IL }}$ | $\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 6.0 V |  |  |  | $\begin{aligned} & \hline 25 \% \\ & V_{D D} \end{aligned}$ | V |
| Off Characteristics - Slew Rate Control Driver |  |  |  |  |  |  |  |
| Supply Input Breakdown Voltage | $B V_{\text {DG }}$ | $\mathrm{I}_{\mathrm{DG}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}, \mathrm{~V}_{\text {SLEW }}=0 \mathrm{~V}$ |  | 9 |  |  | V |
| Slew Input Breakdown Voltage | $B V_{\text {SLEW }}$ | $\mathrm{I}_{\text {SLEW }}=10 \mu \mathrm{~A}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$ |  | 9 |  |  | V |
| Logic Input Breakdown Voltage | $\mathrm{BV}_{\text {IN }}$ | $\mathrm{I}_{\text {IN }}=10 \mu \mathrm{~A}, \mathrm{~V}_{\text {SLEW }}=0 \mathrm{~V}$ |  | 9 |  |  | V |
| Supply Input Leakage Current | $\mathrm{IR}_{\mathrm{DG}}$ | $\mathrm{V}_{\mathrm{DG}}=8 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}, \mathrm{~V}_{\text {SLEW }}=0 \mathrm{~V}$ |  |  |  | 100 | nA |
| Slew Input Leakage Current | $\mathrm{IR}_{\text {SLEW }}$ | $\mathrm{V}_{\text {SLEW }}=8 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$ |  |  |  | 100 | nA |
| Logic Input Leakage Current | $\mathrm{IR}_{\text {IN }}$ | $\mathrm{V}_{\text {IN }}=8 \mathrm{~V}, \mathrm{~V}_{\text {SLEW }}=0 \mathrm{~V}$ |  |  |  | 100 | nA |
| Off Characteristics - Slew Rate Control Driver + P-Channel MOSFET |  |  |  |  |  |  |  |
| MOSFET Breakdown Voltage | BV ${ }_{\text {DSS }}$ | $\mathrm{I}_{\mathrm{D}}=-250 \mu \mathrm{~A}$ |  | 9 |  |  | V |
| MOSFET Leakage Current | $\mathrm{I}_{\text {DSS }}$ | $\mathrm{V}_{\mathrm{R}}=16 \mathrm{~V}$ |  |  |  | 100 | nA |
| On Characteristics - Slew Rate Control Driver |  |  |  |  |  |  |  |
| Output/Gate Current | $\mathrm{I}_{\mathrm{G}}$ | $I_{D}=-250 \mu \mathrm{~A}$ | Slew Pin = Open | 90 |  |  | $\mu \mathrm{A}$ |
|  |  |  | Slew Pin = GND | 1 |  |  | $\mu \mathrm{A}$ |
|  |  |  | Slew Pin $=\mathrm{V}_{\mathrm{DD}}$ | 10 |  |  | nA |

## Electrical Characteristics Cont.

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted

| Parameter | Symbol | Conditions |  | Min. | Typ. | Max. | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| On Characteristics - P-Channel MOSFET |  |  |  |  |  |  |  |
| Gate Threshold Voltage | $\mathrm{V}_{\mathrm{GS} \text { (th) }}$ | $\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=-250 \mu \mathrm{~A}$ |  | -0.6 | -1 | -1.5 | V |
| Static Drain-Source On Resistance | $\mathrm{R}_{\mathrm{DS} \text { (ON) }}$ | $\mathrm{V}_{\mathrm{GS}}=-4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-1.5 \mathrm{~A}$ |  |  | 120 | 145 | $\mathrm{m} \Omega$ |
|  |  | $\mathrm{V}_{\mathrm{GS}}=-2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-1.2 \mathrm{~A}$ |  |  | 170 | 210 | $\mathrm{m} \Omega$ |
| On Characteristics - Slew Rate Control Driver + P-Channel MOSFET |  |  |  |  |  |  |  |
| Dropout Voltage | $\mathrm{V}_{\text {DROP }}$ | $\mathrm{V}_{\mathrm{DD}}=6 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=2.5 \mathrm{~V}$ to $6 \mathrm{~V}, \mathrm{I}_{\mathrm{L}}=1.5 \mathrm{~A}$ |  |  | 160 | 300 | mV |
|  |  | $\mathrm{V}_{\mathrm{DD}}=6 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=2.5 \mathrm{~V}$ to $6 \mathrm{~V}, \mathrm{I}_{\mathrm{L}}=1.2 \mathrm{~A}$ |  |  | 130 | 300 | mV |
| Load Switch On Resistance | $\mathrm{R}_{\mathrm{ON}}$ | $\mathrm{V}_{\mathrm{DD}}=6 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=2.5 \mathrm{~V}$ to $6 \mathrm{~V}, \mathrm{I}_{\mathrm{L}}=1.5 \mathrm{~A}$ |  |  | 105 | 180 | $\mathrm{m} \Omega$ |
|  |  | $\mathrm{V}_{\mathrm{DD}}=6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2.5 \mathrm{~V}$ to $6 \mathrm{~V}, \mathrm{I}_{\mathrm{L}}=1.2 \mathrm{~A}$ |  |  | 110 | 210 | $\mathrm{m} \Omega$ |
| Load Current | load | $\mathrm{V}_{\mathrm{GS}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=6 \mathrm{~V}$ |  | 3 |  |  | A |
| P-Channel Switching Times ( $\mathrm{V}_{\text {SUPPLY }}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5.5 \mathrm{~V}$, Logic $\left.\mathrm{IN}=5.5 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=1.5 \mathrm{~A}\right)$ |  |  |  |  |  |  |  |
| Delay On Time | tdon | Slew Pin | = Open |  | 6.2 |  | $\mu \mathrm{s}$ |
|  |  |  | = GND |  | 42 |  | $\mu \mathrm{s}$ |
|  |  |  | $=V_{\text {DD }}$ |  | 115 |  | $\mu \mathrm{s}$ |
| $V_{\text {Out }}$ Rise Time | $\mathrm{t}_{\mathrm{R}}$ | Slew Pin | = Open |  | 6.75 |  | $\mu \mathrm{s}$ |
|  |  |  | = GND |  | 124 |  | $\mu \mathrm{s}$ |
|  |  |  | $=\mathrm{V}_{\mathrm{DD}}$ |  | 162 |  | $\mu \mathrm{s}$ |
| Output Slew Rate | $\mathrm{dv} / \mathrm{dt}$ | Slew Pin | = Open |  | 600 |  | V/ms |
|  |  |  | = GND |  | 41 |  | $\mathrm{V} / \mathrm{ms}$ |
|  |  |  | $=\mathrm{V}_{\mathrm{DD}}$ |  | 24 |  | $\mathrm{V} / \mathrm{ms}$ |

## Typical Characteristics



Figure 1. Dropout Voltage vs. Temperature (SLEW = OPEN)


Figure 3. Dropout Voltage vs. Input Voltage (SLEW = OPEN)


Figure 5. On Resistance vs. Load Current (SLEW = OPEN)


Figure 2. Dropout Voltage vs. Load Current (SLEW = OPEN)


Figure 4. On Resistance vs. Temperature (SLEW = OPEN)


Figure 6. On Resistance vs. Input Voltage (SLEW = OPEN)

## Typical Characteristics



Figure 7. Switching Time vs. Load Resistance (SLEW = OPEN)


Figure 9. Switching Time vs. Load Resistance $\left(S L E W=V_{D D}\right)$


Figure 11. Switching Time vs. Load Current (SLEW = GROUND)


Figure 8. Switching Time vs. Load Resistance (SLEW = GROUND)


Figure 10. Switching Time vs. Load Current (SLEW = OPEN)


Figure 12. Switching Time vs. Load Current $\left(S L E W=V_{D D}\right)$

## Dimensional Outline and Pad Layout



MA06AREVD

## FAIRCHILD

SEMICONDUCTOR*

## TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

| ACEx ${ }^{\text {® }}$ | FPSS ${ }^{\text {TM }}$ | PDP-SPM ${ }^{\text {™ }}$ | SupreMOS ${ }^{\text {TM }}$ |
| :---: | :---: | :---: | :---: |
| Build it Now ${ }^{\text {TM }}$ | FRFET ${ }^{\text {® }}$ | Power220 ${ }^{\text {® }}$ | SyncFET ${ }^{\text {TM }}$ |
| CorePLUSTM | Global Power Resource ${ }^{\text {SM }}$ | POWEREDGE ${ }^{\circledR}$ | $5_{\text {SGENERAL }}{ }^{\text {® }}$ |
| CROSSVOLT ${ }^{\text {TM }}$ | Green FPS ${ }^{\text {™ }}$ | Power-SPM ${ }^{\text {™ }}$ | The Power Franchise ${ }^{\text {® }}$ |
| CTLTM | Green FPS ${ }^{\text {TM }} \mathrm{e}$-Series ${ }^{\text {™ }}$ | PowerTrench ${ }^{\circledR}$ | the , |
| Current Transfer Logic ${ }^{\text {TM }}$ | GTO ${ }^{\text {™ }}$ | Programmable Active Droop ${ }^{\text {™ }}$ | p wer franchise |
| EcoSPARK ${ }^{\text {® }}$ | $i-$ Lot ${ }^{\text {TM }}$ | QFET ${ }^{\text {® }}$ | TinyBoost ${ }^{\text {TM }}$ |
| EZSWITCH ${ }^{\text {TM }}$ * | IntelliMAX ${ }^{\text {TM }}$ | QS ${ }^{\text {TM }}$ | TinyBuck ${ }^{\text {TM }}$ |
| El ${ }^{\text {TM }}$ | ISOPLANAR ${ }^{\text {TM }}$ | QT Optoelectronics ${ }^{\text {TM }}$ | TinyLogic ${ }^{\text {® }}$ |
|  | MegaBuck ${ }^{\text {TM }}$ | Quiet Series ${ }^{\text {TM }}$ | TINYOPTO'm |
| $F$ | MICROCOUPLER ${ }^{\text {TM }}$ | RapidConfigure ${ }^{\text {TM }}$ | TinyPower ${ }^{\text {TM }}$ |
| Fairchild ${ }^{\text {® }}$ | MicroFET ${ }^{\text {m }}$ | SMART START ${ }^{\text {TM }}$ | TinyPWM ${ }^{\text {™ }}$ |
| Fairchild Semiconductor ${ }^{\text {® }}$ | MicroPak ${ }^{\text {m }}$ | $\mathrm{SPM}^{\text {® }}$ | TinyWire ${ }^{\text {™ }}$ |
| FACT Quiet Series ${ }^{\text {TM }}$ | MillerDrive ${ }^{\text {TM }}$ | STEALTH ${ }^{\text {™ }}$ | $\mu$ SerDes $^{\text {™ }}$ |
| FACT ${ }^{\text {® }}$ | Motion-SPM ${ }^{\text {TM }}$ | SuperFET ${ }^{\text {TM }}$ | UHC ${ }^{\text {® }}$ |
| FAST ${ }^{\text {® }}$ | OPTOLOGIC ${ }^{\text {® }}$ | SuperSOT ${ }^{\text {TM }}$-3 | Ultra FRFET ${ }^{\text {TM }}$ |
| FastvCore ${ }^{\text {TM }}$ | OPTOPLANAR ${ }^{\circledR}$ | SuperSOT ${ }^{\text {TM }}$ - 6 | UniFET ${ }^{\text {™ }}$ |
| FlashWriter ${ }^{\text {® }}$ |  | SuperSOT ${ }^{\text {TM- }} 8$ | VCX ${ }^{\text {TM }}$ |

* EZSWITCH ${ }^{\text {TM }}$ and FlashWriter ${ }^{\circledR}$ are trademarks of System General Corporation, used under license by Fairchild Semiconductor.


## DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

## LIFE SUPPORT POLICY <br> FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

## Definition of Terms

| Datasheet Identification | Product Status | Definition |
| :--- | :--- | :--- |
| Advance Information | Formative or In Design | This datasheet contains the design specifications for product <br> development. Specifications may change in any manner without notice. |
| Preliminary | First Production | This datasheet contains preliminary data; supplementary data will be <br> published at a later date. Fairchild Semiconductor reserves the right to <br> make changes at any time without notice to improve design. |
| No Identification Needed | Full Production | This datasheet contains final specifications. Fairchild Semiconductor <br> reserves the right to make changes at any time without notice to improve <br> the design. |
| Obsolete | Not In Production | This datasheet contains specifications on a product that has been <br> discontinued by Fairchild Semiconductor. The datasheet is printed for <br> reference information only. |

