

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

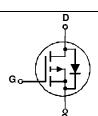
ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, emplo

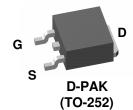
March 2015

FDD6637

35V P-Channel PowerTrench® MOSFET

General Description


This P-Channel MOSFET has been produced using Fairchild Semiconductor's proprietary PowerTrench technology to deliver low Rdson and optimized Bvdss capability to offer superior performance benefit in the applications.


Applications

- Inverter
- Power Supplies

Features

- -55 A, -35 V $R_{DS(ON)}$ = 11.6 m Ω @ V_{GS} = -10 V $R_{DS(ON)}$ = 18 m Ω @ V_{GS} = -4.5 V
- High performance trench technology for extremely low $R_{\text{DS}(\text{ON})}$
- RoHS Compliant

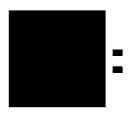
Absolute Maximum Ratings T

T_A=25°C unless otherwise noted

Symbol	Parameter			Ratings	Units	
V _{DSS}	Drain-Source Voltage			-35	V	
V _{DS(Avalanche)}	Drain-Source Avalanche V	oltage (maximur	n) (Note 4)	-40	V	
V _{GSS}	Gate-Source Voltage			±25	V	
I _D	Continuous Drain Current	@T _C =25°C	(Note 3)	-55	A	
		@T _A =25°C	(Note 1a)	-13		
		Pulsed	(Note 1a)	-100		
P _D	Power Dissipation	@T _C =25°C	(Note 3)	57	W	
		@T _A =25°C	(Note 1a)	3.1		
		@T _A =25°C	(Note 1b)	1.3		
T _J , T _{STG}	Operating and Storage Junction Temperature Range			-55 to +150	°C	

Thermal Characteristics

R _{eJC}	Thermal Resistance, Junction-to-Case	(Note 1)	2.2	°C/W
R _{eJA}	Thermal Resistance, Junction-to-Ambient	(Note 1a)	40	
R _{eJA}	Thermal Resistance, Junction-to-Ambient	(Note 1b)	96	


Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape width	Quantity	
FDD6637	FDD6637	D-PAK (TO-252)	13"	16mm	2500 units	

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Drain-So	urce Avalanche Ratings					
E _{AS}	Drain-Source Avalanche Energy (Single Pulse)	$V_{DD} = -35 \text{ V}, I_{D} = -11 \text{ A}, L = 1 \text{ mH}$		61		mJ
I _{AS}	Drain-Source Avalanche Current			-14		Α
Off Chara	acteristics(Note 2)					
BV _{DSS}	Drain–Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, \qquad I_{D} = -250 \mu\text{A}$	-35			V
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -28$ V, $V_{GS} = 0$ V			-1	μΑ
I _{GSS}	Gate-Body Leakage	$V_{GS} = \pm 25 \text{ V}, \qquad V_{DS} = 0 \text{ V}$			±100	nA
On Chara	acteristics (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	-1	-1.6	-3	V
$R_{\text{DS(on)}}$	Static Drain–Source On–Resistance	$\begin{split} &V_{GS} = -10 \text{ V}, & I_D = -14 \text{ A} \\ &V_{GS} = -4.5 \text{ V}, & I_D = -11 \text{ A} \\ &V_{GS} = -10 \text{ V}, &I_D = -14 \text{ A}, &T_J = 125 ^{\circ}\text{C} \end{split}$		9.7 14.4 14.7	11.6 18 19	mΩ
g _{FS}	Forward Transconductance	$V_{DS} = -5 \text{ V}, \qquad I_{D} = -14 \text{ A}$		35		S
Dvnamic	Characteristics					
C _{iss}	Input Capacitance			2370		pF
C _{oss}	Output Capacitance	$V_{DS} = -20 \text{ V}, \qquad V_{GS} = 0 \text{ V},$		470		pF
C _{rss}	Reverse Transfer Capacitance	f = 1.0 MHz		250		pF
R _G	Gate Resistance	f = 1.0 MHz		3.6		Ω
Switchine	g Characteristics (Note 2)	•	•		•	
t _{d(on)}	Turn-On Delay Time			18	32	ns
t _r	Turn-On Rise Time	$V_{DD} = -20 \text{ V}, \qquad I_{D} = -1 \text{ A},$		10	20	ns
t _{d(off)}	Turn-Off Delay Time	$V_{GS} = -10 \text{ V}, \qquad R_{GEN} = 6 \Omega$		62	100	ns
t _f	Turn-Off Fall Time	1		36	58	ns
Q_g	Total Gate Charge, V _{GS} = −10V			45	63	nC
Q_g	Total Gate Charge, V _{GS} = −5V	$V_{DS} = -20 \text{ V}, I_{D} = -14 \text{ A}$		25	35	nC
Q_{gs}	Gate-Source Charge			7		nC
Q_{gd}	Gate-Drain Charge			10		nC

Notes:

1. R_{8JA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{8JC} is guaranteed by design while R_{8CA} is determined by the user's board design.

a) $R_{\theta JA} = 40$ °C/W when mounted on a 1in^2 pad of 2 oz copper

b) $R_{\theta JA} = 96$ °C/W when mounted on a minimum pad.

Scale 1:1 on letter size paper

2. Pulse Test: Pulse Width < 300μ s, Duty Cycle < 2.0%

3. Maximum current is calculated as: $\sqrt{\frac{P_{D}}{R_{DS(ON)}}}$

where P_D is maximum power dissipation at $T_C = 25^{\circ}C$ and $R_{DS(on)}$ is at $T_{J(max)}$ and $V_{GS} = 10V$. Package current limitation is 21A

4. BV(avalanche) Single-Pulse rating is guaranteed if device is operated within the UIS SOA boundary of the device.

Typical Characteristics

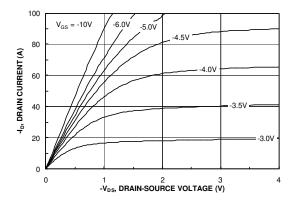


Figure 1. On-Region Characteristics

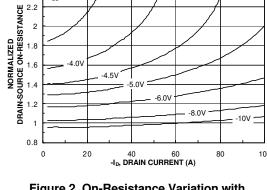


Figure 2. On-Resistance Variation with Drain Current and Gate Voltage

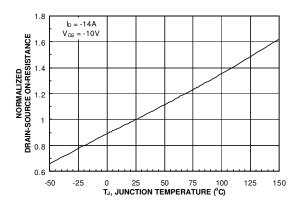


Figure 3. On-Resistance Variation with Temperature

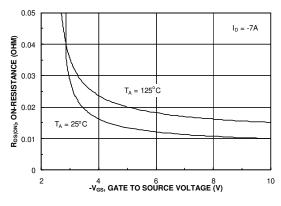


Figure 4. On-Resistance Variation with Gate-to-Source Voltage

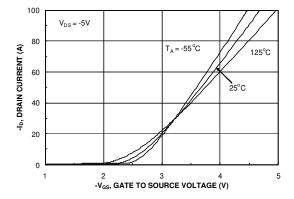


Figure 5. Transfer Characteristics

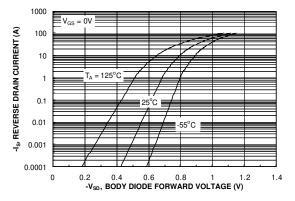


Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature

Typical Characteristics

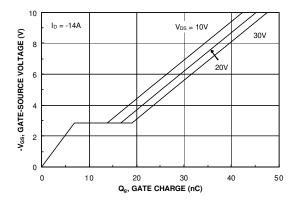


Figure 7. Gate Charge Characteristics

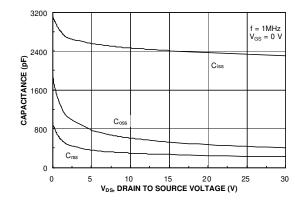


Figure 8. Capacitance Characteristics

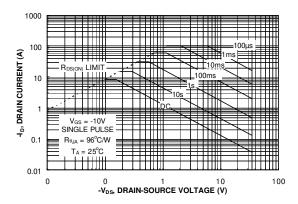


Figure 9. Maximum Safe Operating Area

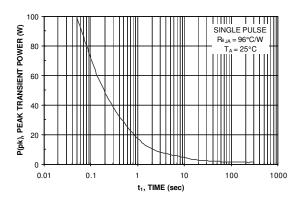


Figure 10. Single Pulse Maximum Power Dissipation

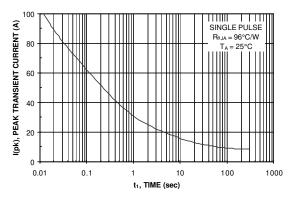


Figure 11. Single Pulse Maximum Peak Current

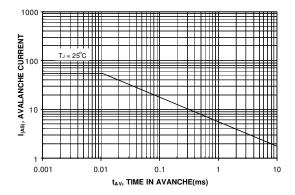


Figure 12. Unclamped Inductive Switching Capability

Typical Characteristics

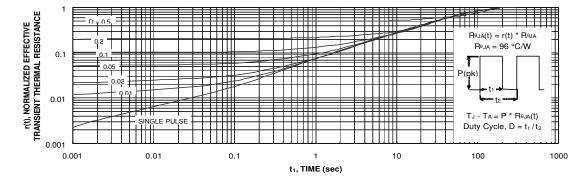


Figure 13. Transient Thermal Response Curve

Thermal characterization performed using the conditions described in Note 1b. Transient thermal response will change depending on the circuit board design.

Test Circuits and Waveforms

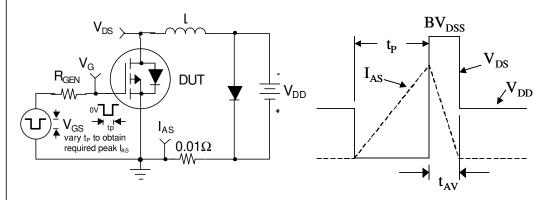


Figure 14. Unclamped Inductive Load Test Circuit

Figure 15. Unclamped Inductive Waveforms

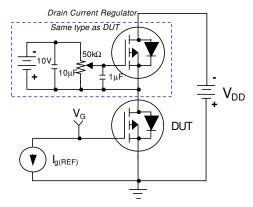


Figure 16. Gate Charge Test Circuit

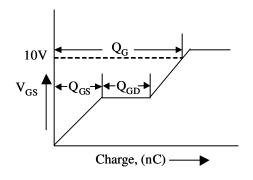


Figure 17. Gate Charge Waveform

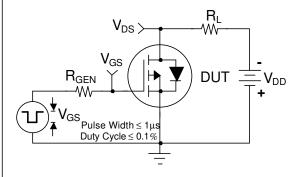


Figure 18. Switching Time Test Circuit

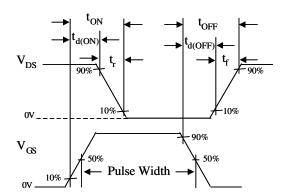
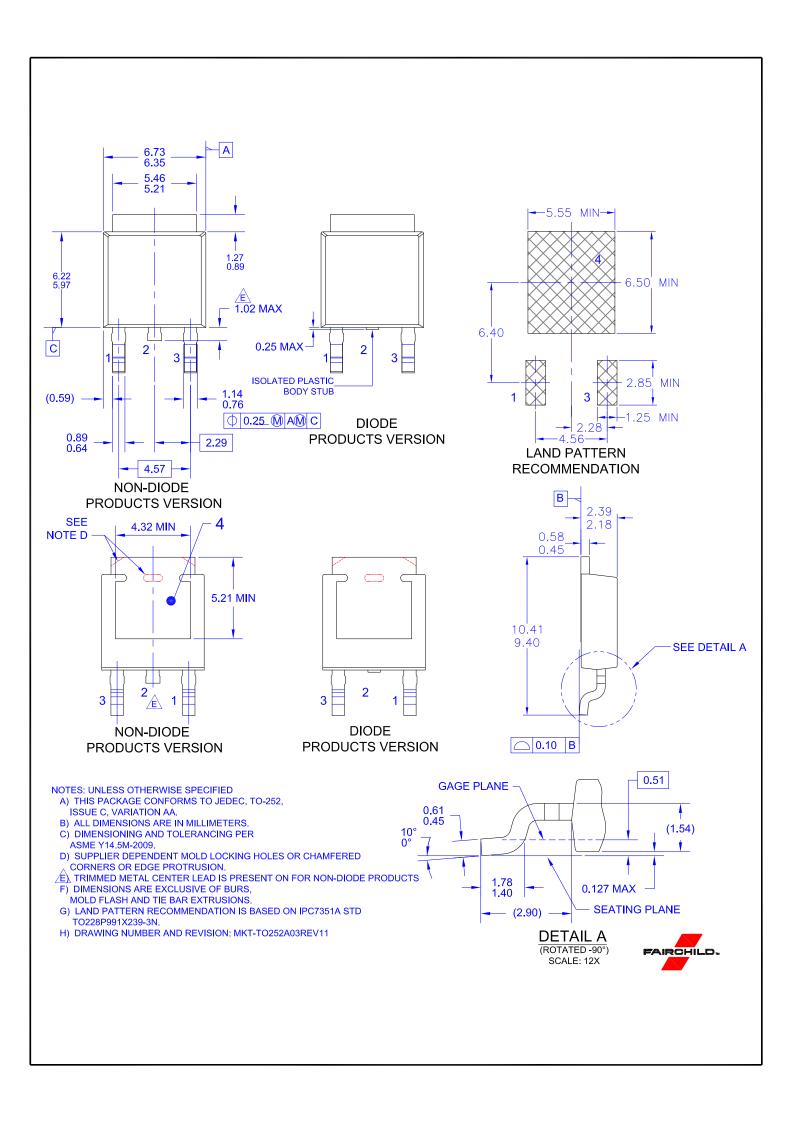



Figure 19. Switching Time Waveforms

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor nessure any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, a

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative