

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

March 2015

FDD8896 / FDU8896

N-Channel PowerTrench[®] MOSFET 30V, 94A, 5.7m Ω

General Description

This N-Channel MOSFET has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers. It has been optimized for low gate charge, low $r_{\text{DS}(\text{ON})}$ and fast switching speed.

Applications


DC/DC converters

Features

- $r_{DS(ON)} = 5.7 m\Omega$, $V_{GS} = 10 V$, $I_D = 35 A$
- $r_{DS(ON)} = 6.8 m\Omega$, $V_{GS} = 4.5 V$, $I_D = 35 A$
- High performance trench technology for extremely low rDS(ON)
- · Low gate charge
- · High power and current handling capability

MOSFET Maximum Ratings $T_C = 25$ °C unless otherwise noted

Symbol	Parameter	Ratings	Units V	
V_{DSS}	Drain to Source Voltage	30		
V _{GS}	Gate to Source Voltage	±20	V	
I _D	Drain Current			
	Continuous ($T_C = 25^{\circ}C$, $V_{GS} = 10V$) (Note 1)	94	Α	
	Continuous ($T_C = 25^{\circ}C$, $V_{GS} = 4.5V$) (Note 1)	85	Α	
	Continuous ($T_{amb} = 25^{\circ}C$, $V_{GS} = 10V$, with $R_{\theta JA} = 52^{\circ}C/W$)	17	Α	
	Pulsed	Figure 4	Α	
E _{AS}	Single Pulse Avalanche Energy (Note 2)	168	mJ	
P _D	Power dissipation	80	W	
	Derate above 25°C	0.53	W/°C	
T _J , T _{STG}	Operating and Storage Temperature	-55 to 175	°C	

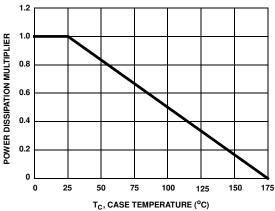
Thermal Characteristics

$R_{\theta JC}$	Thermal Resistance Junction to Case TO-252, TO-251	1.88	°C/W
$R_{\theta JA}$	Thermal Resistance Junction to Ambient TO-252, TO-251	100	°C/W
$R_{\theta JA}$	Thermal Resistance Junction to Ambient TO-252, 1in ² copper pad area	52	°C/W

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDD8896	FDD8896 FDD8896 TO-252AA 13"		13"	16mm	2500 units
FDU8896	FDU8896	TO-251AA	Tube	N/A	75 units

Electrical Characteristics $T_C = 25^{\circ}C$ unless otherwise noted


Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Chara	acteristics					
B _{VDSS}	Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	30	-	-	V
I _{DSS}	7 0	V _{DS} = 24V	-	-	1	μΑ
	Zero Gate Voltage Drain Current	$V_{GS} = 0V$ $T_{C} = 150^{\circ}C$	-	-	250	
I_{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20V$	-	-	±100	nΑ
On Chara	cteristics					
V _{GS(TH)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = 250 \mu A$	1.2	-	2.5	V
,		$I_D = 35A, V_{GS} = 10V$	-	0.0047	0.0057	
	Durin to Common Co. 5	$I_D = 35A, V_{GS} = 4.5V$	-	0.0057	0.0068	0
r _{DS(ON)}	Drain to Source On Resistance	$I_D = 35A, V_{GS} = 10V,$ $T_J = 175^{\circ}C$	-	0.0075	0.0092	Ω
Dynamic	Characteristics					
C _{ISS}	Input Capacitance		-	2525	-	pF
C _{OSS}	Output Capacitance	$V_{DS} = 15V, V_{GS} = 0V,$	-	490	-	pF
C _{RSS}	Reverse Transfer Capacitance	f = 1MHz	-	300	-	pF
R _G	Gate Resistance	$V_{GS} = 0.5V, f = 1MHz$	-	2.1	-	Ω
$Q_{a(TOT)}$	Total Gate Charge at 10V	V _{GS} = 0V to 10V	-	46	60	nC
Q _{g(5)}	Total Gate Charge at 5V	$V_{GS} = 0V \text{ to } 5V$	-	24	32	nC
$Q_{a(TH)}$	Threshold Gate Charge	$V_{DD} = 0V_{DD} = 15V$	-	2.3	3.0	nC
Q _{as}	Gate to Source Gate Charge	$I_D = 35A$ $I_a = 1.0 \text{mA}$	-	6.9	-	nC
Q_{as2}	Gate Charge Threshold to Plateau	ig = 1.0111A	-	4.6	1	nC
Q_{ad}	Gate to Drain "Miller" Charge		-	9.8	-	nC
Switching	g Characteristics (V _{GS} = 10V)					
t _{ON}	Turn-On Time		-	-	171	ns
t _{d(ON)}	Turn-On Delay Time		-	9	-	ns
t _r	Rise Time	V _{DD} = 15V, I _D = 35A	-	106	-	ns
t _{d(OFF)}	Turn-Off Delay Time	$V_{GS} = 10V, R_{GS} = 6.2\Omega$	-	53	-	ns
t _f	Fall Time		-	41	-	ns
t _{OFF}	Turn-Off Time		-	-	143	ns
Drain-So	urce Diode Characteristics					
V	Course to Ducin Diade Valte	I _{SD} = 35A	-	-	1.25	V
V _{SD}	Source to Drain Diode Voltage	I _{SD} = 15A	-	-	1.0	٧
t _{rr}	Reverse Recovery Time	$I_{SD} = 35A$, $dI_{SD}/dt = 100A/\mu s$	-	-	27	ns
_	I	I	1	1		

 $I_{SD} = 35A$, $dI_{SD}/dt = 100A/\mu s$

Reverse Recovered Charge

Notes: 1: Package current limitation is 35A. 2: Starting $T_J = 25^{\circ}C$, L = 0.43mH, $I_{AS} = 28A$, $V_{DD} = 27V$, $V_{GS} = 10V$.

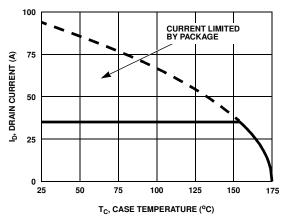


Figure 1. Normalized Power Dissipation vs Case Temperature

Figure 2. Maximum Continuous Drain Current vs Case Temperature

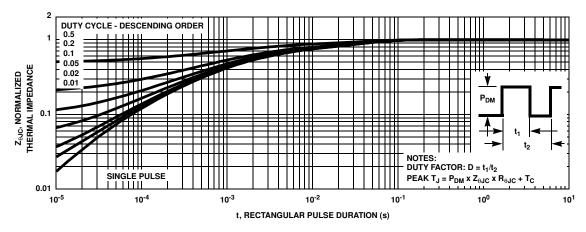


Figure 3. Normalized Maximum Transient Thermal Impedance

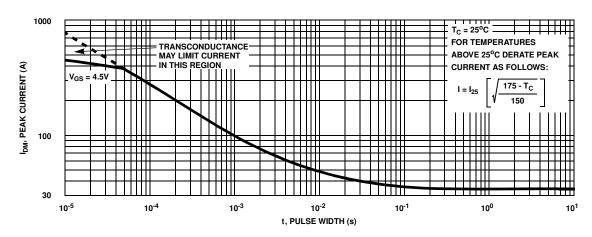
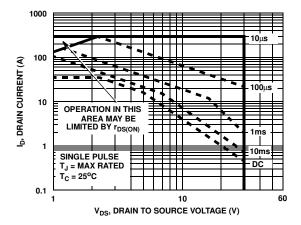



Figure 4. Peak Current Capability

©2008 Fairchild Semiconductor Corporation FDD8896 / FDU8896 Rev. 1.2

Typical Characteristics $T_C = 25^{\circ}C$ unless otherwise noted

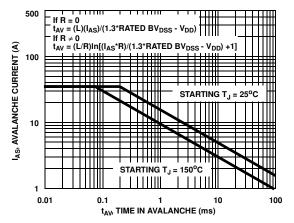
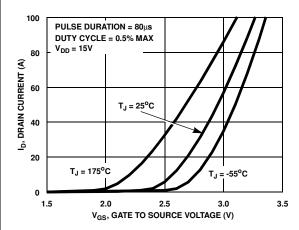



Figure 5. Forward Bias Safe Operating Area

NOTE: Refer to Fairchild Application Notes AN7514 and AN7515

Figure 6. Unclamped Inductive Switching

Capability

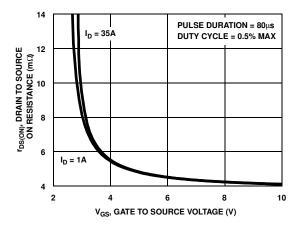



Figure 7. Transfer Characteristics

Figure 8. Saturation Characteristics

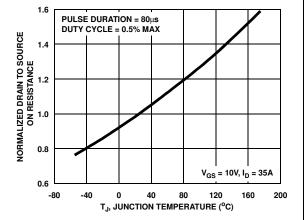


Figure 9. Drain to Source On Resistance vs Gate Voltage and Drain Current

Figure 10. Normalized Drain to Source On Resistance vs Junction Temperature

©2004 Fairchild Semiconductor Corporation FDD8896 / FDU8896 Rev. 1.2

Typical Characteristics $T_C = 25^{\circ}C$ unless otherwise noted

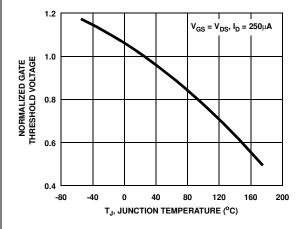


Figure 11. Normalized Gate Threshold Voltage vs
Junction Temperature

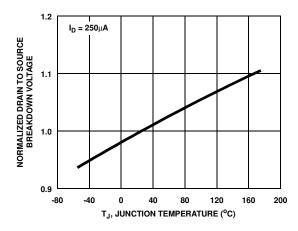


Figure 12. Normalized Drain to Source Breakdown Voltage vs Junction Temperature

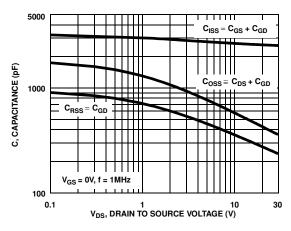


Figure 13. Capacitance vs Drain to Source Voltage

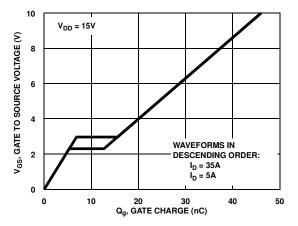


Figure 14. Gate Charge Waveforms for Constant Gate Current

Test Circuits and Waveforms

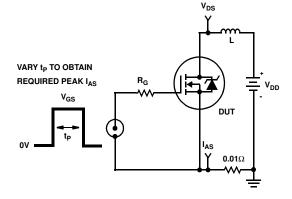


Figure 15. Unclamped Energy Test Circuit

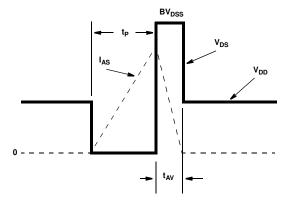


Figure 16. Unclamped Energy Waveforms

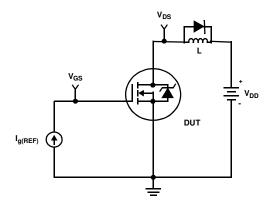


Figure 17. Gate Charge Test Circuit

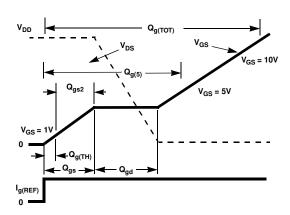


Figure 18. Gate Charge Waveforms

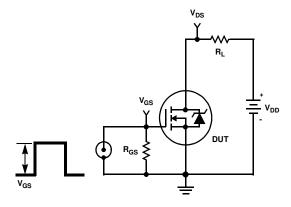


Figure 19. Switching Time Test Circuit

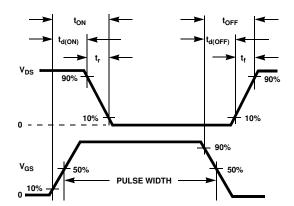


Figure 20. Switching Time Waveforms

Thermal Resistance vs. Mounting Pad Area

The maximum rated junction temperature, T_{JM} , and the thermal resistance of the heat dissipating path determines the maximum allowable device power dissipation, P_{DM} , in an application. Therefore the application's ambient temperature, T_A (°C), and thermal resistance $R_{\theta JA}$ (°C/W) must be reviewed to ensure that T_{JM} is never exceeded. Equation 1 mathematically represents the relationship and serves as the basis for establishing the rating of the part.

$$P_{DM} = \frac{(T_{JM} - T_A)}{R_{\theta JA}} \tag{EQ. 1}$$

In using surface mount devices such as the TO-252 package, the environment in which it is applied will have a significant influence on the part's current and maximum power dissipation ratings. Precise determination of P_{DM} is complex and influenced by many factors:

- Mounting pad area onto which the device is attached and whether there is copper on one side or both sides of the board.
- 2. The number of copper layers and the thickness of the board.
- 3. The use of external heat sinks.
- 4. The use of thermal vias.
- 5. Air flow and board orientation.
- For non steady state applications, the pulse width, the duty cycle and the transient thermal response of the part, the board and the environment they are in.

Fairchild provides thermal information to assist the designer's preliminary application evaluation. Figure 21 defines the $R_{\theta JA}$ for the device as a function of the top copper (component side) area. This is for a horizontally positioned FR-4 board with 1oz copper after 1000 seconds of steady state power with no air flow. This graph provides the necessary information for calculation of the steady state junction temperature or power dissipation. Pulse applications can be evaluated using the Fairchild device Spice thermal model or manually utilizing the normalized maximum transient thermal impedance curve.

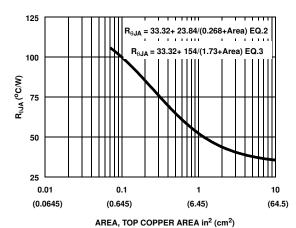
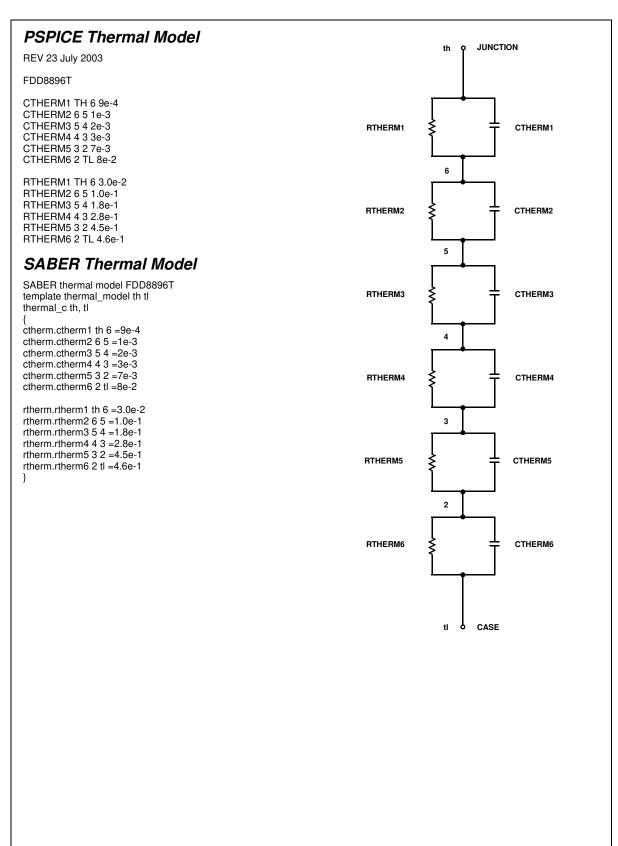
Thermal resistances corresponding to other copper areas can be obtained from Figure 21 or by calculation using Equation 2 or 3. Equation 2 is used for copper area defined in inches square and equation 3 is for area in centimeters square. The area, in square inches or square centimeters is the top copper area including the gate and source pads.

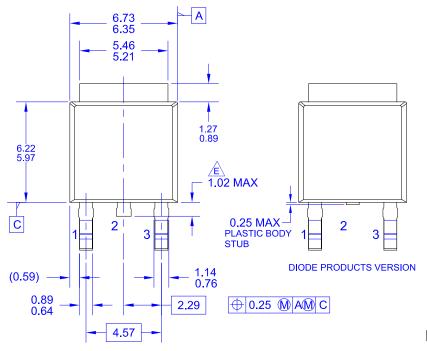
$$R_{\Theta JA} = 33.32 + \frac{23.84}{(0.268 + Area)}$$
 (EQ. 2)

Area in Inches Squared

$$R_{\theta JA} = 33.32 + \frac{154}{(1.73 + Area)}$$
 (EQ. 3)

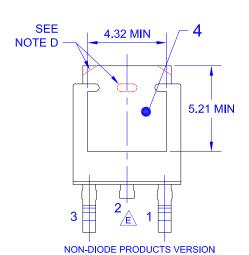
Area in Centimeters Squared

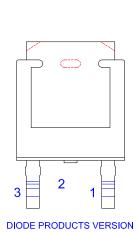



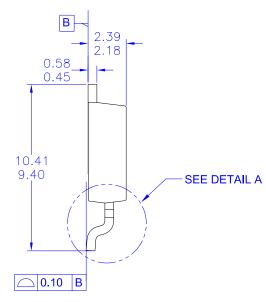

Figure 21. Thermal Resistance vs Mounting Pad Area


```
PSPICE Electrical Model
.SUBCKT FDD8896 2 1 3; rev July 2003
Ca 12 8 2.3e-9
                                                                                                 LDRAIN
Cb 15 14 2.3e-9
                                                            DPLCAP
                                                                                                         DRAIN
Cin 6 8 2.3e-9
                                                         10
                                                                                                RLDRAIN
                                                                      RSLC1
Dbody 7 5 DbodyMOD
                                                                                  DBREAK \
Dbreak 5 11 DbreakMOD
                                                           RSLC2
Dplcap 10 5 DplcapMOD
                                                                        FSI C
                                                                                        11
Ebreak 11 7 17 18 32.6
                                                                       50
Eds 14 8 5 8 1
                                                                      RDRAIN
                                                                                              ▲ DBODY
                                                                                 EBREAK
                                                   ESG
Fas 13 8 6 8 1
                                                             FVTHRES
Esq 6 10 6 8 1
                                                               1<u>9</u>
8
                                                                                   MWFAK
Evthres 6 21 19 8 1
                                   LGATE
                                                  EVTEMP
Evtemp 20 6 18 22 1
                             GATE
                                           RGATE
                                                                         I
                                                                            MMFD
                                          9
                                                20
                                                                 MSTRO
It 8 17 1
                                   RI GATE
                                                                                                LSOURCE
                                                                 CIN
                                                                                                         SOURCE
Lgate 1 9 4.6e-9
Ldrain 2 5 1.0e-9
                                                                                  RSOURCE
Lsource 3 7 1 7e-9
                                                                                               RLSOURCE
                                                                                      RBREAK
RLgate 1 9 46
                                                     13
8
                                                          14
13
                                                                                              18
RLdrain 2 5 10
RLsource 3 7 17
                                                                                              RVTEMP
                                                  S1B
                                                           СВ
                                                                                               19
                                             CA
Mmed 16 6 8 8 MmedMOD
                                                                                 IT
                                                                      14
Mstro 16 6 8 8 MstroMOD
                                                                                                VBAT
                                                     EGS
Mweak 16 21 8 8 MweakMOD
                                                                                8
Rbreak 17 18 RbreakMOD 1
                                                                                     RVTHRES
Rdrain 50 16 RdrainMOD 2.2e-3
Rgate 9 20 2.1
RŠLC1 5 51 RSLCMOD 1e-6
RSLC2 5 50 1e3
Rsource 8 7 RsourceMOD 2e-3
Rvthres 22 8 RvthresMOD 1
Rvtemp 18 19 RvtempMOD 1
S1a 6 12 13 8 S1AMOD
S1b 13 12 13 8 S1BMOD
S2a 6 15 14 13 S2AMOD
S2b 13 15 14 13 S2BMOD
Vbat 22 19 DC 1
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*500),10))}
.MODEL DbodyMOD D (IS=5E-12 IKF=10 N=1.01 RS=2.6e-3 TRS1=8e-4 TRS2=2e-7
+ CJO=8.8e-10 M=0.57 TT=1e-16 XTI=0.9)
.MODEL DbreakMOD D (RS=8e-2 TRS1=1e-3 TRS2=-8.9e-6)
.MODEL DplcapMOD D (CJO=9.4e-10 IS=1e-30 N=10 M=0.4)
.MODEL MmedMOD NMOS (VTO=1.85 KP=10 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=2.1 T ABS=25)
.MODEL MstroMOD NMOS (VTO=2.34 KP=350 IS=1e-30 N=10 TOX=1 L=1u W=1u T ABS=25)
.MODEL MweakMOD NMOS (VTO=1.55 KP=0.05 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=21 RS=0.1 T_ABS=25)
.MODEL RbreakMOD RES (TC1=8.3e-4 TC2=-4e-7)
.MODEL RdrainMOD RES (TC1=1e-4 TC2=8e-6)
MODEL RSLCMOD RES (TC1=9e-4 TC2=1e-6)
.MODEL RsourceMOD RES (TC1=7.5e-3 TC2=1e-6)
.MODEL RvthresMOD RES (TC1=-1.7e-3 TC2=-8.8e-6)
.MODEL RytempMOD RES (TC1=-2.6e-3 TC2=2e-7)
.MODEL S1AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-4 VOFF=-3)
.MODEL S1BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-3 VOFF=-4)
.MODEL S2AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-2 VOFF=-0.5)
.MODEL S2BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-0.5 VOFF=-2)
FNDS
Note: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank
Wheatley.
```

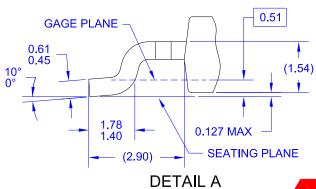
```
SABER Electrical Model
rev July 2003
template FDD8896 n2,n1,n3 =m temp
electrical n2,n1,n3
number m_temp=25
var i iscl
dp..model dbodymod = (isl=5e-12,ikf=10,nl=1.01,rs=2.6e-3,trs1=8e-4,trs2=2e-7,cjo=8.8e-10,m=0.57,tt=1e-16,xti=0.9)
dp..model dbreakmod = (rs=8e-2,trs1=1e-3,trs2=-8.9e-6)
dp..model dplcapmod = (cjo=9.4e-10,isl=10e-30,nl=10,m=0.4)
m..model mmedmod = (type=_n, vto=1.85, kp=10, is=1e-30, tox=1)
m..model mstrongmod = (type=_n,vto=2.34,kp=350,is=1e-30, tox=1) m..model mweakmod = (type=_n,vto=1.55,kp=0.05,is=1e-30, tox=1,rs=0.1)
                                                                                                                LDRAIN
sw_vcsp..model s1amod = (ron=1e-5,roff=0.1,von=-4,voff=-3)
                                                                       DPLCAP
                                                                                                                         DRAIN
sw_vcsp..model s1bmod = (ron=1e-5,roff=0.1,von=-3,voff=-4)
                                                                   10
sw vcsp..model s2amod = (ron=1e-5,roff=0.1,von=-2,voff=-0.5)
                                                                                                               RLDRAIN
sw vcsp..model s2bmod = (ron=1e-5,roff=0.1,von=-0.5,voff=-2)
                                                                                  RSLC1
c.ca n12 n8 = 2.3e-9
                                                                                  51
                                                                    RSLC2 €
c.cb n15 n14 = 2.3e-9
                                                                                    ISCI
c.cin n6 n8 = 2.3e-9
                                                                                              DBREAK
                                                                                  50
dp.dbody n7 n5 = model=dbodymod
                                                                                 RDRAIN
                                                                 <u>6</u>8
dp.dbreak n5 n11 = model=dbreakmod
                                                            FSG
                                                                                                               DBODY
                                                                       FVTHRES
dp.dplcap n10 n5 = model=dplcapmod
                                                                          (<u>19</u>)
                                                                                                MWEAK
                                           LGATE
                                                           EVTEMP
spe.ebreak n11 n7 n17 n18 = 32.6
                                   GATE
                                                                                    ММЕD
                                                             18
22
                                                                                                EBREAK
spe.eds n14 n8 n5 n8 = 1
spe.egs n13 n8 n6 n8 = 1
                                                                            ←MSTRC
                                          RLGATE
spe.esg n6 n10 n6 n8 = 1
                                                                                                               LSOURCE
spe.evthres n6 n21 n19 n8 = 1
                                                                            CIN
                                                                                                                         SOURCE
                                                                                      8
spe.evtemp n20 n6 n18 n22 = 1
                                                                                             RSOURCE
                                                                                                              RLSOURCE
i.it n8 n17 = 1
                                                                                                   RBREAK
I.lgate n1 n9 = 4.6e-9
I.Idrain n2 n5 = 1.0e-9
                                                                                                            ₹RVTEMP
                                                           S<sub>1</sub>B
                                                                    oS2B
I.Isource n3 n7 = 1.7e-9
                                                                                                             19
                                                      CA
                                                                                              IT
                                                                                                 (♠
                                                                                 14
res.rlgate n1 n9 = 46
                                                                                                               VBAT
res.rldrain n2 n5 = 10
                                                              EGS
                                                                         EDS
res.rlsource n3 n7 = 17
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u, temp=m_temp
                                                                                                   RVTHRES
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u, temp=m_temp
m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u, temp=m_temp
res.rbreak n17 n18 = 1, tc1=8.3e-4,tc2=-4e-7
res.rdrain n50 n16 = 2.2e-3, tc1=1e-4,tc2=8e-6
res.rgate n9 n20 = 2.1
res.rslc1 n5 n51 = 1e-6, tc1=9e-4,tc2=1e-6
res.rslc2 n5 n50 = 1e3
res.rsource n8 n7 = 2e-3, tc1=7.5e-3,tc2=1e-6
res.rvthres n22 n8 = 1, tc1=-1.7e-3, tc2=-8.8e-6
res.rvtemp n18 n19 = 1, tc1=-2.6e-3,tc2=2e-7
sw vcsp.s1a n6 n12 n13 n8 = model=s1amod
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod
sw vcsp.s2b n13 n15 n14 n13 = model=s2bmod
v.vbat n22 n19 = dc=1
equations {
|sc| : v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/500))** 10))
```


©2008 Fairchild Semiconductor Corporation FDD8896 / FDU8896 Rev. 1.2





NON-DIODE PRODUCTS VERSION



NOTES: UNLESS OTHERWISE SPECIFIED

- A) THIS PACKAGE CONFORMS TO JEDEC, TO-252,
- ISSUE C, VARIATION AA.

 B) ALL DIMENSIONS ARE IN MILLIMETERS.

 C) DIMENSIONING AND TOLERANCING PER ASME Y14.5M-2009.
- D) SUPPLIER DEPENDENT MOLD LOCKING HOLES OR CHAMFERED CORNERS OR EDGE PROTRUSION.
- E) TRIMMED CENTER LEAD IS PRESENT ONLY FOR DIODE PRODUCTS
- F) DIMENSIONS ARE EXCLUSSIVE OF BURSS, MOLD FLASH AND TIE BAR EXTRUSIONS.
- G) LAND PATTERN RECOMENDATION IS BASED ON IPC7351A STD TO228P991X239-3N.
- H) DRAWING NUMBER AND REVISION: MKT-TO252A03REV10

(ROTATED -90°) SCALE: 12X

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

 $\begin{array}{lll} \mathsf{AccuPower^{\mathsf{TM}}} & \mathsf{F-PFS^{\mathsf{TM}}} \\ \mathsf{AttitudeEngine^{\mathsf{TM}}} & \mathsf{FRFET}^{\mathsf{B}} \end{array}$

AWinda[®] Global Power ResourceSM
AX-CAP[®]* GreenBridge[™]

BitSiC™ Green FPS™
Build it Now™ Green FPS™ e-Series™

Current Transfer Logic™ Making Small Speakers Sound Louder

DEUXPEED® and Better™

Dual Cool™ MegaBuck™

EcoSPARK® MICROCOUPLER™

EfficientMax™ MicroFET™

ESBC™ MicroPak™ MicroPak™
Fairchild® MillerDrive™ MotionMax™
FACT Quiet Series™ MTi®

FACT Quiet Series™ MTi®

FACT® MTI®
FAST® MTx®
FastvCore™ MVN®
FETBench™ OptoHiT™
OPTOLOGIC®

OPTOPLANAR®

Power Supply WebDesigner™ PowerTrench®

Power1rench® PowerXSTM

Programmable Active Droop™

QFET[®]
QS™
Quiet Series™
RapidConfigure™

Saving our world, 1mW/W/kW at a time™

SignalWise™ SmartMax™ SMART START™

Solutions for Your Success™

SPM®
STEALTH™
SuperFET®
SuperSOT™-3
SuperSOT™-6
SuperMOS®
SupreMOS®
SyncFET™
Sync-Lock™

SYSTEM GENERAL®* TinyBoost®

TinyBuck[®]
TinyCalc™
TinyLogic[®]
TINYOPTO™
TinyPower™
TinyPWM™
TinyWire™
TranSiC™

TriFault Detect™
TRUECURRENT®*
uSerDes™

SerDes"
UHC®
Ultra FRFET™
UniFET™
VCX™

VCX™ VisualMax™ VoltagePlus™ XS™ Xsens™ 仙童™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT http://www.fairchildsemi.com, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

AUTHORIZED USE

Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application – including life critical medical equipment – where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer's use of this product is subject to agreement of this Authorized Use policy. In the event of an unauthorized use of Fairchild's product, Fairchild accepts no liability in the event of product failure. In other respects, this product shall be subject to Fairchild's Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Terms of Use

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Definition of Terms					
Datasheet Identification	Product Status	Definition			
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.			
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.			
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.			
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.			

Rev 175

^{*} Trademarks of System General Corporation, used under license by Fairchild Semiconductor.