

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

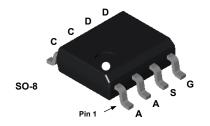
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

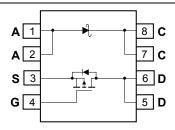
Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

FDFS2P102A

Integrated P-Channel PowerTrench® MOSFET and Schottky Diode


General Description


The FDFS2P102A combines the exceptional performance of Fairchild's PowerTrench MOSFET technology with a very low forward voltage drop Schottky barrier rectifier in an SO-8 package.

This device is designed specifically as a single package solution for DC to DC converters. It features a fast switching, low gate charge MOSFET with very low onstate resistance. The independently connected Schottky diode allows its use in a variety of DC/DC converter topologies.

Features

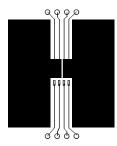
- -3.3 A, -20V $R_{DS(ON)}$ = 125 $m\Omega$ @ V_{GS} = -10 V $R_{DS(ON)}$ = 200 $m\Omega$ @ V_{GS} = -4.5 V
- V_F < 0.39 V @ 1 A (T_J = 125°C)
 V_F < 0.47 V @ 1 A
 V_F < 0.58 V @ 2 A
- Schottky and MOSFET incorporated into single power surface mount SO-8 package
- Electrically independent Schottky and MOSFET pinout for design flexibility

Absolute Maximum Ratings TA=25°C unless otherwise noted

Symbol	Parameter		Ratings	Units
V _{DSS}	MOSFET Drain-Source Voltage		-20	V
V _{GSS}	MOSFET Gate-Source Voltage		±20	V
I _D	Drain Current - Continuous	(Note 1a)	-3.3	А
	- Pulsed		-10	
P _D	Power Dissipation for Dual Operation		2	W
	Power Dissipation for Single Operation	(Note 1a)	1.6	
		(Note 1b)	1	
		(Note 1c)	0.9	
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to +150	°C
V_{RRM}	Schottky Repetitive Peak Reverse Voltage		20	V
Io	Schottky Average Forward Current	(Note 1a)	1	А

Package Marking and Ordering Information

Device Marking	Device	Reel Size	Tape width	Quantity
FDFS2P102A	FDFS2P102A	13"	12mm	2500 units


ΔΒV _{DSS} ΔΤ _J C IDSS IGSSF C IGSSR C On Charac V _{GS(th)} ΔΤ _J T R _{DS(on)} C G F S Switching	Drain—Source Breakdown Voltage Breakdown Voltage Temperature Coefficient Zero Gate Voltage Drain Current Gate—Body Leakage, Forward Gate—Body Leakage, Reverse Cteristics (Note 2) Gate Threshold Voltage Gate Threshold Voltage Temperature Coefficient Static Drain—Source On—Resistance On—State Drain Current Forward Transconductance Characteristics Input Capacitance	$V_{GS} = 0$ V, $I_D = -250$ μA $I_D = -250$ μA, Referenced to 25°C $V_{DS} = -16$ V, $V_{GS} = 0$ V $V_{GS} = 20$ V, $V_{DS} = 0$ V $V_{GS} = -20$ V, $V_{DS} = 0$ V $V_{DS} = V_{DS}$ V, $V_{DS} = 0$ V $V_{DS} = V_{DS}$ V, $V_{DS} = 0$ V $V_{DS} = V_{DS}$ V, $V_{DS} = 0$ V $V_{DS} = -250$ μA, Referenced to 25°C $V_{CS} = -10$ V, $V_{CS} = -2.5$ A V V V V V V V V V V V V V V V V V V	-20 -1 -10	-1.8 4.4 96 152 137	-1 100 -100 -3 125 200 190	V mV/°C μA nA nA V mV/°C
ΔΒV _{DSS} ΔΤ _J (C) IDSS (C) IGSSF (C) IGSSR (C) On Charace V _{GS(th)} (C) ΔV _{GS(th)} (C) ΔT _J (C) ID(on) (C) GFS (C) C _{iss} (C) C _{rss} (C) Switching	Breakdown Voltage Temperature Coefficient Zero Gate Voltage Drain Current Gate—Body Leakage, Forward Gate—Body Leakage, Reverse Cteristics (Note 2) Gate Threshold Voltage Gate Threshold Voltage Temperature Coefficient Static Drain—Source On—Resistance On—State Drain Current Forward Transconductance Characteristics Input Capacitance	$\begin{split} I_D &= -250 \; \mu\text{A}, \text{Referenced to } 25^{\circ}\text{C} \\ V_{DS} &= -16 \; \text{V}, V_{GS} = 0 \; \text{V} \\ V_{GS} &= 20 \; \text{V}, V_{DS} = 0 \; \text{V} \\ V_{GS} &= -20 \; \text{V}, V_{DS} = 0 \; \text{V} \\ \end{split}$ $\begin{aligned} V_{DS} &= V_{GS}, \; I_D = -250 \; \mu\text{A} \\ I_D &= -250 \; \mu\text{A}, \text{Referenced to } 25^{\circ}\text{C} \\ \end{aligned}$ $\begin{aligned} V_{GS} &= -10 \; \text{V}, I_D = -3.3 \; \text{A} \\ V_{GS} &= -4.5 \; \text{V}, I_D = -2.5 \; \text{A} \\ V_{GS} &= -10 \; \text{V}, \; I_D = -3.3 \; \text{A}, \; T_J = 125^{\circ}\text{C} \\ \end{aligned}$ $\begin{aligned} V_{GS} &= -10 \; \text{V}, \; V_{DS} = -5 \; \text{V} \\ V_{DS} &= -5 \; \text{V}, \; I_D = -3.3 \; \text{A} \end{aligned}$	-1	-1.8 4.4 96 152 137	100 -100 -3 125 200	mV/°C μA nA nA V mV/°C
ΔΤ _J Coss Coss	Coefficient Zero Gate Voltage Drain Current Gate—Body Leakage, Forward Gate—Body Leakage, Reverse Cteristics (Note 2) Gate Threshold Voltage Gate Threshold Voltage Temperature Coefficient Static Drain—Source On—Resistance On—State Drain Current Forward Transconductance Characteristics Input Capacitance	$\begin{split} &V_{DS} = -16 \text{ V}, V_{GS} = 0 \text{ V} \\ &V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V} \\ &V_{GS} = -20 \text{ V}, V_{DS} = 0 \text{ V} \\ \\ &V_{DS} = V_{GS}, \ I_D = -250 \mu\text{A} \\ &I_D = -250 \mu\text{A}, \text{Referenced to } 25^{\circ}\text{C} \\ \\ &V_{GS} = -10 \text{ V}, I_D = -3.3 \text{ A} \\ &V_{GS} = -4.5 \text{ V}, I_D = -2.5 \text{ A} \\ &V_{GS} = -10 \text{ V}, I_D = -3.3 \text{A}, T_J = 125^{\circ}\text{C} \\ \\ &V_{GS} = -10 \text{ V}, V_{DS} = -5 \text{ V} \\ \\ &V_{DS} = -5 \text{V}, \ I_D = -3.3 \text{ A} \\ \end{split}$		-1.8 4.4 96 152 137	100 -100 -3 125 200	μA nA nA V mV/°C mΩ
$\begin{array}{c c} I_{GSSF} & C \\ I_{GSSR} & C \\ \hline \textbf{On Charac} \\ V_{GS(th)} & C \\ \hline \Delta V_{GS(th)} & C \\ \hline \Delta T_J & 1 \\ \hline R_{DS(on)} & C \\ \hline G_{FS} & F \\ \hline \textbf{Dynamic C} \\ \hline C_{iss} & I \\ \hline C_{oss} & C \\ \hline C_{rss} & F \\ \hline \textbf{Switching} \\ \hline \end{array}$	Gate-Body Leakage, Forward Gate-Body Leakage, Reverse Cteristics (Note 2) Gate Threshold Voltage Gate Threshold Voltage Temperature Coefficient Static Drain-Source On-Resistance On-State Drain Current Forward Transconductance Characteristics Input Capacitance	$\begin{split} &V_{GS} = 20 \; V, V_{DS} = 0 \; V \\ &V_{GS} = -20 \; V, V_{DS} = 0 \; V \\ \\ &V_{DS} = V_{GS}, \; I_D = -250 \; \mu A \\ &I_D = -250 \; \mu A, Referenced to 25^{\circ}C \\ \\ &V_{GS} = -10 \; V, I_D = -3.3 \; A \\ &V_{GS} = -4.5 \; V, I_D = -2.5 \; A \\ &V_{GS} = -10 \; V, \; I_D = -3.3A, \; T_J = 125^{\circ}C \\ \\ &V_{GS} = -10 \; V, \; V_{DS} = -5 \; V \\ \\ &V_{DS} = -5V, \; I_D = -3.3 \; A \end{split}$		4.4 96 152 137	100 -100 -3 125 200	nA nA V mV/°C mΩ
$\begin{array}{c c} I_{GSSR} & C \\ \hline \textbf{On Charac} \\ V_{GS(th)} & C \\ \hline \Delta V_{GS(th)} & C \\ \hline \Delta T_J & 1 \\ \hline R_{DS(on)} & C \\ \hline I_{D(on)} & C \\ \hline \textbf{G}_{FS} & F \\ \hline \textbf{Dynamic} & C \\ \hline C_{iss} & I \\ \hline C_{oss} & C \\ \hline C_{rss} & F \\ \hline \textbf{Switching} \\ \hline \end{array}$	Gate-Body Leakage, Reverse Cteristics (Note 2) Gate Threshold Voltage Gate Threshold Voltage Temperature Coefficient Static Drain-Source On-Resistance On-State Drain Current Forward Transconductance Characteristics Input Capacitance	$\begin{split} &V_{GS} = -20 \text{ V}, V_{DS} = 0 \text{ V} \\ &V_{DS} = V_{GS}, I_D = -250 \mu\text{A} \\ &I_D = -250 \mu\text{A}, \text{Referenced to } 25^{\circ}\text{C} \\ &V_{GS} = -10 \text{ V}, I_D = -3.3 \text{ A} \\ &V_{GS} = -4.5 \text{ V}, I_D = -2.5 \text{ A} \\ &V_{GS} = -10 \text{ V}, I_D = -3.3 \text{A}, T_J = 125^{\circ}\text{C} \\ &V_{GS} = -10 \text{ V}, V_{DS} = -5 \text{ V} \\ &V_{DS} = -5 \text{V}, I_D = -3.3 \text{ A} \end{split}$		4.4 96 152 137	-100 -3 125 200	nA V mV/°C mΩ
$\begin{array}{c c} \textbf{On Charac} \\ \textbf{V}_{\text{GS(th)}} & \textbf{C} \\ \hline \Delta \textbf{V}_{\text{GS(th)}} & \textbf{C} \\ \Delta \textbf{T}_{\text{J}} & \textbf{T} \\ \textbf{R}_{\text{DS(on)}} & \textbf{C} \\ \hline \textbf{I}_{\text{D(on)}} & \textbf{C} \\ \hline \textbf{G}_{\text{FS}} & \textbf{F} \\ \hline \textbf{Dynamic C} \\ \textbf{C}_{\text{iss}} & \textbf{I} \\ \textbf{C}_{\text{oss}} & \textbf{C} \\ \textbf{C}_{\text{rss}} & \textbf{F} \\ \hline \textbf{Switching} \\ \end{array}$	Cteristics (Note 2) Gate Threshold Voltage Gate Threshold Voltage Temperature Coefficient Static Drain—Source On—Resistance On—State Drain Current Forward Transconductance Characteristics Input Capacitance	$\begin{split} &V_{DS} = V_{GS}, \ I_D = -250 \ \mu A \\ &I_D = -250 \ \mu A, Referenced \ to \ 25^{\circ}C \\ &V_{GS} = -10 \ V, I_D = -3.3 \ A \\ &V_{GS} = -4.5 \ V, I_D = -2.5 \ A \\ &V_{GS} = -10 \ V, \ I_D = -3.3A, \ T_J = 125^{\circ}C \\ &V_{GS} = -10 \ V, \ V_{DS} = -5 \ V \\ &V_{DS} = -5V, \ I_D = -3.3 \ A \end{split}$		4.4 96 152 137	-3 125 200	V mV/°C mΩ
$\begin{array}{c c} V_{GS(th)} & C \\ \underline{\Delta V_{GS(th)}} & C \\ \underline{\Delta T_J} & T \\ R_{DS(on)} & C \\ \hline \\ I_{D(on)} & C \\ \hline \\ \mathbf{Dynamic} & C \\ C_{iss} & I \\ C_{oss} & C \\ C_{rss} & F \\ \hline \\ \mathbf{Switching} \\ \end{array}$	Gate Threshold Voltage Gate Threshold Voltage Temperature Coefficient Static Drain–Source On–Resistance On–State Drain Current Forward Transconductance Characteristics Input Capacitance	$\begin{split} I_D = -250 \ \mu\text{A}, & \text{Referenced to } 25^{\circ}\text{C} \\ V_{GS} = -10 \ \text{V}, & I_D = -3.3 \ \text{A} \\ V_{GS} = -4.5 \ \text{V}, & I_D = -2.5 \ \text{A} \\ V_{GS} = -10 \ \text{V}, & I_D = -3.3 \text{A}, & T_J = 125^{\circ}\text{C} \\ V_{GS} = -10 \ \text{V}, & V_{DS} = -5 \ \text{V} \\ V_{DS} = -5 \ \text{V}, & I_D = -3.3 \ \text{A} \end{split}$		4.4 96 152 137	125 200	mV/°C
$\begin{array}{c c} V_{GS(th)} & C \\ \underline{\Delta V_{GS(th)}} & C \\ \underline{\Delta T_J} & T \\ R_{DS(on)} & C \\ \hline \\ I_{D(on)} & C \\ \hline \\ \mathbf{Dynamic} & C \\ C_{iss} & I \\ C_{oss} & C \\ C_{rss} & F \\ \hline \\ \mathbf{Switching} \\ \end{array}$	Gate Threshold Voltage Gate Threshold Voltage Temperature Coefficient Static Drain–Source On–Resistance On–State Drain Current Forward Transconductance Characteristics Input Capacitance	$\begin{split} I_D = -250 \ \mu\text{A}, & \text{Referenced to } 25^{\circ}\text{C} \\ V_{GS} = -10 \ \text{V}, & I_D = -3.3 \ \text{A} \\ V_{GS} = -4.5 \ \text{V}, & I_D = -2.5 \ \text{A} \\ V_{GS} = -10 \ \text{V}, & I_D = -3.3 \text{A}, & T_J = 125^{\circ}\text{C} \\ V_{GS} = -10 \ \text{V}, & V_{DS} = -5 \ \text{V} \\ V_{DS} = -5 \ \text{V}, & I_D = -3.3 \ \text{A} \end{split}$		4.4 96 152 137	125 200	mV/°C
$\begin{array}{c c} \Delta T_J & T \\ R_{DS(on)} & S \\ \hline \\ I_{D(on)} & C \\ \hline \\ g_{FS} & F \\ \hline \\ \textbf{Dynamic} & C \\ \hline \\ C_{iss} & I \\ \hline \\ C_{oss} & C \\ \hline \\ \textbf{Switching} \\ \end{array}$	Temperature Coefficient Static Drain–Source On–Resistance On–State Drain Current Forward Transconductance Characteristics Input Capacitance	$V_{GS} = -10 \text{ V}, I_D = -3.3 \text{ A}$ $V_{GS} = -4.5 \text{ V}, I_D = -2.5 \text{ A}$ $V_{GS} = -10 \text{ V}, I_D = -3.3 \text{ A}, T_J = 125 ^{\circ}\text{C}$ $V_{GS} = -10 \text{ V}, V_{DS} = -5 \text{ V}$ $V_{DS} = -5 \text{ V}, I_D = -3.3 \text{ A}$	-10	96 152 137	200	mΩ
I _{D(on)}	On–Resistance On–State Drain Current Forward Transconductance Characteristics Input Capacitance	$V_{GS} = -4.5 \text{ V}, I_D = -2.5 \text{ A}$ $V_{GS} = -10 \text{ V}, I_D = -3.3 \text{ A}, T_J = 125 ^{\circ}\text{C}$ $V_{GS} = -10 \text{ V}, V_{DS} = -5 \text{ V}$ $V_{DS} = -5 \text{ V}, I_D = -3.3 \text{ A}$	-10	152 137	200	
Graph F Dynamic (Ciss) I Coss C Criss F Switching	Forward Transconductance Characteristics Input Capacitance	$V_{DS} = -5V$, $I_D = -3.3$ A	-10	4.6		Α
$\begin{array}{c c} \textbf{Dynamic} & \textbf{C} \\ \textbf{C}_{\text{iss}} & \textbf{I} \\ \textbf{C}_{\text{oss}} & \textbf{C} \\ \textbf{C}_{\text{rss}} & \textbf{F} \\ \textbf{Switching} \end{array}$	Characteristics Input Capacitance	1		4.6		1
$egin{array}{ccc} C_{iss} & I \\ C_{oss} & C \\ C_{rss} & F \\ \hline \textbf{Switching} \\ \end{array}$	Input Capacitance	Voc = -10 V V co = 0 V	1			S
$egin{array}{ccc} C_{iss} & I \\ C_{oss} & C \\ C_{rss} & F \\ \hline \textbf{Switching} \\ \end{array}$	Input Capacitance	V _{DS} = -10 V V _{DS} = 0 V				
C _{rss} F Switching				182		pF
C _{rss} F Switching	Output Capacitance	f = 1.0 MHz		60		pF
	Reverse Transfer Capacitance			24		pF
	Characteristics (Note 2)		•			
$t_{d(on)}$	Turn-On Delay Time	$V_{DD} = -10 \text{ V}, \qquad I_D = -1 \text{ A},$		5	10	ns
	Turn-On Rise Time	$V_{GS} = -10 \text{ V}, \qquad R_{GEN} = 6 \Omega$		14	52	ns
t _{d(off)}	Turn-Off Delay Time			11	20	ns
t _f 7	Turn–Off Fall Time			2	4	ns
Q ₉ 1	Total Gate Charge	$V_{DS} = -10 \text{ V}, \qquad I_{D} = -3.3 \text{ A},$		2.1	3.0	nC
Q _{gs}	Gate–Source Charge	$V_{GS} = -5 V$		1.0		nC
Q _{gd}	Gate–Drain Charge			0.6		nC
Drain–Soເ	urce Diode Characteristics a	and Maximum Ratings				
	Maximum Continuous Drain–Source				-1.3	Α
V _{SD}	Drain–Source Diode Forward Voltage	$V_{GS} = 0 \text{ V}, I_S = -1.3 \text{ A} \text{(Note 2)}$		-0.8	-1.2	V
Schottky I	Diode Characteristics		1			1
	Reverse Leakage	V _R = 20 V T _J = 25°C			50	μА
	-	T _J = 125°C			18	mA
V _F F	Forward Voltage	$I_F = 1 \text{ A}$ $T_J = 25^{\circ}\text{C}$			0.47	V
		T _J = 125°C			0.39	
		$I_F = 2 A$ $T_J = 25^{\circ}C$			0.58	

Thermal Characteristics

$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1a)	78	°C/W
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case	(Note 1)	40	°C/W

Notes:

1. $R_{\theta JA}$ is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.

a) 78°C/W when mounted on a 0.5in² pad of 2 oz copper

125°C/W when mounted on a 0.02 in² pad of 2 oz copper

135°C/W when mounted on a minimum pad.

Scale 1:1 on letter size paper

2. Pulse Test: Pulse Width < 300 μ s, Duty Cycle < 2.0%

Typical Characteristics

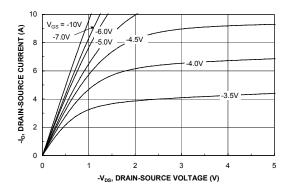


Figure 1. On-Region Characteristics.

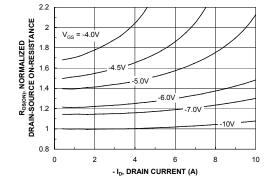


Figure 2. On-Resistance Variation with Drain Current and Gate Voltage.

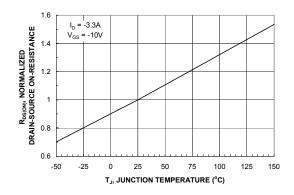


Figure 3. On-Resistance Variation with Temperature.

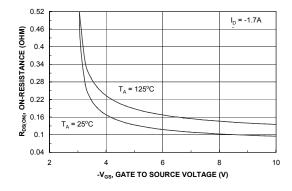


Figure 4. On-Resistance Variation with Gate-to-Source Voltage.

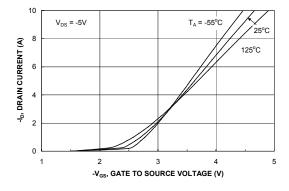


Figure 5. Transfer Characteristics.

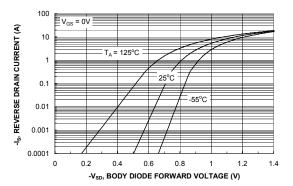
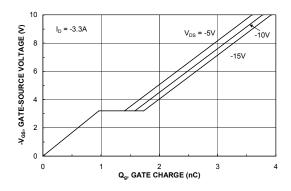



Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature.

Typical Characteristics

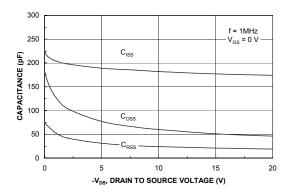
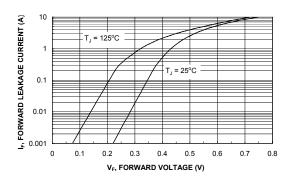



Figure 7. Gate Charge Characteristics.

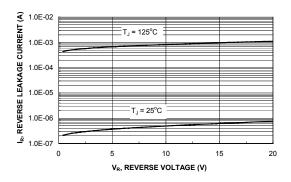


Figure 9. Schottky Diode Forward Voltage.

Figure 10. Schottky Diode Reverse Current.

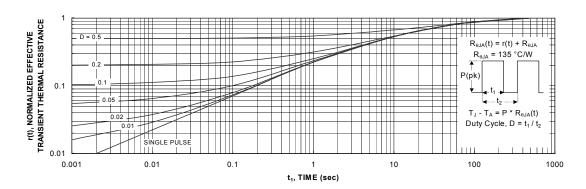


Figure 11. Transient Thermal Response Curve.

Thermal characterization performed using the conditions described in Note 1c. Transient thermal response will change depending on the circuit board design.

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FAST®	OPTOPLANAR™	STAR*POWER™
Bottomless™	FASTr™	PACMAN™	Stealth™
CoolFET™	FRFET™	POP™	SuperSOT™-3
CROSSVOLT™	GlobalOptoisolator™	Power247™	SuperSOT™-6
DenseTrench™	GTO™	PowerTrench®	SuperSOT™-8
DOME™	HiSeC™	QFET™	SyncFET™
EcoSPARK™	ISOPLANAR™	QS™	TinyLogic™
E ² CMOS TM	LittleFET™	QT Optoelectronics™	TruTranslation™
EnSigna™	MicroFET™	Quiet Series™	UHC™
FACT™	MICROWIRE™	SILENT SWITCHER®	UltraFET®
FACT Quiet Series™	OPTOLOGIC™	SMART START™	VCX™

STAR*POWER is used under license

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.