

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

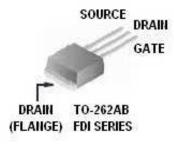
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

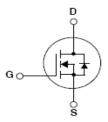
Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

FDI8442

N-Channel PowerTrench® MOSFET 40V, 80A, 2.9m Ω


Features


- Typ $r_{DS(on)} = 2.3m\Omega$ at $V_{GS} = 10V$, $I_D = 80A$
- Typ $Q_{g(10)} = 181nC$ at $V_{GS} = 10V$
- Low Miller Charge
- Low Q_{rr} Body Diode
- UIS Capability (Single Pulse and Repetitive Pulse)
- Qualified to AEC Q101
- RoHS Compliant

Applications

- Automotive Engine Control
- Powertrain Management
- Solenoid and Motor Drivers
- Electronic Steering
- Integrated Starter / Alternator
- Distributed Power Architectures and VRMs
- Primary Switch for 12V Systems

$\textbf{MOSFET Maximum Ratings} \ \, \textbf{T}_{C} = 25^{\circ}\text{C unless otherwise noted}$

Symbol	Parameter	Ratings	Units
V _{DSS}	Drain to Source Voltage	40	V
V_{GS}	Gate to Source Voltage	±20	V
	Drain Current Continuous (T _C <158°C, V _{GS} = 10V)	80	
I_D	Drain Current Continuous ($T_{amb} = 25^{\circ}C$, $V_{GS} = 10V$, with $R_{\theta JA} = 62^{\circ}C/W$)	23	Α
	Pulsed	See Figure 4	
E _{AS}	Single Pulse Avalanche Energy (Note 1	720	mJ
ר	Power Dissipation	254	W
P_D	Derate above 25°C	1.7	W/°C
T_J , T_{STG}	Operating and Storage Temperature	-55 to +175	°C

Thermal Characteristics

$R_{\theta JC}$	Thermal Resistance Junction to Case	0.59	°C/W	
$R_{\theta JA}$	Thermal Resistance Junction to Ambient	(Note 2)	62	°C/W

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDI8442	FDI8442	TO-262	Tube	N/A	50 units

Test Conditions

Min

Тур

Max

Units

Electrical Characteristics T_J = 25°C unless otherwise noted

Parameter

Off Ch	Off Characteristics						
B _{VDSS}	Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS}$	_S = 0V	40	-	-	V
ı	I _{DSS} Zero Gate Voltage Drain Current	$V_{DS} = 32V$		-	-	1	μА
IDSS	Zero Gate Voltage Drain Current	$V_{GS} = 0V$	$T_J = 150$ °C	-	-	250	μΑ
IGSS	Gate to Source Leakage Current	$V_{GS} = \pm 20V$	•	-	-	±100	nA

On Characteristics

Symbol

$V_{GS(th)}$	Gate to Source Threshold Voltage	$V_{DS} = V_{GS}, I_D = 250 \mu A$	2	2.9	4	V
		$I_D = 80A, V_{GS} = 10V$	-	2.3	2.9	
r _{DS(on)}	Drain to Source On Resistance	$I_D = 80A, V_{GS} = 10V,$ $T_J = 175^{\circ}C$	-	3.9	5.0	mΩ

Dynamic Characteristics

C _{iss}	Input Capacitance	V _{DS} = 25V, V _{GS} = 0V, f = 1MHz		-	12200	-	pF
C _{oss}	Output Capacitance			-	1040	-	pF
C _{rss}	Reverse Transfer Capacitance			-	640	-	pF
R_G	Gate Resistance	$V_{GS} = 0.5V, f = 1$	MHz	-	1.0	-	Ω
$Q_{g(TOT)}$	Total Gate Charge at 10V	$V_{GS} = 0$ to 10V		-	181	235	nC
$Q_{g(TH)}$	Threshold Gate Charge	$V_{GS} = 0 \text{ to } 2V$	$V_{DD} = 20V$	-	23	30	nC
Q_{gs}	Gate to Source Gate Charge		I _D = 80A	-	49	-	nC
Q _{gs2}	Gate Charge Threshold to Plateau	1	$I_g = 1mA$	-	26	-	nC
Q_{gd}	Gate to Drain "Miller" Charge			-	41	-	nC

Electrical Characteristics $T_J = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	lest Conditions	Win	тур	wax	Units
Switchi	ing Characteristics					
t _(on)	Turn-On Time		-	-	62	ns
t _{d(on)}	Turn-On Delay Time		-	19.5	-	ns
t _r	Turn-On Rise Time	$V_{DD} = 20V, I_{D} = 80A$ $V_{GS} = 10V, R_{GS} = 2\Omega$	-	19.3	-	ns
t _{d(off)}	Turn-Off Delay Time	$V_{GS} = 10V, R_{GS} = 2\Omega$	-	57	-	ns
t _f	Turn-Off Fall Time		-	17.2	-	ns
t _{off}	Turn-Off Time		-	-	118	ns

Drain-Source Diode Characteristics

V	Source to Drain Diode Voltage	I _{SD} = 80A	-	0.9	1.25	V
V SD	V _{SD} Source to Drain Diode Voltage	I _{SD} = 40A	-	0.8	1.0	٧
t _{rr}	Reverse Recovery Time	I _F = 75A, di/dt = 100A/μs	-	49	64	ns
Q _{rr}	Reverse Recovery Charge	$I_F = 75A$, di/dt = 100A/ μ s	-	70	91	nC

1: Starting T_J = 25°C, L = 0.35mH, I_{AS} = 64A 2: Pulse width = 100s.

This product has been designed to meet the extreme test conditions and environment demanded by the automotive industry. For a copy of the requirements, see AEC Q101 at: http://www.aecouncil.com/
All Fairchild Semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems certification.

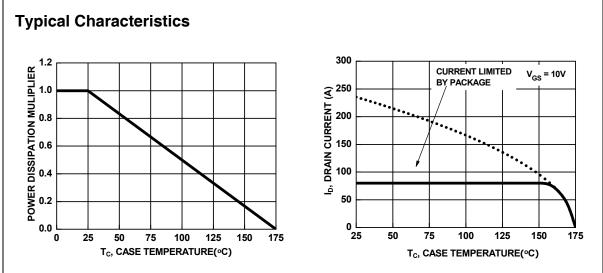


Figure 1. Normalized Power Dissipation vs Case Temperature

Figure 2. Maximum Continuous Drain Current vs Case Temperature

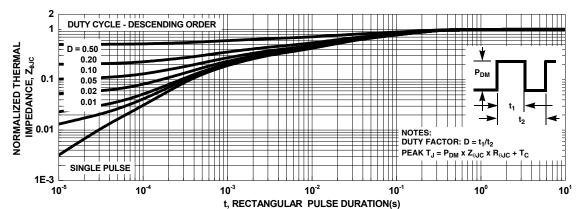


Figure 3. Normalized Maximum Transient Thermal Impedance

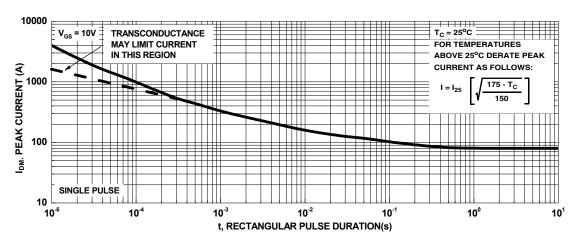


Figure 4. Peak Current Capability

Typical Characteristics

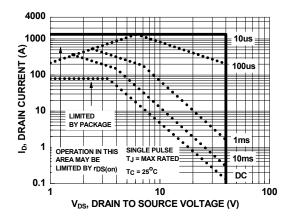
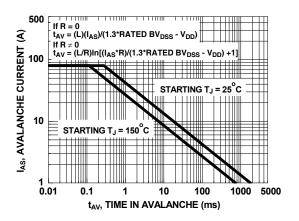



Figure 5. Forward Bias Safe Operating Area

NOTE: Refer to Fairchild Application Notes AN7514 and AN7515

Figure 6. Unclamped Inductive Switching Capability

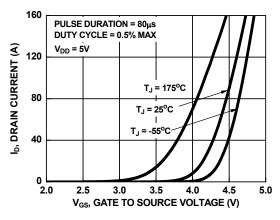


Figure 7. Transfer Characteristics

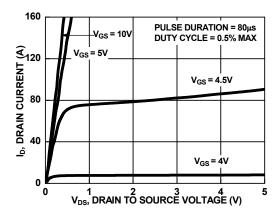


Figure 8. Saturation Characteristics

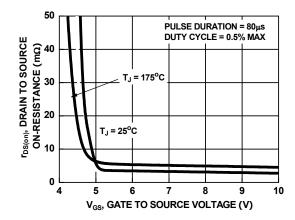


Figure 9. Drain to Source On-Resistance Variation vs Gate to Source Voltage

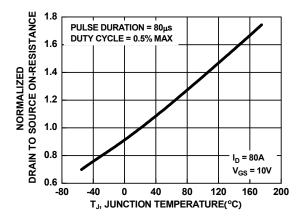


Figure 10. Normalized Drain to Source On Resistance vs Junction Temperature

Typical Characteristics

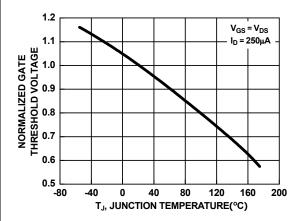


Figure 11. Normalized Gate Threshold Voltage vs
Junction Temperature

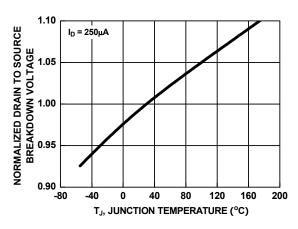


Figure 12. Normalized Drain to Source Breakdown Voltage vs Junction Temperature

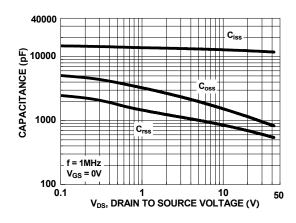


Figure 13. Capacitance vs Drain to Source Voltage

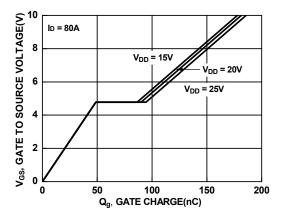


Figure 14. Gate Charge vs Gate to Source Voltage

TRADEMARKS

The following are registered and unregistered trademarks and service marks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

Build it Now™ CorePLUS™ $CROSSVOLT^{\text{TM}}$ CTL™ Current Transfer Logic™ EcoSPARK® Fairchild[®]

Fairchild Semiconductor® FACT Quiet Series™ **FACT®** $\mathsf{FAST}^{\mathbb{R}}$ FastvCore™ FPS™ FRFET® Global Power ResourceSM

GTO™ i-Lo™ IntelliMAX™ ISOPLANAR™ MegaBuck™ MicroFET™ MicroPak™ MillerDrive™ Motion-SPM™ OPTOLOGIC® OPTOPLANAR®

Green FPS™

MICROCOUPLER™ PDP-SPM™ Power220®

Green FPS™ e-Series™

Power247® POWEREDGE® Power-SPM™ $\mathsf{PowerTrench}^{\circledR}$ Programmable Active Droop™

QFET® QS™ QT Optoelectronics™ Quiet Series™ RapidConfigure™ SMART START™ SPM[®] STEALTH™

SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SvncFET™

The Power Franchise®

puwer TinyBoost™ TinyBuck™ $\mathsf{TinyLogic}^{\circledR}$ TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ µSerDes™ UHC® UniFET™ VCX™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification		Definition
Advance Information Formative or In Design		This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary First Production		This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed Full Production		This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.

Rev. I31