imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

June 2008

_

Complementary PowerTrench® MOSFET

Features

- Q1 -2.8 A, -20 V.
- $\begin{array}{l} R_{DS(ON)} = 160 \ m\Omega \ @ \ V_{GS} = -4.5 \ V \\ R_{DS(ON)} = 230 \ m\Omega \ @ \ V_{GS} = -2.5 \ V \\ R_{DS(ON)} = 390 \ m\Omega \ @ \ V_{GS} = -1.8 \ V \end{array}$
- Q2 3.2 A, 20 V. $R_{DS(ON)} = 90 \text{ m}\Omega @ V_{GS} = 4.5 \text{ V}$ $R_{DS(ON)} = 130 \text{ m}\Omega @ V_{GS} = 2.5 \text{ V}$
- Low gate charge
- High performance trench technology for extremely low R_{DS(ON)}

S2

S1

G1

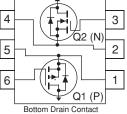
- FLMP SC75 package: Enhanced thermal performance in industry-standard package size
- RoHS Compliant

Applications

- DC/DC converter
- Load switch
- Motor Driving

General Description

These N & P-Channel MOSFETs are produced using Fairchild Semiconductor's advanced PowerTrench process that has been especially tailored to minimize on-state resistance and yet maintain superior switching performance.


These devices are well suited for low voltage and battery powered applications where low in-line power loss and fast switching are required.

Absolute Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter		Q1	Q2	Units
V _{DSS}	Drain-Source Voltage		-20	20	V
V _{GSS}	Gate-Source Voltage		±8	±12	V
I _D	Drain Current – Continuous	(Note 1a)	-2.8	3.2	A
	– Pulsed		-12	12	
P _D	Power Dissipation for Single Operation	(Note 1a)	1.5		W
		(Note 1b)	0.9		
T _J , T _{STG}	Operating and Storage Junction Temperature	-55 te	–55 to +150		
Thermal Cha	racteristics				•
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1a)	80		°C/W
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case	(Note 1a)	5		

1

Bottom Drain Contact

FDJ1032C

Package Marking and Ordering Information

Device Marking	Device	Reel Size	Tape width	Quantity	
.H	FDJ1032C	7"	8mm	3000 units	

Electrical Characteristics

Symbol	Parameter	Test Conditions	Туре	Min	Тур	Max	Units
Off Charact	eristics	1					
BV _{DSS}	Drain-Source Breakdown Voltage	$ \begin{array}{l} V_{GS} = 0 \; V, \; I_{D} = -250 \; \mu A \\ V_{GS} = 0 \; V, \; I_{D} = 250 \; \mu A \end{array} $	Q1 Q2	-20 20			V
$\frac{\Delta \text{BV}_{\text{DSS}}}{\Delta \text{T}_{\text{J}}}$	Breakdown Voltage Temperature Coefficient	$I_D = -250 \ \mu$ A, Referenced to 25°C $I_D = 250 \ \mu$ A, Referenced to 25°C	Q1 Q2		-13 13		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -16 V, V_{GS} = 0 V$ $V_{DS} = 16 V, V_{GS} = 0 V$	Q1 Q2			-1 1	μA
I _{GSS}	Gate-Body Leakage	$V_{GS} = \pm 8 V, V_{DS} = 0 V$ $V_{GS} = \pm 12 V, V_{DS} = 0 V$	Q1 Q2			±100 ±100	nA
On Charact	eristics (Note 2)						
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = -250 \ \mu A$ $V_{DS} = V_{GS}, I_D = 250 \ \mu A$	Q1 Q2	-0.4 0.6	-0.8 1.0	-1.5 1.5	V
$\frac{\Delta V_{\text{GS(th)}}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	$I_D = -250 \ \mu$ A, Referenced to 25°C $I_D = 250 \ \mu$ A, Referenced to 25°C	Q1 Q2		3 _3		mV/°C
00(01)	Static Drain-Source On-Resistance	$ \begin{array}{l} V_{GS} = -4.5 \text{ V}, \text{ I}_{D} = -2.8 \text{ A} \\ V_{GS} = -2.5 \text{ V}, \text{ I}_{D} = -2.2 \text{ A} \\ V_{GS} = -1.8 \text{ V}, \text{ I}_{D} = -1.7 \text{ A} \\ V_{GS} = -4.5 \text{ V}, \text{ I}_{D} = 2.8 \text{ A}, \text{ T}_{J} = 125^{\circ}\text{C} \end{array} $	Q1		108 163 283 150	160 230 390 238	mΩ
		$ \begin{array}{l} V_{GS} = 4.5 \text{ V}, \text{ I}_{D} = 3.2 \text{ A} \\ V_{GS} = 2.5 \text{ V}, \text{ I}_{D} = 2.7 \text{ A} \\ V_{GS} = 4.5 \text{ V}, \text{ I}_{D} = 3.2, \text{ T}_{J} = 125^{\circ}\text{C} \end{array} $	Q2		70 100 83	90 130 132	
9fs	Forward Transconductance	$V_{DS} = -5 V, I_D = -2.8 A$ $V_{DS} = 5 V, I_D = 3.2 A$	Q1 Q2		5 7.5		S
Dynamic Ch	naracteristics						
C _{iss}	Input Capacitance	Q1: V _{DS} = -10 V, V _{GS} = 0 V, f = 1.0 MHz	Q1 Q2		290 200		pF
C _{oss}	Output Capacitance	Q2: V _{DS} = 10 V, V _{GS} = 0 V, f = 1.0 MHz	Q1 Q2		55 50		pF
C _{rss}	Reverse Transfer Capacitance	$V_{\rm DS} = 10$ V, $V_{\rm GS} = 0$ V, $1 = 1.0$ With	Q1 Q2		29 30		pF
R _G	Gate Resistance		Q1 Q2		14 3		Ω
Switching C	Characteristics						
t _{d(on)}	Turn-On Delay Time	Q1: $V_{DD} = -10 \text{ V}, \text{ I}_{D} = -1 \text{ A},$	Q1 Q2		8 7	16 14	ns
t _r	Turn-On Rise Time	$V_{GS} = -4.5 \text{ V}, \text{ R}_{GEN} = 6 \Omega$	Q1 Q2		13 8	23 16	ns
t _{d(off)}	Turn-Off Delay Time	$V_{DD} = 10$ V, $I_D = 1$ A, V _{GS} = 4.5V, R _{GEN} = 6 Ω	Q1 Q2		13 11	23 20	ns
t _f	Turn-Off Fall Time		Q1 Q2		18 2	32 4	ns

Electrical Characteristics (Continued)

Symbol	Parameter	Test Conditions	Туре	Min	Тур	Max	Units
Qg	Total Gate Charge	Q1: $V_{DS} = -10 \text{ V}, \text{ I}_{D} = -2.8 \text{ A}, \text{ V}_{GS} = -4.5 \text{ V}$	Q1 Q2		3 2	4 3	nC
Q _{gs}	Gate-Source Charge	Q2: V _{DS} = 10 V, I _D = 3.2 A, V _{GS} = 4.5 V	Q1 Q2		0.65 0.4		nC
Q _{gd}	Gate-Drain Charge	- v _{DS} - 10 v, iD - 3.2 A, v _{GS} - 4.3 v	Q1 Q2		0.75 1.0		nC
Drain-Sourc	e Diode Characteristics and Ma	ximum Ratings					
I _S	Maximum Continuous Drain-Source Diode Forward Current		Q1 Q2			-1.25 1.25	A
V _{SD}	Drain-Source Diode Forward Voltage		Q1 Q2		-0.8 0.8	-1.2 1.2	V
t _{rr}	Diode Reverse Recovery Time	$ \begin{array}{l} I_F = -4.2 \text{A}, \ d_{IF}/d_t = 100 \ \text{A}/\mu \text{s} \\ I_F = \ 5.9 \text{A}, \ d_{IF}/d_t = 100 \ \text{A}/\mu \text{s} \end{array} $	Q1 Q2		14 11		nS
Q _{rr}	Diode Reverse Recovery Charge	$ \begin{array}{l} I_F = -4.2 \text{A}, \ d_{IF}/d_t = 100 \ \text{A}/\mu \text{s} \\ I_F = \ 5.9 \text{A}, \ d_{IF}/d_t = 100 \ \text{A}/\mu \text{s} \end{array} $	Q1 Q2		4 2.5		nC

Notes:

1. R_{6JA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{6JC} is guaranteed by design while R_{6CA} is determined by the user's board design.

 a) 80°C/W when mounted on a 1in² pad of 2 oz copper (Single Operation).

b) 140°C/W when mounted on a minimum pad of 2 oz copper (Single Operation).

Scale 1 : 1 on letter size paper

2. Pulse Test: Pulse Width < 300µs, Duty Cycle < 2.0%

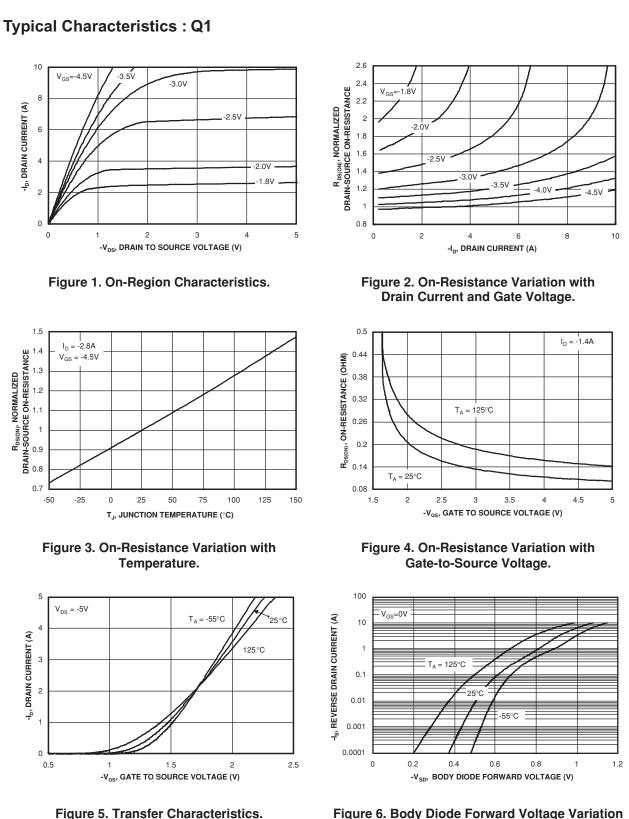


Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature.

10

8

6

4

2

0

1.5

H^{1.1} B^{1.1} B

0.7

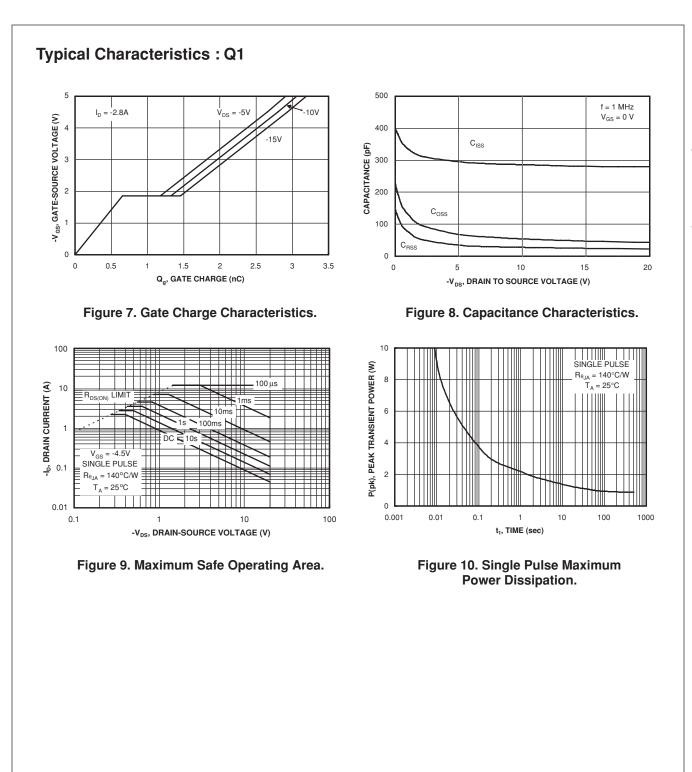
5

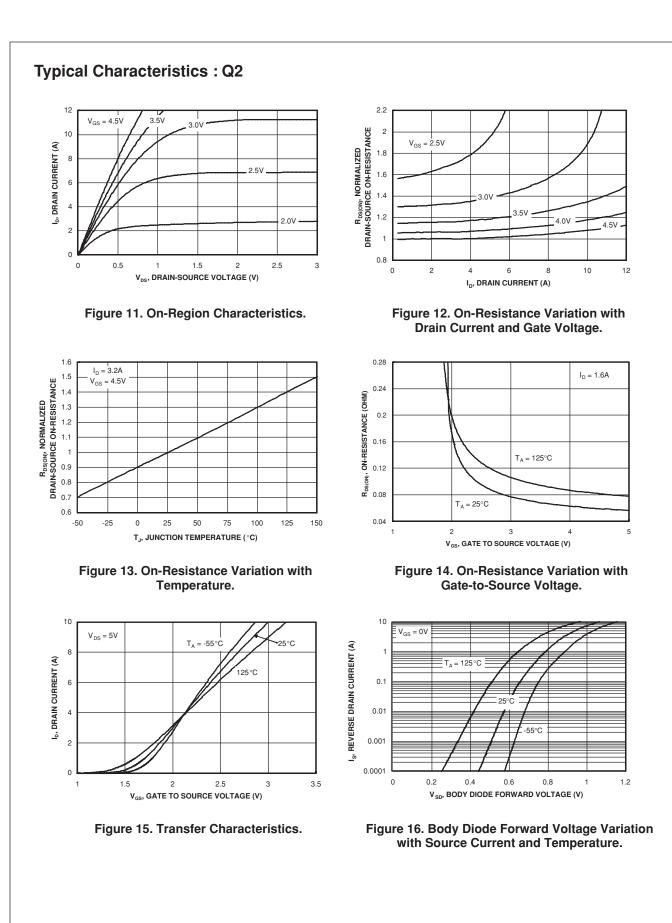
4

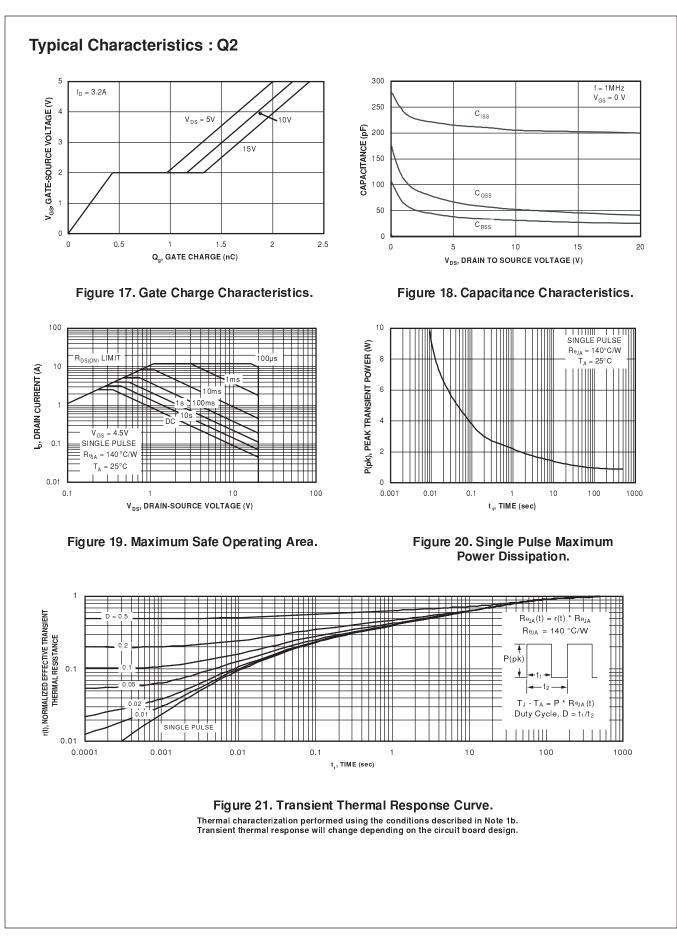
3

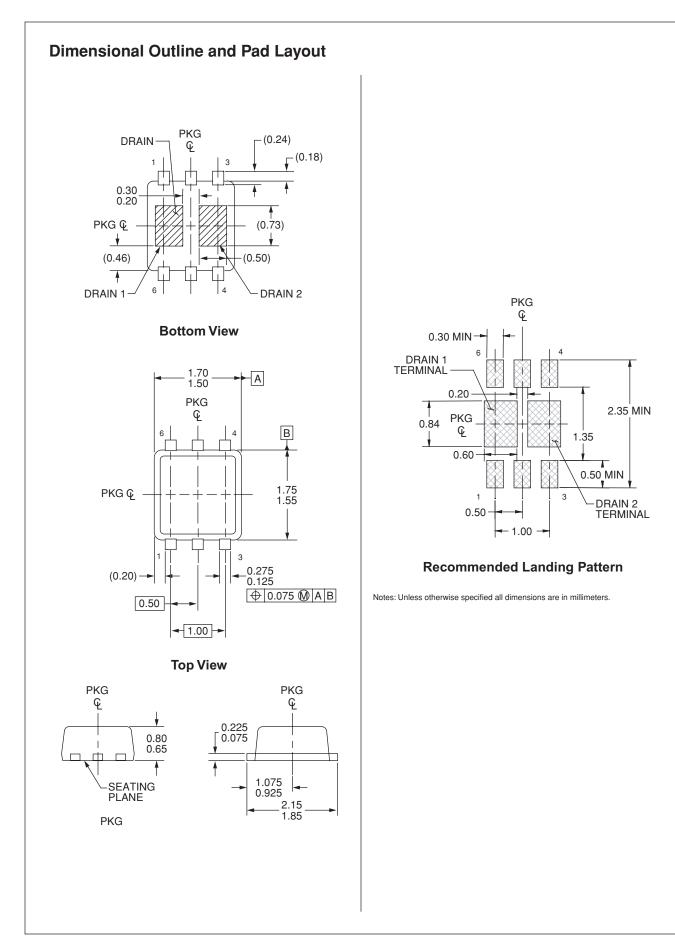
2

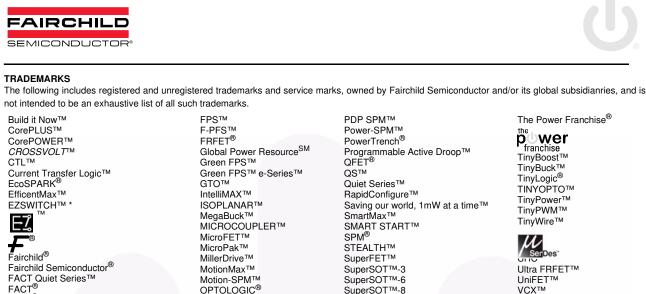
1


0


-I_b, DRAIN CURRENT (A)


-I_D, DRAIN CURRENT (A)


FDJ1032C Complementary PowerTrench[®] MOSFET


4

UniFFT™

VisualMax™

VCX[™]

FDJ1032C Complementary PowerTrench[®] MOSFE

* EZSWITCH™ and FlashWriter[®] are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

OPTOLOGIC[®]

OPTOPLANAR[®]

FAST®

FastvCore™

FlashWriter[®] *

DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

SuperSOT™-8

GENERAL ®

SuperMOS™

SyncFET™

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are 1. intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Farichild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Farichild strongly encourages customers to purchase Farichild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Farichild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Farichild is committed to committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition			
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.			
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.			
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.			
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.			
	•	Rev			