imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

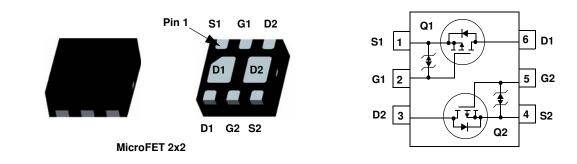
ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconduc

SEMICONDUCTOR®

FDMA6023PZT Dual P-Channel PowerTrench[®] MOSFET -20 V, -3.6 A, 60 mΩ

Features

- Max $r_{DS(on)} = 60 \text{ m}\Omega$ at $V_{GS} = -4.5 \text{ V}$, $I_D = -3.6 \text{ A}$
- Max $r_{DS(on)}$ = 80 m Ω at V_{GS} = -2.5 V, I_D = -3.0 A
- Max r_{DS(on)} = 110 mΩ at V_{GS} = -1.8 V, I_D = -2.0 A
- Max $r_{DS(on)}$ = 170 m Ω at V_{GS} = -1.5 V, I_D = -1.0 A
- Low Profile-0.55 mm maximum in the new package MicroFET 2x2 mm Thin
- HBM ESD protection level > 2.4 kV typical (Note 3)
- RoHS Compliant
- Free from halogenated compounds and antimony oxides


General Description

This device is designed specifically as a single package solution for the battery charge switch in cellular handset and other ultraportable applications. It features two independent P-Channel MOSFETs with low on-state resistance for minimum conduction losses. When connected in the typical common source configuration, bi-directional current flow is possible.

The MicroFET 2X2 Thin package offers exceptional thermal performance for it's physical size and is well suited to linear mode applications.

Applications

- Battery protection
- Battery management
- Load switch

MOSFET Maximum Ratings TA = 25 °C unless otherwise noted

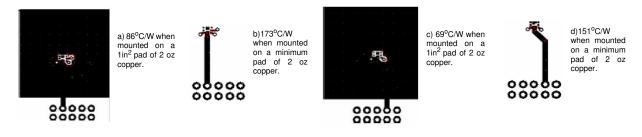
Symbol	Parameter			Ratings	Units
V _{DS}	Drain to Source Voltage			-20	V
V _{GS}	Gate to Source Voltage			±8	V
-	-Continuous	T _A = 25 °C	(Note 1a)	-3.6	
D	-Pulsed			-15	A
P _D	Power Dissipation	T _A = 25 °C	(Note 1a)	1.4	w
	Power Dissipation	T _A = 25 °C	(Note 1b)	0.7	vv
T _J , T _{STG}	Operating and Storage Junction Tempe	erature Range		-55 to +150	°C

Thermal Characteristics

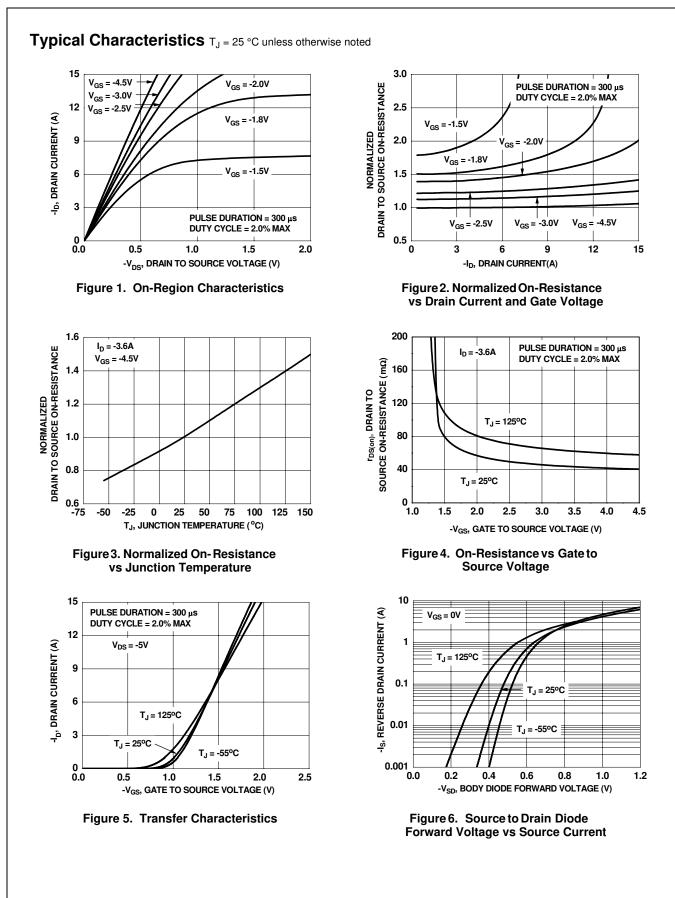
R_{\thetaJA}	Thermal Resistance for Single Operation, Junction to Ambient	(Note 1a)	86	
R_{\thetaJA}	Thermal Resistance for Single Operation, Junction to Ambient	(Note 1b)	173	°C/W
R_{\thetaJA}	Thermal Resistance for Dual Operation, Junction to Ambient	(Note 1c)	69	C/ VV
R_{\thetaJA}	Thermal Resistance for Dual Operation, Junction to Ambient	(Note 1d)	151	

Package Marking and Ordering Information

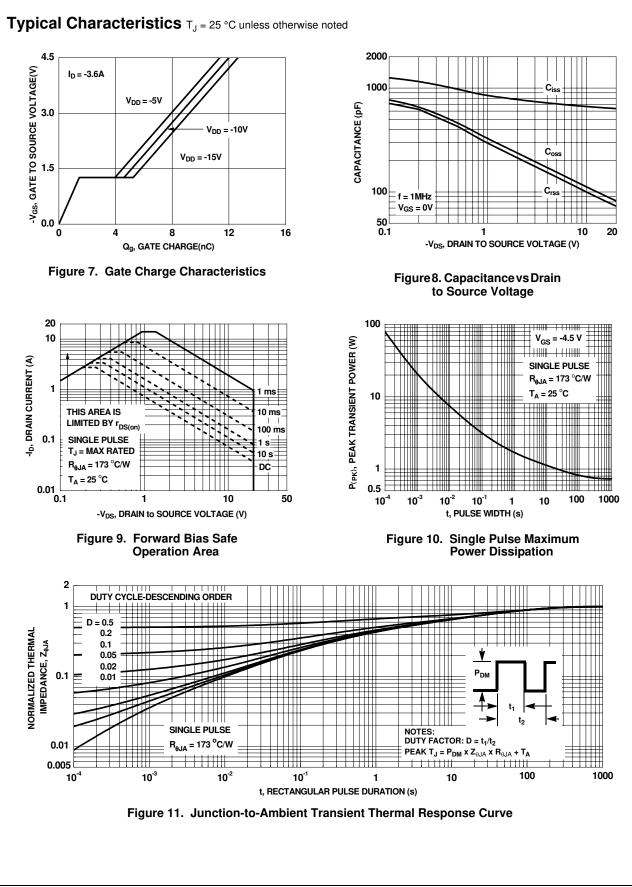
Device Marking	Device	Package	Reel Size	Tape Width	Quantity
623	FDMA6023PZT	MicroFET 2X2 Thin	7 "	8mm	3000 units


June 2009

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units	
Off Chara	octeristics						
BV _{DSS}	Drain to Source Breakdown Voltage	I _D = -250 μA, V _{GS} = 0 V	-20		Ι	V	
ΔBV_{DSS} ΔT_J	Breakdown Voltage Temperature Coefficient	$I_D = -250 \ \mu$ A, referenced to 25 °C		-12		mV/°C	
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -16 V, V_{GS} = 0 V$			-1	μA	
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 8 \text{ V}, V_{DS} = 0 \text{ V}$			±10	μA	
On Chara	cteristics						
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = -250 \ \mu A$	-0.4	-0.5	-1.5	V	
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = -250 \ \mu$ A, referenced to 25 °C		-2.7		mV/°C	
		$V_{GS} = -4.5 \text{ V}, I_D = -3.6 \text{ A}$		40	60		
		$V_{GS} = -2.5 \text{ V}, I_D = -3.0 \text{ A}$		49	80	-	
	Durain to Country On Desistance	$V_{GS} = -1.8 \text{ V}, I_D = -2.0 \text{ A}$		60	110	mΩ	
r _{DS(on)} Drain to Source On Resistance	Drain to Source On Resistance	$V_{GS} = -1.5 \text{ V}, I_D = -1.0 \text{ A}$		70	170	1115.2	
		V _{GS} = -4.5 V, I _D = -3.6 A, T _J = 125 °C		58	72		
9fs	Forward Transconductance	$V_{DD} = -5 V, I_D = -3.6 A$		15		S	
Dynamic C _{iss} C _{oss}	Characteristics Input Capacitance Output Capacitance	— V _{DS} = -10 V, V _{GS} = 0 V, f = 1 MHz		665 115	885 155	pF pF	
<u>~</u>	Reverse Transfer (Canacitance				1 = 0	-	
C _{rss}	Reverse Transfer Capacitance			100	150	pF	
	g Characteristics			100	150	pF	
Switching	·			100	150 23	pF ns	
Switching d(on)	g Characteristics	V _{DD} = -10 V, I _D = -3.6 A,					
Switching d(on) r	g Characteristics Turn-On Delay Time	V _{DD} = -10 V, I _D = -3.6 A, V _{GS} = -4.5 V, R _{GEN} = 6 Ω		13	23	ns	
Switching td(on) tr td(off)	Turn-On Delay Time	V_{GS} = -4.5 V, R_{GEN} = 6 Ω		13 11	23 20	ns ns	
Switching t _{d(on)} t _r t _{d(off)} t _f	Turn-On Delay Time Rise Time Turn-Off Delay Time	V_{GS} = -4.5 V, R_{GEN} = 6 Ω		13 11 75	23 20 120	ns ns ns	
Switching t _{d(on)} t _r t _{d(off)} t _f Qg	Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time	$V_{GS} = -4.5 \text{ V}, \text{ R}_{GEN} = 6 \Omega$ $V_{GS} = 0 \text{ V to } -4.5 \text{ V}$ $V_{DD} = -10 \text{ V},$		13 11 75 47	23 20 120 75	ns ns ns ns	
C _{rss} Switching t _{d(on)} t _r t _{d(off)} t _f Q _g Q _{gs} Q _{gd}	y Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge	V_{GS} = -4.5 V, R_{GEN} = 6 Ω		13 11 75 47 12	23 20 120 75	ns ns ns ns nC	
Switching ^{Id} (on) ^{Ir} ^{Id} (off) ^{Id} Q _g Q _{gs} Q _{gd}	y Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Gate to Source Charge	$V_{GS} = -4.5 \text{ V}, \text{ R}_{GEN} = 6 \Omega$ $V_{GS} = 0 \text{ V to } -4.5 \text{ V}$ $V_{DD} = -10 \text{ V},$		13 11 75 47 12 1.4	23 20 120 75	ns ns ns nC nC	
Switching $d_{(on)}$ r $d_{(off)}$ d_{g} Q_{g} Q_{gd} Drain-So	y Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Gate to Source Charge Gate to Drain "Miller" Charge	$V_{GS} = -4.5 \text{ V}, \text{ R}_{GEN} = 6 \Omega$ $V_{GS} = 0 \text{ V to } -4.5 \text{ V}$ $V_{DD} = -10 \text{ V},$ $I_{D} = -3.6 \text{ A}$		13 11 75 47 12 1.4	23 20 120 75	ns ns ns nC nC	
Switching d(on) tr d(off) df Qg Qgs Qgd Drain-Sou s	y Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Gate to Source Charge Gate to Drain "Miller" Charge Urce Diode Characteristics	V_{GS} = -4.5 V, R _{GEN} = 6 Ω V_{GS} = 0 V to -4.5 V V_{DD} = -10 V, I_D = -3.6 A Forward Current		13 11 75 47 12 1.4	23 20 120 75 17	ns ns ns nC nC	
Switching t _{d(on)} t _r Qg Qg Qgs Qgd	y Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Gate to Source Charge Gate to Drain "Miller" Charge Urce Diode Characteristics Maximum Continuous Drain-Source Diode	$V_{GS} = -4.5 \text{ V}, \text{ R}_{GEN} = 6 \Omega$ $V_{GS} = 0 \text{ V to } -4.5 \text{ V}$ $V_{DD} = -10 \text{ V},$ $I_D = -3.6 \text{ A}$ Forward Current		13 11 75 47 12 1.4 5.2	23 20 120 75 17 -1.1	ns ns ns nC nC A	

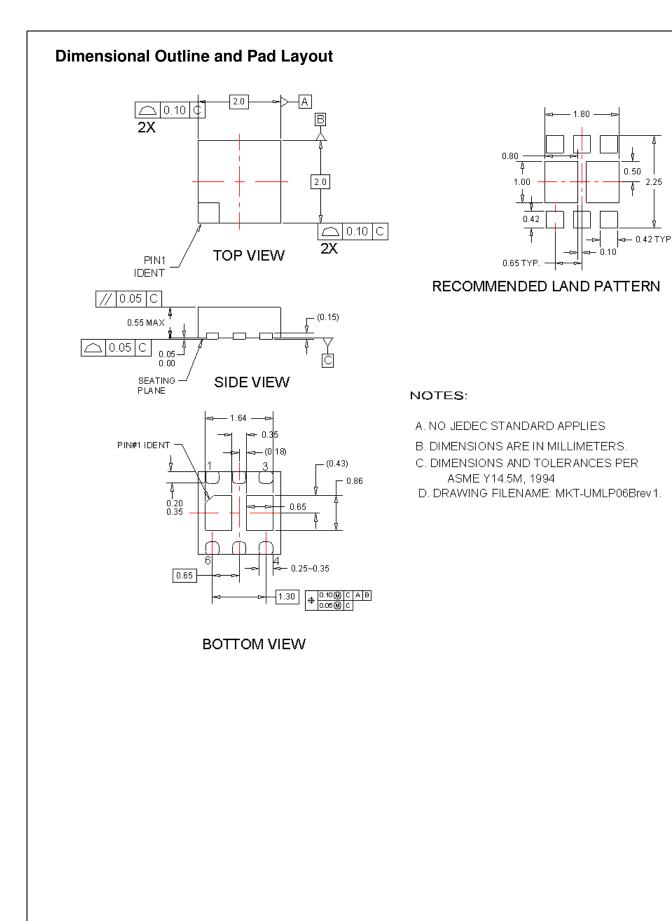

Notes:

- 1. R_{0,JA} is determined with the device mounted on a 1 in² oz. copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{0,JC} is guaranteed by design while R_{0,JA} is determined by the user's board design.
 - (a) R_{0JA}= 86 °C/W when mounted on a 1 in² pad of 2 oz copper, 1.5 " x 1.5 " x 0.062 " thick PCB. For single operation.
 - (b) $R_{\theta JA}$ = 173 °C/W when mounted on a minimum pad of 2 oz copper. For single operation.
 - (c) $R_{\theta JA} = 69 \text{ °C/W}$ when mounted on a 1 in² pad of 2 oz copper, 1.5 " x 1.5 " x 0.062 " thick PCB. For dual operation.
 - (d) $R_{\theta JA}$ = 151 °C/W when mounted on a minimum pad of 2 oz copper. For dual operation.



2. Pulse Test: Pulse Width < 300 μ s, Duty cycle < 2.0%.

3. The diode connected between the gate and source serves only as protection against ESD. No gate overvoltage rating is implied.



©2009 Fairchild Semiconductor Corporation FDMA6023PZT Rev.B1

FDMA6023PZT Dual P-Channel PowerTrench[®] MOSFET

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

Auto-SPM TM Build it Now TM CorePLUS TM CorePOWER TM <i>CROSVOLT</i> TM CTL TM Current Transfer Logic TM EcoSPARK [®] EfficentMax TM EZSWITCH TM * Tw* Fairchild [®] Fairchild [®] Fairchild [®] Fairchild [®] Fairchild [®] Fairchild Semiconductor [®] FACT [®] FAST [®] FastVCore TM FTBench TM FIashWriter [®] * FPS TM	F-PFS™ FRFET® Global Power Resource SM Green FPS™ e-Series™ Gmax™ GTO™ IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™ MicroPak™ MicroPak™ MicroPak™ MicroPak™ MicroPak™ MicroPak™ MotionMax™ Motion-SPM™ OPTOLOGIC® OPTOPLANAR®	PowerTrench [®] PowerXS™ Programmable Active Droop™ QFET [®] QS™ Quiet Series™ RapidConfigure™ O T Saving our world, 1mW /W /kW at a time™ SmartMax™ SMART START™ SMART START™ SUPESOT™-3 SuperSOT™-8 SuperSOT™-8 SuperSOT™-8 SuperSOT™-8 SUPESOT™ Sync-Lock™ ©**	The Power Franchise $^{\textcircled{m}}$ Wer $^{\textcircled{m}}$
*Trademarks of System General Cor	poration, used under license by Fairchild	Semiconductor.	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2 A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS **Definition of Terms**

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC