

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



# Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China









#### Is Now Part of



# ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <a href="https://www.onsemi.com">www.onsemi.com</a>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, emplo



December 2015

## **FDMD8580**

# Dual N-Channel PowerTrench<sup>®</sup> MOSFET Q1: 80 V, 82 A, 4.6 m $\Omega$ Q2: 80 V, 82 A, 4.6 m $\Omega$

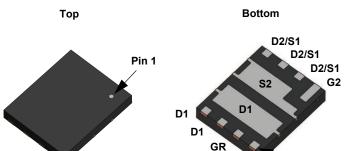
#### **Features**

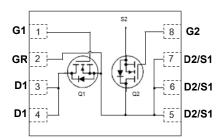
#### Q1: N-Channel

- Max  $r_{DS(on)}$  = 4.6 m $\Omega$  at  $V_{GS}$  = 10 V,  $I_D$  = 16 A
- Max  $r_{DS(on)}$  = 6.0 m $\Omega$  at  $V_{GS}$  = 8 V,  $I_D$  = 14 A

#### Q2: N-Channel

- Max  $r_{DS(on)}$  = 4.6 m $\Omega$  at  $V_{GS}$  = 10 V,  $I_D$  = 16 A
- Max  $r_{DS(on)}$  = 6.0 m $\Omega$  at  $V_{GS}$  = 8 V,  $I_{D}$  = 14 A
- Ideal for Flexible Layout in Primary Side of Bridge Topology
- 100% UIL Tested
- Kelvin High Side MOSFET Drive Pin-out Capability
- RoHS Compliant


#### **General Description**


This device includes two 80V N-Channel MOSFETs in a dual power (5 mm X 6 mm) package. HS source and LS drain internally connected for half/full bridge, low source inductance package, low  $r_{\rm DS(on)}/{\rm Qg}$  FOM silicon.

#### **Applications**

- Synchronous Buck: Primary Switch of Half / Full Bridge Converter for Telecom
- Motor Bridge: Primary Switch of Half / Full Bridge Converter for BLDC Motor
- MV POL: 48V Synchronous Buck Switch
- Half/Full Bridge Secondary Synchronous Rectification







Power 5 x 6

## **MOSFET Maximum Ratings** T<sub>A</sub> = 25 °C unless otherwise noted.

| Symbol                            | Paramete                                 | er                      |          | Q1                | Q2                | Units |  |
|-----------------------------------|------------------------------------------|-------------------------|----------|-------------------|-------------------|-------|--|
| $V_{DS}$                          | Drain to Source Voltage                  |                         |          | 80                | 80                | V     |  |
| $V_{GS}$                          | Gate to Source Voltage                   |                         |          | ±20               | ±20               | V     |  |
|                                   | Drain Current -Continuous                | T <sub>C</sub> = 25 °C  | (Note 5) | 82                | 82                |       |  |
|                                   | -Continuous                              | T <sub>C</sub> = 100 °C | (Note 5) | 52                | 52                | 1     |  |
| 'D                                | -Continuous                              | T <sub>A</sub> = 25 °C  |          | 16 <sup>1a</sup>  | 16 <sup>1b</sup>  | A     |  |
|                                   | -Pulsed                                  |                         | (Note 4) | 482               | 482               |       |  |
| E <sub>AS</sub>                   | Single Pulse Avalanche Energy            |                         | (Note 3) | 337               | 337               | mJ    |  |
| В                                 | Power Dissipation                        | T <sub>C</sub> = 25 °C  |          | 59                | 59                | W     |  |
| $P_{D}$                           | Power Dissipation                        | T <sub>A</sub> = 25 °C  |          | 2.3 <sup>1a</sup> | 2.3 <sup>1b</sup> | VV    |  |
| T <sub>J</sub> , T <sub>STG</sub> | Operating and Storage Junction Temperatu | ire Range               |          | -55 to            | +150              | °C    |  |

Pin 1

## **Thermal Characteristics**

| $R_{\theta JC}$ | Thermal Resistance, Junction-to-Case    | 2.1              | 2.1              | °C/W |
|-----------------|-----------------------------------------|------------------|------------------|------|
| $R_{\theta JA}$ | Thermal Resistance, Junction-to-Ambient | 55 <sup>1a</sup> | 55 <sup>1b</sup> | C/VV |

#### Package Marking and Ordering Information

| Device Marking | Device   | Package     | Reel Size | Tape Width | Quantity   |
|----------------|----------|-------------|-----------|------------|------------|
| FDMD8580       | FDMD8580 | Power 5 x 6 | 13 "      | 12 mm      | 3000 units |

## **Electrical Characteristics** $T_J$ = 25 °C unless otherwise noted.

| Symbol                                 | Parameter                                    | Test Conditions                                | Type     | Min.     | Тур.     | Max.         | Units |
|----------------------------------------|----------------------------------------------|------------------------------------------------|----------|----------|----------|--------------|-------|
| Off Cha                                | racteristics                                 |                                                |          |          |          |              |       |
| BV <sub>DSS</sub>                      | Drain to Source Breakdown Voltage            | I <sub>D</sub> = 250 μA, V <sub>GS</sub> = 0 V | Q1<br>Q2 | 80<br>80 |          |              | V     |
| $\frac{\Delta BV_{DSS}}{\Delta T_{J}}$ | Breakdown Voltage Temperature<br>Coefficient | $I_D$ = 250 $\mu$ A, referenced to 25 °C       | Q1<br>Q2 |          | 50<br>50 |              | mV/°C |
| I <sub>DSS</sub>                       | Zero Gate Voltage Drain Current              | V <sub>DS</sub> = 64 V, V <sub>GS</sub> = 0 V  | Q1<br>Q2 |          |          | 1<br>1       | μА    |
| I <sub>GSS</sub>                       | Gate to Source Leakage Current               | V <sub>GS</sub> = ±20 V, V <sub>DS</sub> = 0 V | Q1<br>Q2 |          |          | ±100<br>±100 | nA    |

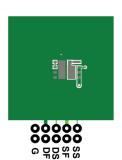
#### **On Characteristics**

| V <sub>GS(th)</sub>                    | Gate to Source Threshold Voltage                            | $V_{GS} = V_{DS}, I_D = 250 \mu A$                                     | Q1<br>Q2 | 2.0<br>2.0 | 3.4<br>3.4 | 4.5<br>4.5 | V         |
|----------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------|----------|------------|------------|------------|-----------|
| $\frac{\Delta V_{GS(th)}}{\Delta T_J}$ | Gate to Source Threshold Voltage<br>Temperature Coefficient | $I_D$ = 250 $\mu$ A, referenced to 25 °C                               | Q1<br>Q2 |            | -10<br>-10 |            | mV/°C     |
|                                        |                                                             | V <sub>GS</sub> = 10 V, I <sub>D</sub> = 16 A                          |          |            | 3.5        | 4.6        |           |
|                                        | Static Drain to Source On Resistance                        | V <sub>GS</sub> = 8 V, I <sub>D</sub> = 14 A                           | Q1       |            | 4.2        | 6.0        | $m\Omega$ |
| _                                      |                                                             | V <sub>GS</sub> = 10 V, I <sub>D</sub> = 16 A, T <sub>J</sub> = 125 °C |          |            | 5.3        | 7.0        |           |
| r <sub>DS(on)</sub>                    | Static Drain to Source On Resistance                        | V <sub>GS</sub> = 10 V, I <sub>D</sub> = 16 A                          |          |            | 3.5        | 4.6        |           |
|                                        |                                                             | V <sub>GS</sub> = 8 V, I <sub>D</sub> = 14 A                           | Q2       |            | 4.2        | 6.0        |           |
|                                        |                                                             | V <sub>GS</sub> = 10 V, I <sub>D</sub> = 16 A, T <sub>J</sub> = 125 °C |          |            | 5.3        | 7.0        |           |
| 9 <sub>FS</sub>                        | Forward Transconductance                                    | V <sub>DD</sub> = 10 V, I <sub>D</sub> = 16 A                          | Q1<br>Q2 |            | 51<br>51   |            | S         |

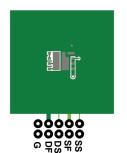
## **Dynamic Characteristics**

| C <sub>iss</sub> | Input Capacitance            |                                                            | Q1<br>Q2 |            | 4195<br>4195 | 5875<br>5875 | pF |
|------------------|------------------------------|------------------------------------------------------------|----------|------------|--------------|--------------|----|
| C <sub>oss</sub> | Output Capacitance           | $V_{DS} = 40 \text{ V}, V_{GS} = 0 \text{ V}$<br>f = 1 MHz | Q1<br>Q2 |            | 602<br>602   | 845<br>845   | pF |
| C <sub>rss</sub> | Reverse Transfer Capacitance |                                                            | Q1<br>Q2 |            | 19<br>19     | 38<br>38     | pF |
| $R_g$            | Gate Resistance              |                                                            | Q1<br>Q2 | 0.1<br>0.1 | 1.7<br>1.7   | 3.5<br>3.5   | Ω  |

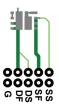
## **Switching Characteristics**


| t <sub>d(on)</sub>  | Turn-On Delay Time            |                                             |                                                 | Q1<br>Q2 | 25<br>25 | 40<br>40 | ns |
|---------------------|-------------------------------|---------------------------------------------|-------------------------------------------------|----------|----------|----------|----|
| t <sub>r</sub>      | Rise Time                     | V <sub>DD</sub> = 40 V, I <sub>D</sub> = 16 | A                                               | Q1<br>Q2 | 19<br>19 | 34<br>34 | ns |
| t <sub>d(off)</sub> | Turn-Off Delay Time           | V <sub>GS</sub> = 10 V, R <sub>GEN</sub> =  | = 6 Ω                                           | Q1<br>Q2 | 31<br>31 | 50<br>50 | ns |
| t <sub>f</sub>      | Fall Time                     |                                             | Q1<br>Q2                                        | 10<br>10 | 20<br>20 | ns       |    |
| $Q_{g(TOT)}$        | Total Gate Charge             | V <sub>GS</sub> = 0 V to 10 V               |                                                 | Q1<br>Q2 | 57<br>57 | 80<br>80 | nC |
| Q <sub>gs</sub>     | Gate to Source Charge         |                                             | V <sub>DD</sub> = 40 V,<br>I <sub>D</sub> =16 A | Q1<br>Q2 | 21<br>21 |          | nC |
| $Q_{gd}$            | Gate to Drain "Miller" Charge |                                             |                                                 | Q1<br>Q2 | 12<br>12 |          | nC |

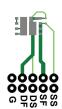
## **Electrical Characteristics** $T_J = 25$ °C unless otherwise noted.


| Symbol          | Parameter                             | Test Conditions                                  |        | Туре     | Min. | Тур.       | Max.       | Units |
|-----------------|---------------------------------------|--------------------------------------------------|--------|----------|------|------------|------------|-------|
| Drain-S         | ource Diode Characteristics           |                                                  |        |          |      |            |            |       |
| V <sub>SD</sub> | Source to Drain Diode Forward Voltage | V <sub>GS</sub> = 0 V, I <sub>S</sub> = 16 A (No | ote 2) | Q1<br>Q2 |      | 0.8<br>0.8 | 1.3<br>1.3 | V     |
| V <sub>SD</sub> | Source to Drain Diode Forward Voltage | V <sub>GS</sub> = 0 V, I <sub>S</sub> = 2 A (No  | ote 2) | Q1<br>Q2 |      | 0.7<br>0.7 | 1.2<br>1.2 | ٧     |
| t <sub>rr</sub> | Reverse Recovery Time                 | L = 16 A di/dt = 100 A/vo                        |        | Q1<br>Q2 |      | 46<br>46   | 73<br>73   | ns    |
| Q <sub>rr</sub> | Reverse Recovery Charge               | I <sub>F</sub> = 16 A, di/dt = 100 A/μs          |        | Q1<br>Q2 |      | 34<br>34   | 55<br>55   | nC    |

#### NOTES:


1.  $R_{\theta,JA}$  is determined with the device mounted on a 1 in<sup>2</sup> pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material.  $R_{\theta,JC}$  is guaranteed by design while  $R_{\theta,CA}$  is determined by the user's board design.




a. 55 °C/W when mounted on a 1 in<sup>2</sup> pad of 2 oz copper



b. 55 °C/W when mounted on a 1 in<sup>2</sup> pad of 2 oz copper



c. 155 °C/W when mounted on a minimum pad of 2 oz copper



d. 155 °C/W when mounted on a minimum pad of 2 oz copper

- 2. Pulse Test: Pulse Width < 300  $\mu s,$  Duty cycle < 2.0 %.
- 3. Q1:  $E_{AS}$  of 337 mJ is based on starting  $T_J$  = 25 °C, L = 3 mH,  $I_{AS}$  = 15 A,  $V_{DD}$  = 80 V,  $V_{GS}$  = 10 V. 100% tested at L = 0.1mH,  $I_{AS}$  = 49 A. Q2:  $E_{AS}$  of 337 mJ is based on starting  $T_J$  = 25 °C, L = 3 mH,  $I_{AS}$  = 15 A,  $V_{DD}$  = 80 V,  $V_{GS}$  = 10 V. 100% tested at L = 0.1mH,  $I_{AS}$  = 49 A.
- 4. Pulsed Id please refer to Fig 11 and Fig 24 SOA graph for more details.
- 5. Computed continuous current limited to max junction temperature only, actual continuous current will be limited by thermal & electro-mechanical application board design.

## Typical Characteristics (Q1 N-Channel) T<sub>J</sub> = 25°C unless otherwise noted.

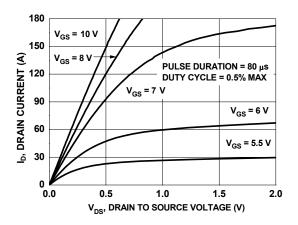



Figure 1. On Region Characteristics

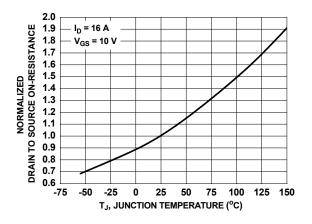



Figure 3. Normalized On Resistance vs. Junction Temperature

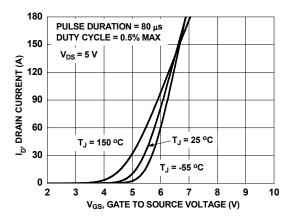



Figure 5. Transfer Characteristics

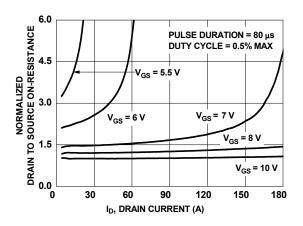



Figure 2. Normalized On-Resistance vs. Drain Current and Gate Voltage

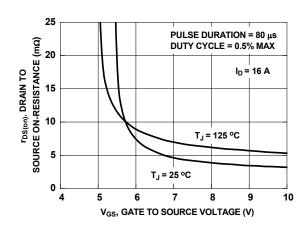



Figure 4. On-Resistance vs. Gate to Source Voltage



Figure 6. Source to Drain Diode Forward Voltage vs. Source Current

## Typical Characteristics (Q1 N-Channel) T<sub>J</sub> = 25°C unless otherwise noted.

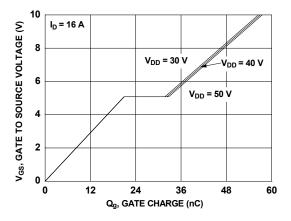



Figure 7. Gate Charge Characteristics

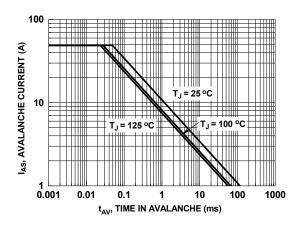



Figure 9. Unclamped Inductive Switching Capability

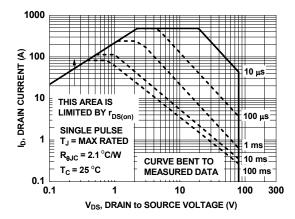



Figure 11. Forward Bias Safe Operating Area

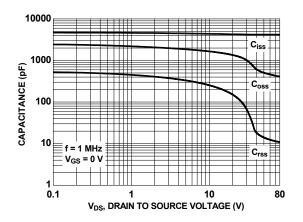



Figure 8. Capacitance vs. Drain to Source Voltage

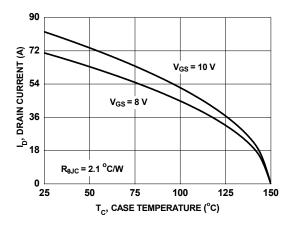



Figure 10. Maximum Continuous Drain Current vs. Case Temperature

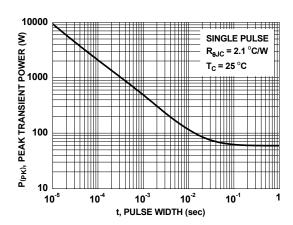



Figure 12. Single Pulse Maximum Power Dissipation

## Typical Characteristics (Q1 N-Channel) T<sub>J</sub> = 25°C unless otherwise noted.

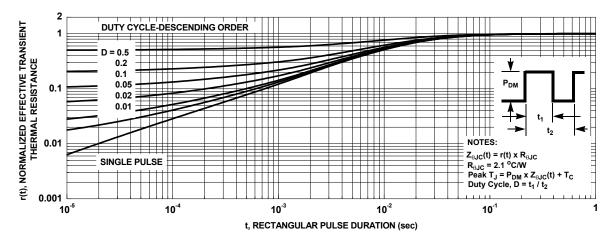



Figure 13. Junction-to-Case Transient Thermal Response Curve

## Typical Characteristics (Q2 N-Channel) T<sub>J</sub> = 25 °C unless otherwise noted.

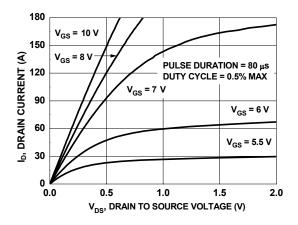



Figure 14. On- Region Characteristics

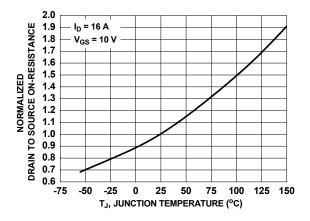



Figure 16. Normalized On-Resistance vs. Junction Temperature

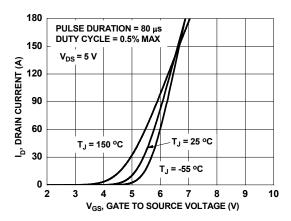



Figure 18. Transfer Characteristics




Figure 15. Normalized on-Resistance vs. Drain Current and Gate Voltage

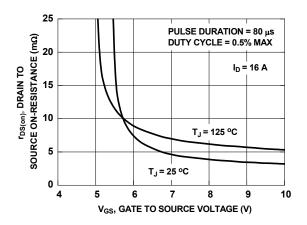



Figure 17. On-Resistance vs. Gate to Source Voltage

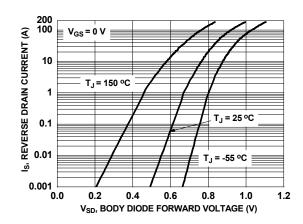



Figure 19. Source to Drain Diode Forward Voltage vs. Source Current

### Typical Characteristics (Q2 N-Channel) T<sub>J</sub> = 25°C unless otherwise noted.

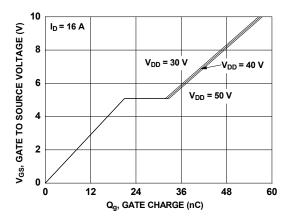



Figure 20. Gate Charge Characteristics

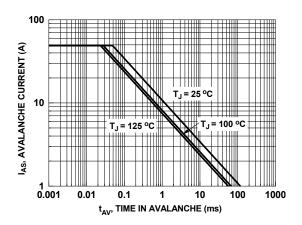



Figure 22. Unclamped Inductive Switching Capability

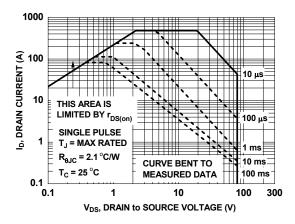



Figure 24. Forward Bias Safe Operating Area

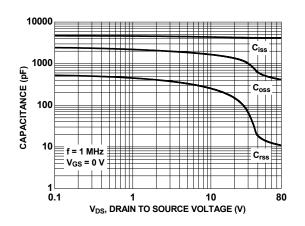



Figure 21. Capacitance vs. Drain to Source Voltage

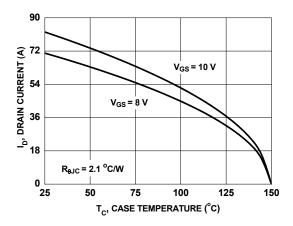



Figure 23. Maximum Continuous Drain Current vs. Case Temperature

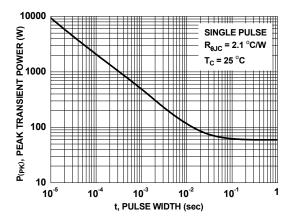



Figure 25. Single Pulse Maximum Power Dissipation

## Typical Characteristics (Q2 N-Channel) $T_J$ = 25 °C unless otherwise noted.

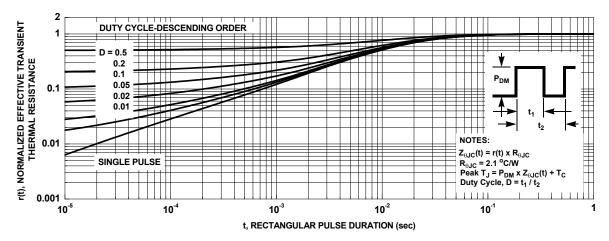
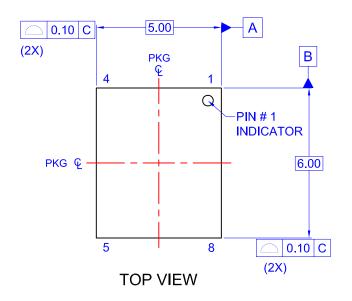
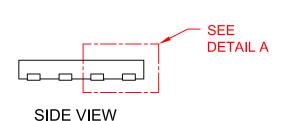
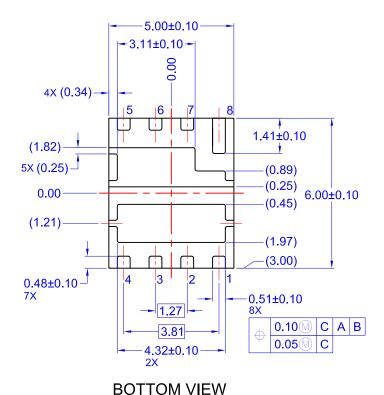
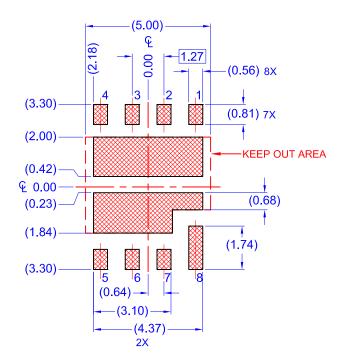
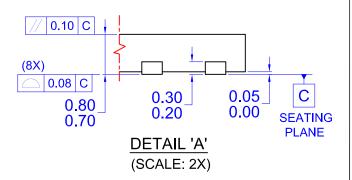







Figure 26. Junction-to-Case Transient Thermal Response Curve










#### RECOMMENDED LAND PATTERN



NOTES: UNLESS OTHERWISE SPECIFIED

- A) PACKAGE STANDARD REFERENCE: JEDEC REGISTRATION, MO-240, VARIATION AA.
- B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C) DIMENSIONS DO NOT INCLUDE BURRS OR MOLD FLASH. MOLD FLASH OR BURRS DOES NOT EXCEED 0.10MM.
- D) DIMENSIONING AND TOLERANCING PER ASME Y14.5M-2009.
- E) IT IS RECOMMENDED TO HAVE NO TRACES OR VIAS WITHIN THE KEEP OUT AREA.
- F) DRAWING FILE NAME: MKT-PQFN08QREV2



ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <a href="www.onsemi.com/site/pdf/Patent-Marking.pdf">www.onsemi.com/site/pdf/Patent-Marking.pdf</a>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and h

#### **PUBLICATION ORDERING INFORMATION**

#### LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Phone: 421 33 790 2910

Japan Customer Focus Center

Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative