

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

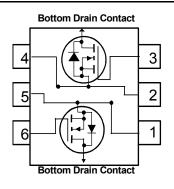
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

FDMJ1028N

N-Channel 2.5V Specified PowerTrench® MOSFET 20V, 3.2A, 90mΩ

Features

- Max $r_{DS(on)}$ = 90m Ω at V_{GS} = 4.5V
- Max $r_{DS(on)}$ = 130m Ω at V_{GS} = 2.5V
- Low gate charge
- High performance trench technology for extremely low rDS(on)
- RoHS Compliant


General Description

This dual N-Channel 2.5V specified MOSFET uses Fairchild's advanced low voltage PowerTrench process. The $r_{DS(on)}$ and thermal properties of the device are optimized for battery power management applications.

Applications

- Battery management
- Baseband Switches

MOSFET Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter	Ratings	Units
V_{DS}	Drain to Source Voltage	20	V
V_{GS}	Gate to Source Voltage	±12	V
	Drain Current -Continuous	3.2	^
ID	-Pulsed	12	A
D	Power Dissipation for Single Operation (Note 1	a) 1.4	W
P_{D}	(Note 1	b) 0.8	VV
T _J , T _{STG}	Operating and Storage Temperature	-55 to +150	°C

Thermal Characteristics

$R_{\theta JA}$	Thermal Resistance , Junction to Ambient	(Note 1a)	89	°C/W
-----------------	--	-----------	----	------

Package Marking and Ordering Information

Device Marking	Device	Reel Size	Tape Width	Quantity
028	FDMJ1028N	7"	8mm	3000 units

Electrical Characteristics T_J = 25°C unless otherwise noted

Parameter

Off Char	Off Characteristics					
BV_{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	20			V
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	I_D = 250 μ A, referenced to 25°C		13		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 16, V _{GS} = 0V			1	μΑ
I_{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 12V, V_{DS} = 0V$			±100	nA

Test Conditions

Min

Тур

Max

Units

On Characteristics (Note 2)

Symbol

$V_{GS(th)}$	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \mu A$	0.6	1.0	1.5	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	I_D = 250 μ A, referenced to 25°C		-3		mV/°C
		$V_{GS} = 4.5V, I_D = 3.2A$		76	90	
r _{DS(on)} Drain to Source On Resistance	Drain to Source On Resistance	$V_{GS} = 2.5V, I_D = 2.5A$		106	130	mΩ
	$V_{GS} = 4.5V$, $I_D = 3.2A$, $T_J = 125^{\circ}C$		89	132	11132	
g _{FS}	Forward Transconductance	$V_{GS} = 5V, I_D = 3.2A$		7.5		S

Dynamic Characteristics

C _{iss}	Input Capacitance	10/11/	200)	pF
Coss	Output Capacitance	V _{DS} =10V, V _{GS} = 0V, f = 1MHz	50		pF
C _{rss}	Reverse Transfer Capacitance	1 - 111112	30		pF
R_G	Gate Resistance	f = 1MHz	1		Ω

Switching Characteristics (Note 2)

t _{d(on)}	Turn-On Delay Time		7	14	ns
t _r	Rise Time	$V_{DD} = 10V, I_{D} = 1A$ $V_{GS} = 4.5V, R_{GS} = 6\Omega$	8	16	ns
t _{d(off)}	Turn-Off Delay Time	$V_{GS} = 4.5V, R_{GS} = 602$	11	20	ns
t _f	Fall Time		2	4	ns
Q _{g(tot)}	Total Gate Charge at 10V	V - 45V V - 2.2V	2	3	nC
Q _{gs}	Gate to Source Gate Charge	$V_{DD} = 15V, V_{GS} = 3.2V,$ $V_{GS} = 4.5V$	0.4		nC
Q_{gd}	Gate to Drain Charge	VGS - 4.5 V	1.0		nC

Drain-Source Diode Characteristics

V_{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0V, I_{S} = 1.16A$	0.8	1.2	V
t _{rr}	Diode Reverse Recovery Time	$I_E = 3.2A$, $dI_E/dt = 100A/\mu s$	11		ns
Q _{rr}	Diode Reverse Recovery Charge	iF = 3.2A, diF/dt = 100A/μS	2.5		nC

Notes

^{1:} R_{0,JA} is determined with the device mounted on a 1in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{0,JC} is guaranteed by design while R_{0,CA} is determined by the user's board design.

a. 89°C/W when mounted on a 1 in² pad of 2 oz copper

b. 156°C/W when mounted on a minimum pad of 2 oz copper

Scale 1 : 1 on letter size paper 2: Pulse Test: Pulse Width < $3000\mu s$, Duty Cycle < 2.0%

Typical Characteristics T_J = 25°C unless otherwise noted

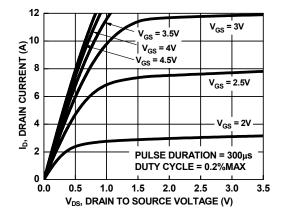
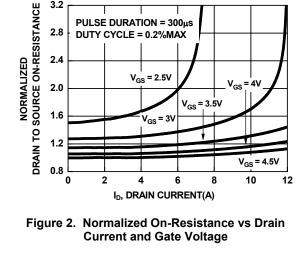



Figure 1. On Region Characteristics

3.2

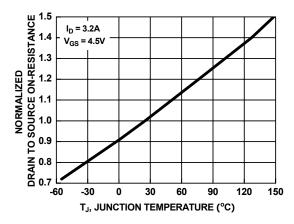


Figure 3. Normalized On Resistance vs Junction **Temperature**

Figure 4. On-Resistance vs Gate to Source Voltage

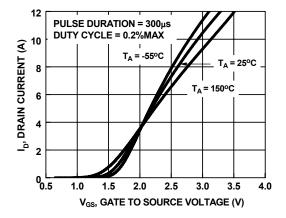


Figure 5. Transfer Characteristics

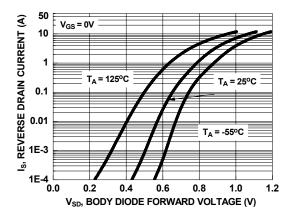
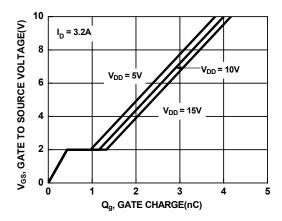



Figure 6. Source to Drain Diode Forward **Voltage vs Source Current**

Typical Characteristics T_J = 25°C unless otherwise noted

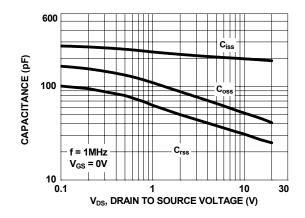
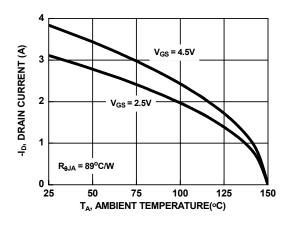



Figure 7. Gate Charge Characteristics

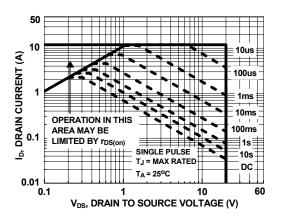


Figure 9. Maximum Continuous Drain Current vs
Ambient Temperature

Figure 10. Forward Bias Safe Operating Area

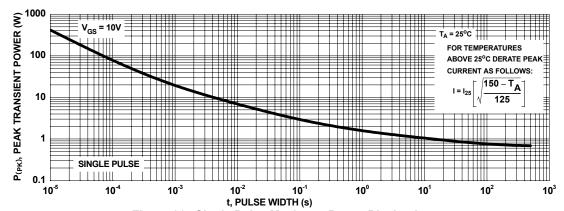


Figure 11. Single Pulse Maximum Power Dissipation

10³

10²

10¹

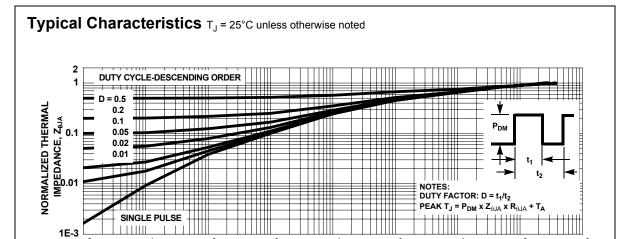
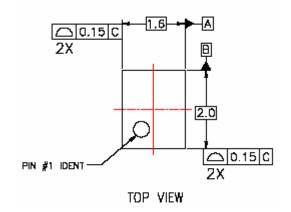
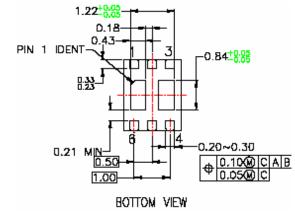
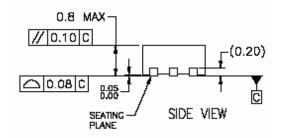
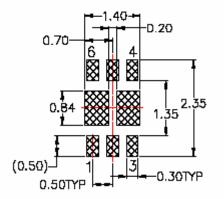


Figure 12. Transient Thermal Response Curve


 $10^{^2} \qquad 10^{^1} \qquad 10^0 \\ t, RECTANGULAR PULSE DURATION(s)$


10⁻⁵


10⁴


10⁻³

Dimensional Outline and Pad Layout

RECOMMENDED LAND PATTERN

NOTES:

- A. NON JEDEC REGISTRATION MOLDED PACKAGE OUTLINE,
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994

MLP06Xrev1

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FAST [®]	ISOPLANAR™	PowerEdge™	SuperFET™
ActiveArray™	FASTr™	LittleFET™	PowerSaver™	SuperSOT™-3
Bottomless™	FPS™	MICROCOUPLER™	PowerTrench [®]	SuperSOT™-6
Build it Now™	FRFET™	MicroFET™	QFET [®]	SuperSOT™-8
CoolFET™	GlobalOptoisolator™	MicroPak™	QS™	SyncFET™
CROSSVOLT™	GTO™	MICROWIRE™	QT Optoelectronics™	TCM™
DOME™	HiSeC™	MSX™	Quiet Series™	TinyLogic [®]
EcoSPARK™	I ² C™	MSXPro™	RapidConfigure™	TINYOPTO™
E ² CMOS™	i-Lo™	OCX™	RapidConnect™	TruTranslation™
EnSigna™	ImpliedDisconnect™	OCXPro™	μSerDes™	UHC™
FACT™	IntelliMAX™	OPTOLOGIC [®]	ScalarPump™	UltraFET [®]
FACT Quiet Series™		OPTOPLANAR™	SILENT SWITCHER®	UniFET™
Across the board Are	und the world TM	PACMAN™	SMART START™	VCX™
Across the board. Arc		POP™	SPM™	Wire™
The Power Franchise®		Power247™	Stealth™	
Programmable Active Droop™				

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

PAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Rev. I19