imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconduc

SEMICONDUCTOR®

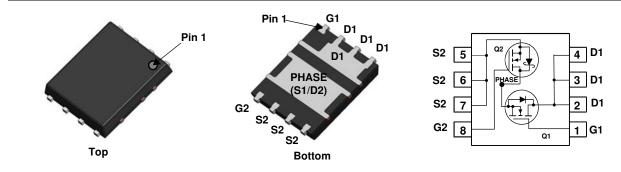
FDMS3660AS PowerTrench[®] Power Stage Asymmetric Dual N-Channel MOSFET Features

Q1: N-Channel

- Max r_{DS(on)} = 8 mΩ at V_{GS} = 10 V, I_D = 13 A
- Max $r_{DS(on)}$ = 11 m Ω at V_{GS} = 4.5 V, I_D = 11 A

Q2: N-Channel

- Max r_{DS(on)} = 1.8 mΩ at V_{GS} = 10 V, I_D = 30 A
- Max $r_{DS(on)}$ = 2.2 m Ω at V_{GS} = 4.5 V, I_D = 27 A
- Low inductance packaging shortens rise/fall times, resulting in lower switching losses
- MOSFET integration enables optimum layout for lower circuit inductance and reduced switch node ringing
- RoHS Compliant



General Description

This device includes two specialized N-Channel MOSFETs in a dual PQFN package. The switch node has been internally connected to enable easy placement and routing of synchronous buck converters. The control MOSFET (Q1) and synchronous SyncFETTM (Q2) have been designed to provide optimal power efficiency.

Applications

- Computing
- Communications
- General Purpose Point of Load
- Notebook VCORE

MOSFET Maximum Ratings T_A = 25 °C unless otherwise noted

Symbol	Parameter		Q1	Q2	Units	
V _{DS}	Drain to Source Voltage		30	30	V	
V _{GS}	Gate to Source Voltage	(Note 3)	±20	±12	V	
I _D	Drain Current -Continuous	T _C = 25 °C	56	130		
	-Continuous	T _A = 25 °C	13 ^{1a}	30 ^{1b}	А	
	-Pulsed	(Note 4)	70	140		
E _{AS}	Single Pulse Avalanche Energy		73 ⁵	150 ⁶	mJ	
P _D	Power Dissipation for Single Operation	T _A = 25 °C	2.2 ^{1a}	2.5 ^{1b}	W	
	Power Dissipation for Single Operation	T _A = 25 °C	1.0 ^{1c}	1.0 ^{1d}	vv	
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to	+150	°C	

Thermal Characteristics

$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient	57 ^{1a}	50 ^{1b}	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	125 ^{1c}	120 ^{1d}	°C/W
$R_{\theta JC}$	Thermal Resistance, Junction to Case	3.5	2.2	

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
27CF 32CD	FDMS3660AS	Power 56	13 "	12 mm	3000 units

1

н
¥
2
ŭ
9
ö
Þ
S
Τ
9
Š
₩.
Ţ
ē
ธ
ž
B
P
Š
We
7
Š
<u>a</u>
ge

-

Symbol	Parameter	Test Conditions	Туре	Min	Тур	Max	Units
Off Chara	octeristics						
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \ \mu A, V_{GS} = 0 \ V$ $I_D = 1 \ m A, V_{GS} = 0 \ V$	Q1 Q2	30 30			V
$\frac{\Delta BV_{DSS}}{\Delta T_J}$	Breakdown Voltage Temperature Coefficient	I_D = 250 µA, referenced to 25 °C I_D = 10 mA, referenced to 25 °C	Q1 Q2		16 29		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 24 V, V _{GS} = 0 V	Q1 Q2			1 500	μA μA
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = 20 V, V_{DS} = 0 V$ $V_{GS} = 12 V, V_{DS} = 0 V$	Q1 Q2			100 100	nA nA
On Chara	cteristics						
V _{GS(th)}	Gate to Source Threshold Voltage	$\begin{array}{l} V_{GS} = V_{DS}, \ I_D = 250 \ \mu A \\ V_{GS} = V_{DS}, \ I_D = 1 \ m A \end{array}$	Q1 Q2	1.1 1.2	2.0 1.5	2.7 2.5	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	I_D = 250 µA, referenced to 25 °C I_D = 10 mA, referenced to 25 °C	Q1 Q2		-6 -3		mV/°C
۲ _{DS(on)}	Drain to Source On Resistance		Q1		5.9 8.5 7.9	8 11 11	mΩ
			Q2		1.2 1.5 1.8	1.8 2.2 2.7	
9 _{FS}	Forward Transconductance	$V_{DS} = 5 V$, $I_D = 13 A$ $V_{DS} = 5 V$, $I_D = 30 A$	Q1 Q2		173 240		S
Dynamic	Characteristics						
C _{iss}	Input Capacitance	Q1: V _{DS} = 15 V, V _{GS} = 0 V, f = 1 MHZ	Q1 Q2		1485 4150	2230 6225	pF
C _{oss}	Output Capacitance	Q2:	Q1 Q2		397 1195	595 1795	pF
C _{rss}	Reverse Transfer Capacitance	V _{DS} = 15 V, V _{GS} = 0 V, f = 1 MHZ	Q1 Q2		37 117	70 245	pF
R _g	Gate Resistance		Q1 Q2	0.1 0.1	1.6 1.0	3.2 2.0	Ω
Switching	g Characteristics						
t _{d(on)}	Turn-On Delay Time		Q1 Q2		9 12	17 22	ns
t _r	Rise Time	Q1: $V_{DD} = 15 V, I_D = 13 A, R_{GEN} = 6 \Omega$	Q1 Q2		3 5	10 10	ns
t _{d(off)}	Turn-Off Delay Time	Q2: V _{DD} = 15 V, I _D = 30 A, R _{GEN} = 6 Ω	Q1 Q2		21 38	33 60	ns
t _f	Fall Time	U 10 0, 10 0, 10 00 7, 10 GEN = 0.32	Q1		3	10	ns

©2013 Fairchild Semiconductor Corporation FDMS3660AS Rev.C

Total Gate Charge

Total Gate Charge

Gate to Source Gate Charge

Gate to Drain "Miller" Charge

t_f

Qg

 Q_g

 Q_gs

 Q_{gd}

 $V_{GS} = 0$ V to 10 V Q1:

 $V_{GS} = 0$ V to 4.5 V $I_D = 13$ A

www.fairchildsemi.com

nC

nC

nC

nC

5

21

64

10

30

4.5

9

2.0

9

10

30

90

13

43

Q2

Q1

Q2

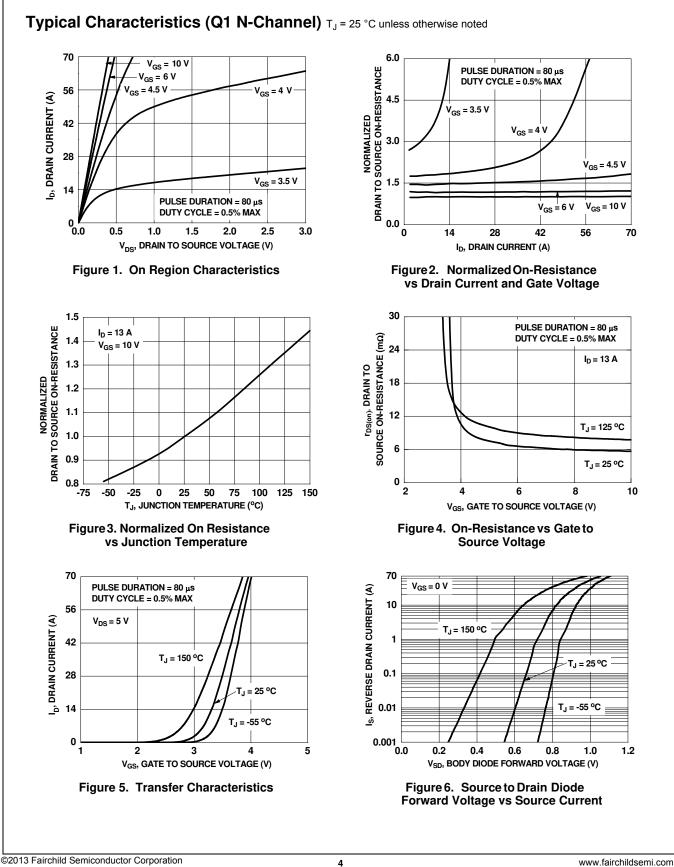
Q1

Q2

Q1

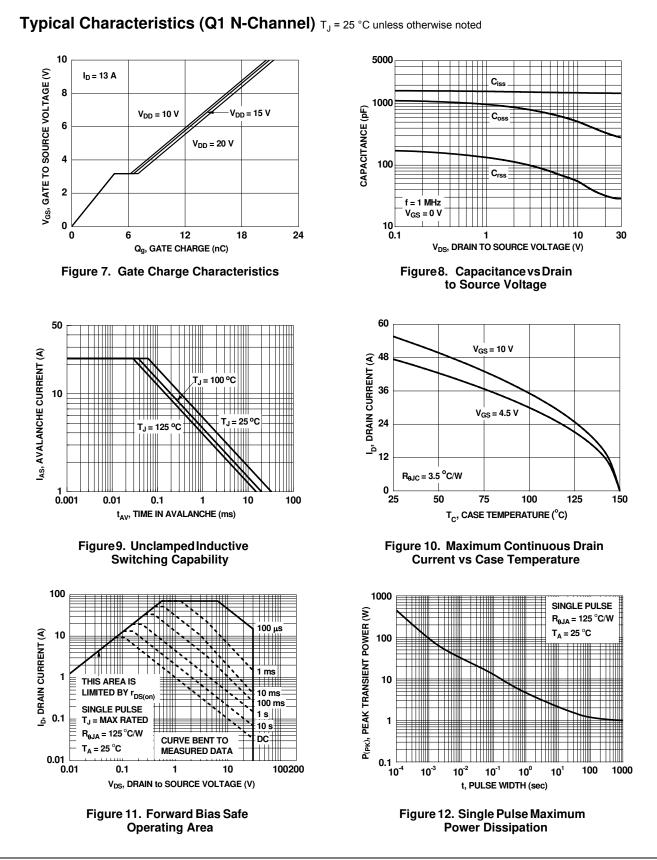
Q2

Q1

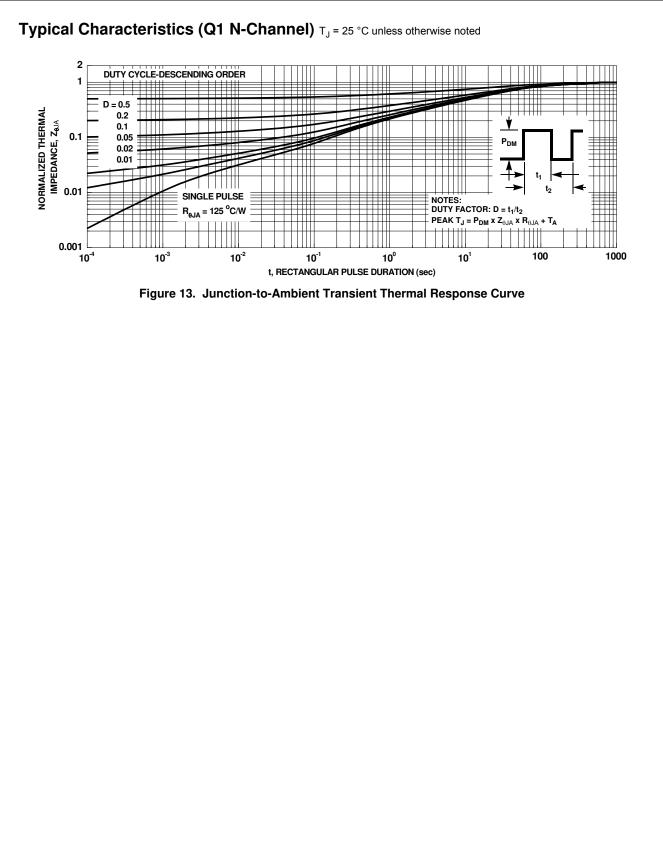

Q2

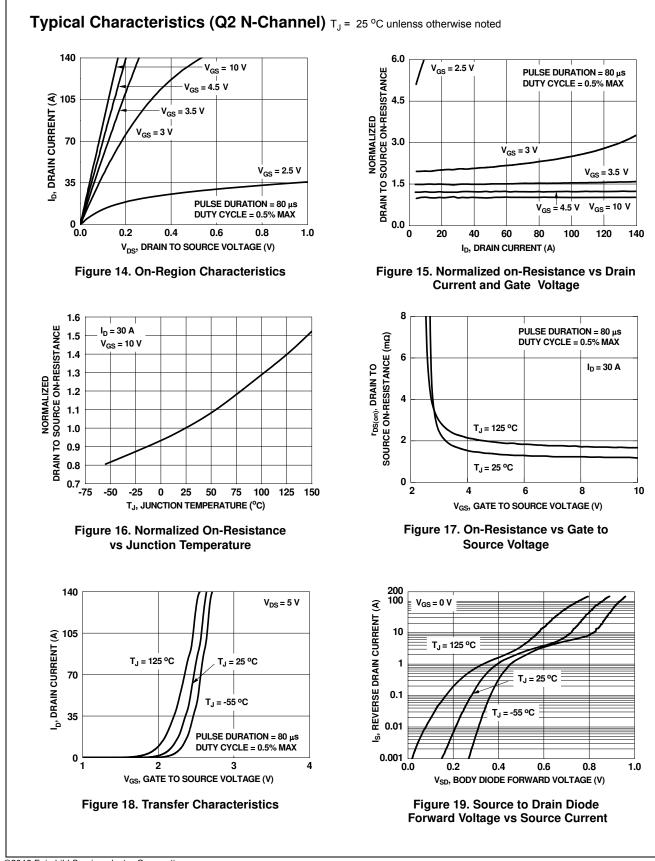
V_{DD} = 15 V,

V_{DD} = 15 V, I_D = 30 A


Q2:

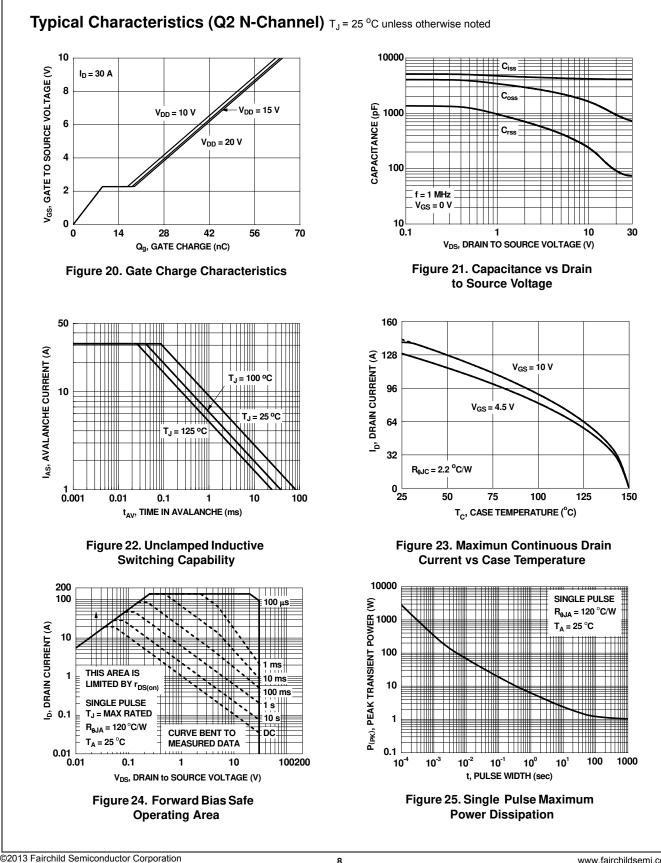
Symbol	Parameter	Test Conditions	Туре	Min	Тур	Max	Unit
Drain-Sou	Irce Diode Characteristics						
		$V_{GS} = 0 V, I_S = 13 A$ (Note 2)	Q1		0.84	1.2	
V _{SD}	Source to Drain Diode Forward Voltage	$e \begin{array}{l} V_{GS} = 0 \ V, \ I_S = 2 \ A \\ V_{GS} = 0 \ V, \ I_S = 30 \ A \end{array} (Note \ 2) \\ (Note \ 2) \end{array}$	Q1 Q2		0.74 0.77	1.2 1.2	V
		$V_{GS} = 0 V, I_S = 2 A$ (Note 2) $V_{GS} = 0 V, I_S = 2 A$ (Note 2)	Q2		0.48	1.2	
t _{rr}	Reverse Recovery Time	Q1: I _F = 13 A, di/dt = 100 A/µs	Q1 Q2		25 33	40 53	ns
Q _{rr}	Reverse Recovery Charge	Q2: I _F = 30 A, di/dt = 300 A/μs	Q1 Q2		9 41	18 66	nC
Notes:		η συνι, ακαι συσντήμο	QZ		41	00	
	a 1 in ² pad of 2 oz	nted on a			n mounted of 2 oz cop		
3. As an N-ch de 4. Pulsed Id limit	Ilse Width < 300 μ s, Duty cycle < 2.0%. vice, the negative Vgs rating is for low duty cycle pulss ed by junction temperature, td<=100 μ S, please refer is based on starting T _J = 25 °C; N-ch: L = 3 mH, I _{AS} = l is based on starting T _J = 25 °C; N-ch: L = 3 mH, I _{AS} =	to SOA curve for more details.			rating.		


FDMS3660AS Rev.C

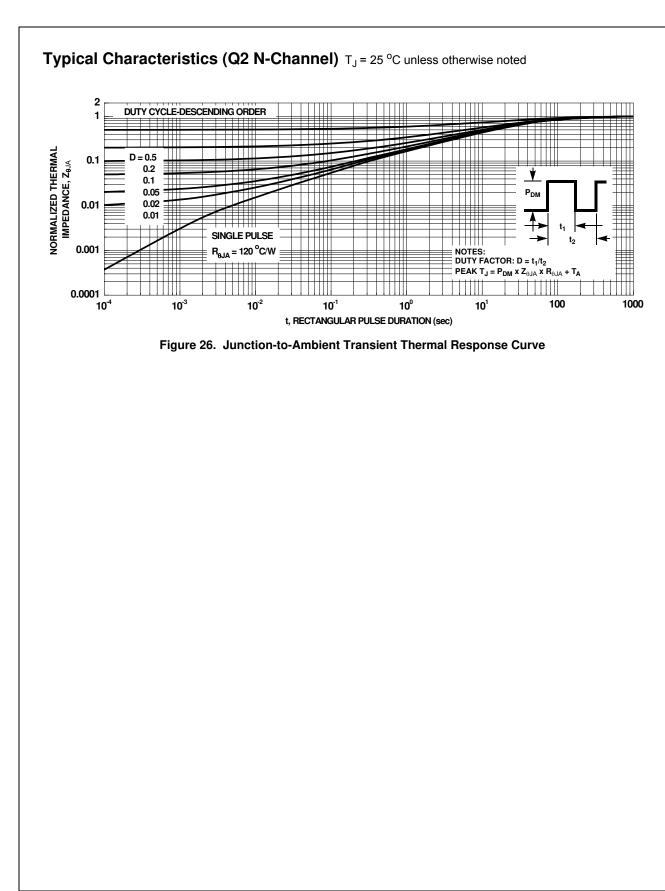


©2013 Fairchild Semiconductor Corporation FDMS3660AS Rev.C

www.fairchildsemi.com



FDMS3660AS PowerTrench[®] Power Stage


©2013 Fairchild Semiconductor Corporation FDMS3660AS Rev.C

FDMS3660AS PowerTrench[®] Power Stage

FDMS3660AS Rev.C

Typical Characteristics (continued)

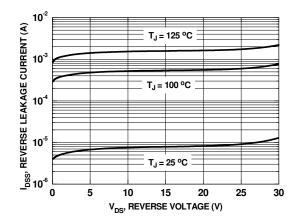
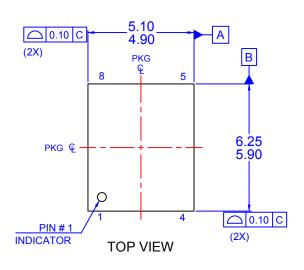
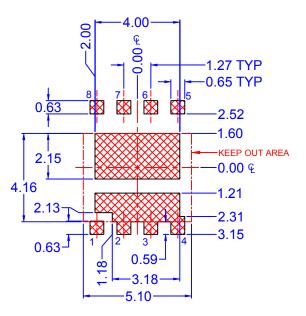
SyncFET[™] Schottky body diode Characteristics

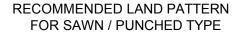
Fairchild's SyncFETTM process embeds a Schottky diode in parallel with PowerTrench MOSFET. This diode exhibits similar characteristics to a discrete external Schottky diode in parallel with a MOSFET. Figure 27 shows the reverse recovery characteristic of the FDMS3660AS.

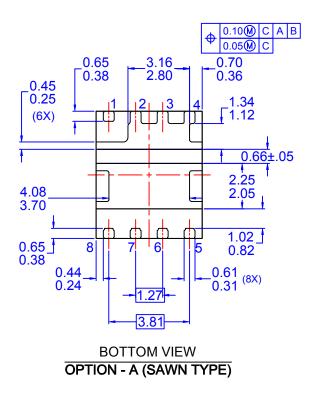
35 30 25 20 20 15 15 10 5 0 -5 100 150 200 350 250 300 400 450 500 TIME (ns)

Figure 27. FDMS3660AS SyncFET[™] Body Diode Reverse Recovery Characteristic

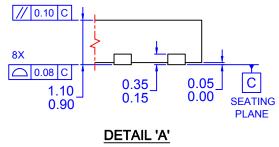
Schottky barrier diodes exhibit significant leakage at high temperature and high reverse voltage. This will increase the power in the device.

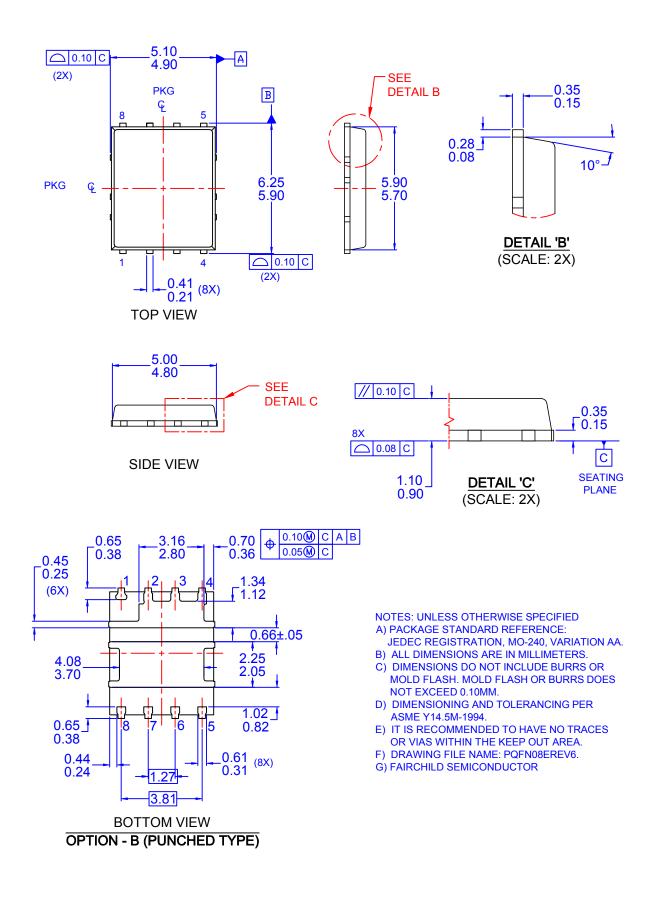





Figure 28. SyncFETTM Body Diode Reverse Leakage Versus Drain-Source Voltage



SEE


DETAIL A



SIDE VIEW

(SCALE: 2X)

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC