

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, emplo

May 2014

FDMS7620S

Dual N-Channel PowerTrench[®] MOSFET Q1: 30 V, 13 A, 20.0 m Ω Q2: 30 V, 22 A, 11.2 m Ω

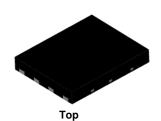
Features

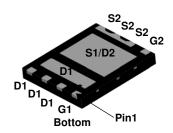
Q1: N-Channel

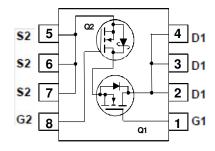
- Max $r_{DS(on)}$ = 20.0 m Ω at V_{GS} = 10 V, I_D = 10.1 A
- Max $r_{DS(on)}$ = 30.0 m Ω at V_{GS} = 4.5 V, I_D = 7.5 A

Q2: N-Channel

- Max $r_{DS(on)}$ = 11.2 m Ω at V_{GS} = 10 V, I_D = 12.4 A
- Max $r_{DS(on)} = 14.2 \text{ m}\Omega$ at $V_{GS} = 4.5 \text{ V}$, $I_D = 10.9 \text{ A}$
- Pinout optimized for simple PCB design
- Thermally efficient dual Power 56 Package
- RoHS Compliant


General Description


This device includes two specialized MOSFETs in a unique dual Power 56 package. It is designed to provide an optimal synchronous buck power stage in terms of efficiency and PCB utilization. The low switching loss "High Side" MOSFET is complementory by a low conduction loss "Low Side" SyncFET.


Applications

Synchronous Buck Converter for:

- Notebook System Power
- General Purpose Point of Load

MOSFET Maximum Ratings T_A = 25°C unless otherwise noted

Power 56

Symbol	Parameter		Q1	Q2	Units
V _{DS}	Drain to Source Voltage		30	30	V
V_{GS}	Gate to Source Voltage	(Note 3)	±20	±20	V
	Drain Current -Continuous	T _C = 25 °C	13	22	
I _D	-Continuous	T _A = 25 °C	10.1	12.4	Α
	-Pulsed		27	45	
E _{AS}	Single Pulse Avalanche Energy	(Note 4)	9	21	mJ
В	Power Dissipation for Single Operation	T _A = 25°C	2.2 ^{1a}	2.5 ^{1b}	W
P_D	Power Dissipation for Single Operation	T _A = 25°C	1.0 ^{1c}	1.0 ^{1d}] vv
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to	+150	°C

Thermal Characteristics

$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	57 ^{1a}	50 ^{1b}	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	125 ^{1c}	120 ^{1d}	C/VV

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDMS7620S	FDMS7620S	Power 56	13 "	12 mm	3000 units

Electrical Characteristics $T_J = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Test Conditions		Min	Тур	Max	Units
Off Chara	cteristics						
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$ $I_D = 1 mA, V_{GS} = 0 V$	Q1 Q2	30 30			V
$\frac{\Delta BV_{DSS}}{\Delta T_J}$	Breakdown Voltage Temperature Coefficient	I_D = 250 μ A, referenced to 25°C I_D = 10 mA, referenced to 25°C	Q1 Q2		19 19		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 24 V, V _{GS} = 0 V	Q1 Q2			1 500	μА
I _{GSS}	Gate to Source Leakage Current, Forward	V _{GS} = 20 V, V _{DS} = 0 V	Q1 Q2			100 100	nA nA

On Characteristics

V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \mu A$ $V_{GS} = V_{DS}, I_D = 1 mA$	Q1 Q2	1.0 1.0	2.2 2.0	3.0 3.0	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	I_D = 250 μA, referenced to 25°C I_D = 10 mA, referenced to 25°C	Q1 Q2		-6 -5		mV/°C
		$V_{GS} = 10 \text{ V}, I_D = 10.1 \text{ A}$ $V_{GS} = 4.5 \text{ V}, I_D = 7.5 \text{ A}$ $V_{GS} = 10 \text{ V}, I_D = 10 \text{ A}, T_J = 125^{\circ}\text{C}$	Q1		15.2 22.7 18.7	20.0 30.0 22.5	mO
r _{DS(on)}	Static Drain to Source On Resistance	$V_{GS} = 10 \text{ V}, I_D = 12.4 \text{ A}$ $V_{GS} = 4.5 \text{ V}, I_D = 10.9 \text{ A}$ $V_{GS} = 10 \text{ V}, I_D = 12.4 \text{ A}, T_J = 125^{\circ}\text{C}$	Q2		8.3 10.5 8.9	11.2 14.2 15.1	mΩ
g _{FS}	Forward Transconductance	$V_{DD} = 5 \text{ V}, I_{D} = 10.1 \text{ A}$ $V_{DD} = 5 \text{ V}, I_{D} = 12.4 \text{ A}$	Q1 Q2		22 53		S

Dynamic Characteristics

C _{iss}	Input Capacitance		Q1 Q2		457 1050	608 1400	pF
C _{oss}	Output Capacitance	$V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHZ}$	Q1 Q2		167 358	222 477	pF
C _{rss}	Reverse Transfer Capacitance		Q1 Q2		22 35	31 49	pF
R _g	Gate Resistance		Q1 Q2	0.2 0.2	1.6 1.2	4.4 3.5	Ω

Switching Characteristics

t _{d(on)}	Turn-On Delay Time	Q1		Q1 Q2	5.2 6.6	-	ns
t _r	Rise Time	$V_{DD} = 15 \text{ V}, I_{D} = 10$	$V_{DD} = 15 \text{ V}, I_{D} = 10.1 \text{ A}, R_{GEN} = 6 \Omega$		1.2 1.8	-	ns
t _{d(off)}	Turn-Off Delay Time	Q2 V_{DD} = 15 V, I_{D} = 12.4 A, R_{GEN} = 6 Ω		Q1 Q2	11.9 17.4		ns
t _f	Fall Time			Q1 Q2	1.4 1.5	-	ns
$Q_{g(TOT)}$	Total Gate Charge	V _{GS} = 0V to 10 V	$V_{GS} = 0V \text{ to } 10 \text{ V}$ Q1 $V_{DD} = 15 \text{ V},$ $I_{D} = 10.1 \text{ A}$		7.2 15.6		nC
$Q_{g(TOT)}$	Total Gate Charge	V _{GS} = 0V to 5 V			3.8 7.9	6 12	nC
Q _{gs}	Gate to Source Charge	Q2		Q1 Q2	1.6 3.2		nC
Q_{gd}	Gate to Drain "Miller" Charge		$V_{DD} = 15 \text{ V},$ $I_{D} = 12.4 \text{ A}$	Q1 Q2	1.1 1.6		nC

Units

Max

Electrical Characteristics $T_J = 25$ °C unless otherwise noted

Parameter

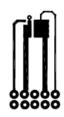
Drain-Source Diode Characteristics									
V	Source-Drain Diode Forward Voltage	$V_{GS} = 0 \text{ V}, I_{S} = 10.1 \text{ A}$ (1)	Note 2)	Q1		0.90	1.2	V	
V_{SD}	Source-Drain Diode Forward Voltage	$V_{GS} = 0 \text{ V}, I_S = 10.1 \text{ A}$ (N) $V_{GS} = 0 \text{ V}, I_S = 12.4 \text{ A}$ (N)	Note 2)	Q2		0.83	1.2	v	
	Deverse Deservery Time	Q1		Q1		16	28	20	
۱rr	Reverse Recovery Time	$I_F = 10.1 A$, di/dt = 100 A/s		Q2		18	32	ns	
0	Poverse Becovery Charge	Q2		Q1		4	10	nC	
Q _{rr}	Reverse Recovery Charge	$I_F = 12.4 \text{ A}, \text{ di/dt} = 300 \text{ A/s}$		Q2		13	23	IIC	

Test Conditions

Notes

Symbol

1. $R_{\theta JA}$ is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. $R_{\theta JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.


a. 57 °C/W when mounted on a 1 in² pad of 2 oz copper

b. 50 °C/W when mounted on a 1 in² pad of 2 oz copper

Type

Min

c. 125 °C/W when mounted on a minimum pad of 2 oz copper

d. 120 °C/W when mounted on a minimum pad of 2 oz copper

- 2. Pulse Test: Pulse Width < 300 $\,\mu s$, Duty cycle < 2.0%.
- 3. As an N-ch device, the negative Vgs rating is for low duty cycle pulse ocurrence only. No continuous rating is implied.
- 4. Q1: E_{AS} of 9 mJ is based on starting $T_J = 25$ °C, L = 0.3 mH, $I_{AS} = 8$ A, $V_{DD} = 27$ V, $V_{GS} = 10$ V. 100% test at L = 0.1 mH, $I_{AS} = 12$ A. Q2: E_{AS} of 21 mJ is based on starting $T_J = 25$ °C, L = 0.3 mH, $I_{AS} = 12$ A, $V_{DD} = 27$ V, $V_{GS} = 10$ V. 100% test at L = 0.1 mH, $I_{AS} = 18$ A.

Typical Characteristics (Q1 N-Channel) T_J = 25°C unless otherwise noted

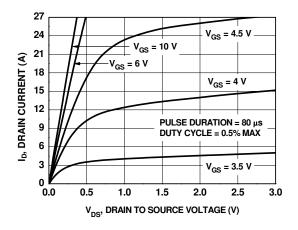


Figure 1. On Region Characteristics

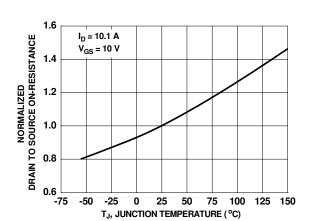


Figure 3. Normalized On Resistance vs Junction Temperature

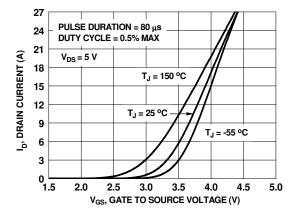


Figure 5. Transfer Characteristics

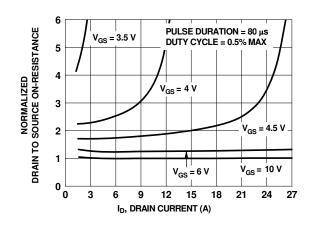


Figure 2. Normalized On-Resistance vs Drain Current and Gate Voltage

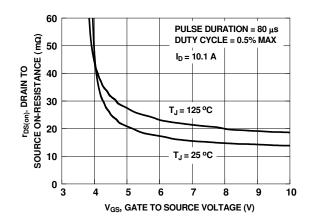


Figure 4. On-Resistance vs Gate to Source Voltage

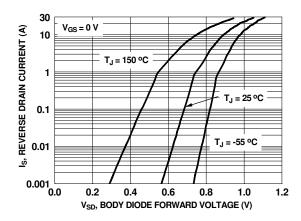


Figure 6. Source to Drain Diode Forward Voltage vs Source Current

Typical Characteristics (Q1 N-Channel) $T_J = 25$ °C unless otherwise noted

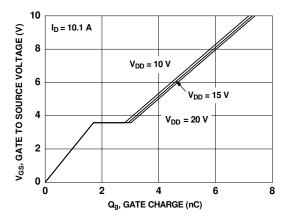


Figure 7. Gate Charge Characteristics

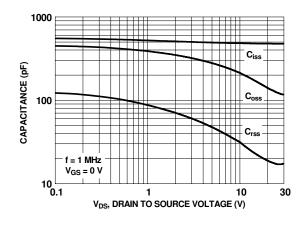


Figure 8. Capacitance vs Drain to Source Voltage

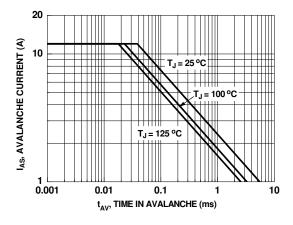


Figure 9. Unclamped Inductive Switching Capability

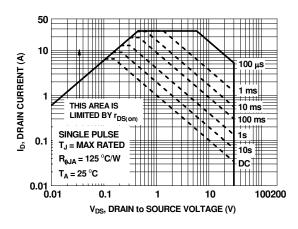


Figure 10. Forward Bias Safe Operating Area

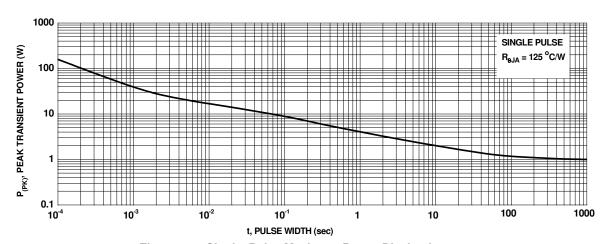


Figure 11. Single Pulse Maximum Power Dissipation

Typical Characteristics (Q1 N-Channel) $T_J = 25$ °C unless otherwise noted

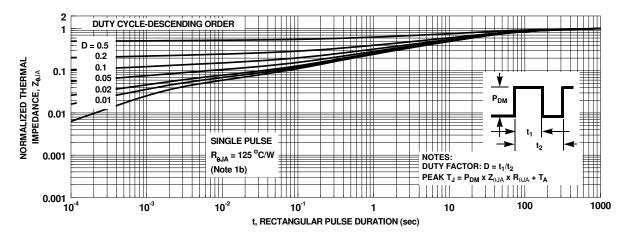


Figure 12. Junction-to-Ambient Transient Thermal Response Curve

Typical Characteristics (Q2 N-Channel) T_J = 25 °C unless otherwise noted

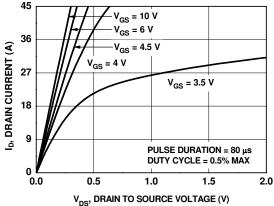


Figure 13. On-Region Characteristics

1.6

1.4

1.2

1.0

0.8

-75

NORMALIZED DRAIN TO SOURCE ON-RESISTANCE $I_D = 12.4 A$

V_{GS} = 10 V

-50

-25

0

125

Figure 15. Normalized On-Resistance vs Junction Temperature

25 50

T_J, JUNCTION TEMPERATURE (°C)

75 100

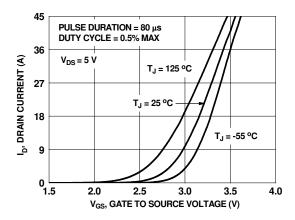


Figure 17. Transfer Characteristics

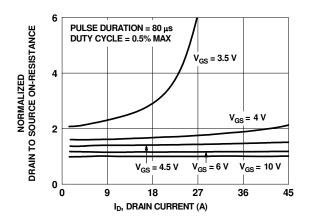


Figure 14. Normalized on-Resistance vs Drain Current and Gate Voltage

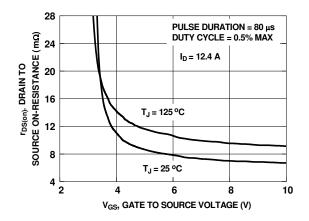


Figure 16. On-Resistance vs Gate to Source Voltage

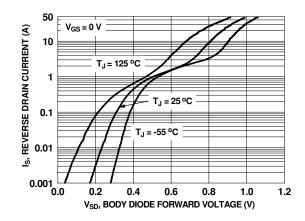


Figure 18. Source to Drain Diode Forward Voltage vs Source Current

Typical Characteristics (Q2 N-Channel) T_J = 25°C unless otherwise noted

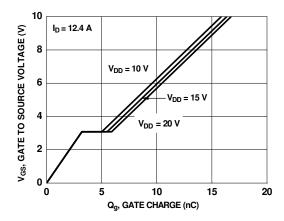


Figure 19. Gate Charge Characteristics

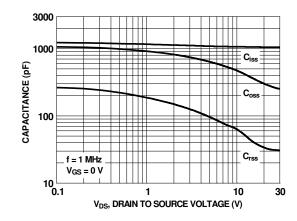


Figure 20. Capacitance vs Drain to Source Voltage

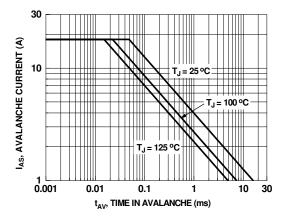


Figure 21. Unclamped Inductive Switching Capability

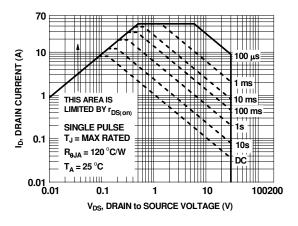


Figure 22. Forward Bias Safe Operating Area

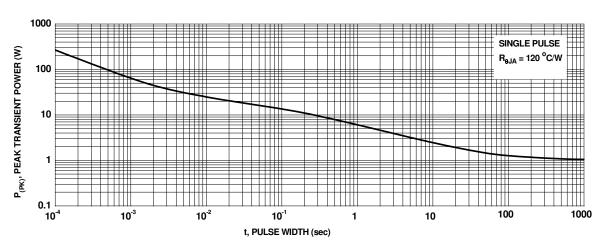


Figure 23. Single Pulse Maximum Power Dissipation

Typical Characteristics (Q2 N-Channel) $T_J = 25$ °C unless otherwise noted

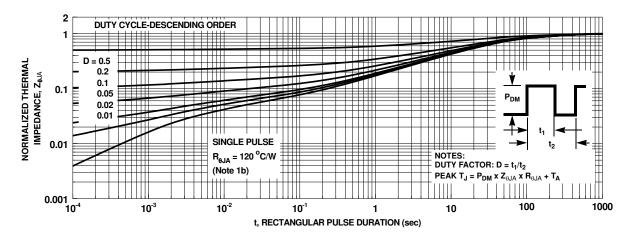


Figure 24. Junction-to-Ambient Transient Thermal Response Curve

Typical Characteristics (continued)

SyncFETTM Schottky body diode Characteristics

Fairchild's SyncFETTM process embeds a Schottky diode in parallel with PowerTrench[®] MOSFET. This diode exhibits similar characteristics to a discrete external Schottky diode in parallel with a MOSFET. Figure 26 shows the reverse recovery characteristic of the FDMS7620S.

Schottky barrier diodes exhibit significant leakage at high temperature and high reverse voltage. This will increase the power in the device.

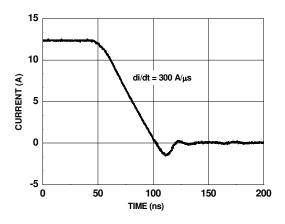
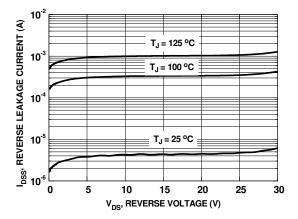
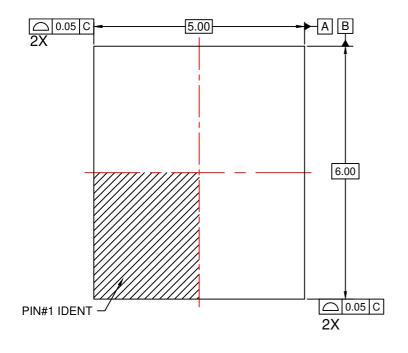
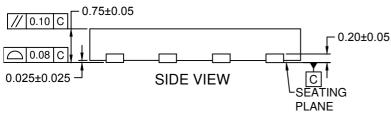
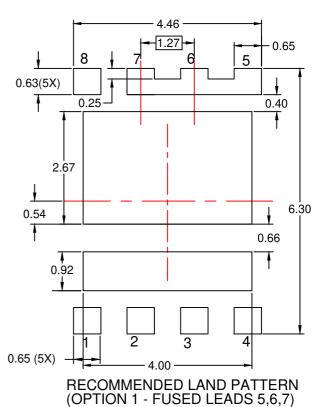
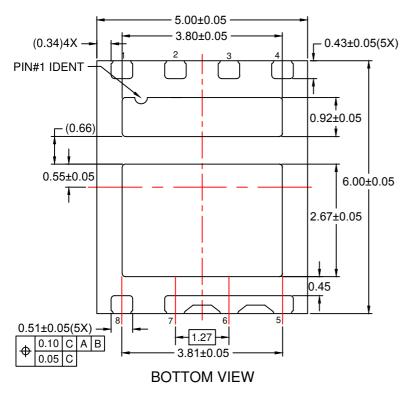
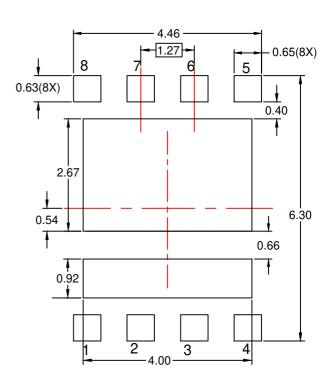


Figure 25. FDMS7620S SyncFET[™] Body Diode Reverse Recovery Characteristic


Figure 26. SyncFETTM Body Diode Reverse Leakage vs. Drain-Source Voltage

RECOMMENDED LAND PATTERN (OPTION 2 - ISOLATED LEADS)

NOTES:

- A. PACKAGE DOES NOT FULLY CONFORM TO JEDEC STANDARD.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 2009.
- D. LAND PATTERN RECOMMENDATION IS EXISTING INDUSTRY LAND PATTERN.
- E. DRAWING FILENAME: MKT-MLP08Prev2.

ON Semiconductor and III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative