

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, emplo

May 2014

FDMS9600S

Dual N-Channel PowerTrench[®] MOSFET Q1: 30V, 32A, 8.5m Ω Q2: 30V, 30A, 5.5m Ω

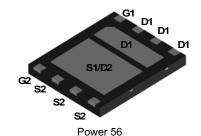
Features

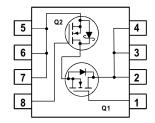
Q1: N-Channel

- Max $r_{DS(on)}$ = 8.5m Ω at V_{GS} = 10V, I_D = 12A
- Max $r_{DS(on)}$ = 12.4m Ω at V_{GS} = 4.5V, I_D = 10A

Q2: N-Channel

- Max $r_{DS(on)} = 5.5 \text{m}\Omega$ at $V_{GS} = 10 \text{V}$, $I_D = 16 \text{A}$
- Max $r_{DS(on)}$ = 7.0m Ω at V_{GS} = 4.5V, I_D = 14A
- Low Qg high side MOSFET
- Low r_{DS(on)} low side MOSFET
- Thermally efficient dual Power 56 package
- Pinout optimized for simple PCB design
- RoHS Compliant


General Description


This device includes two specialized MOSFETs in a unique dual Power 56 package. It is designed to provide an optimal Synchronous Buck power stage in terms of efficiency and PCB utilization. The low switching loss "High Side" MOSFET is complemented by a Low Conduction Loss "Low Side" SyncFET.

Applications

Synchronous Buck Converter for:

- Notebook System Power
- General Purpose Point of Load

MOSFET Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter				Q2	Units
V_{DS}	Drain to Source Voltage				30	V
V_{GS}	Gate to Source Voltage			±20	±20	V
	Drain Current -Continuous	T _C = 25°C		32	30	
I _D	-Continuous	T _A = 25°C	(Note 1a)	12	16	Α
	-Pulsed			60	60	
Б	Power Dissipation for Single Operation (Note 1		(Note 1a)	2	2.5	
P_{D}			(Note 1b)	1.0		W
T _J , T _{STG}	Operating and Storage Junction Temperature Range			-55 to	+150	°C

Thermal Characteristics

$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	sistance, Junction to Ambient (Note 1a) 50			
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1b)	120		°C/W
$R_{\theta JC}$	Thermal Resistance, Junction to Case 3 1.2		1.2		

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	el Size Tape Width	
FDMS9600S	FDMS9600S	Power 56	13"	12mm	3000 units

Electrical Characteristics $T_J = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Test Conditions	Type	Min	Тур	Max	Units
Off Chara	cteristics						
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0V$ $I_D = 1 m A, V_{GS} = 0 V$	Q1 Q2	30 30			V
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	I _D = 250μA, referenced to 25°C I _D = 1mA, referenced to 25°C	Q1 Q2		35 29		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 24V, V _{GS} = 0V	Q1 Q2			1 500	μА
I _{GSS}	Gate to Source Leakage Current	V _{GS} = ±20V, V _{DS} = 0V	Q1 Q2			±100 ±100	nA nA
On Chara	cteristics						
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250\mu A$ $V_{GS} = V_{DS}, I_D = 1mA$	Q1 Q2	1	1.5 1.8	3	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	I _D = 250μA, referenced to 25°C I _D = 1mA, referenced to 25°C	Q1 Q2		-4.5 -6.0		mV/°C
_	Drain to Source On Resistance	$V_{GS} = 10V, I_D = 12A$ $V_{GS} = 4.5V, I_D = 10A$ $V_{GS} = 10V, I_D = 12A, T_J = 125^{\circ}C$	Q1		7.0 9.2 8.6	8.5 12.4 13.0	 0
r _{DS(on)}	Drain to Source On Resistance	$V_{GS} = 10V, I_D = 16A$ $V_{GS} = 4.5V, I_D = 14A$ $V_{GS} = 10V, I_D = 16A, T_J = 125^{\circ}C$	Q2		4.5 5.3 5.4	5.5 7.0 8.3	mΩ
9 _{FS}	Forward Transconductance	$V_{DD} = 10V, I_D = 12A$ $V_{DD} = 10V, I_D = 16A$	Q1 Q2		54 68		S
Dynamic	Characteristics		•				•
C _{iss}	Input Capacitance		Q1 Q2		1280 2300	1705 3060	pF
C _{oss}	Output Capacitance	V _{DS} = 15V, V _{GS} = 0V, f= 1MHz	Q1 Q2		525 1545	700 2055	pF
					1		+

Switching Characteristics

Gate Resistance

Reverse Transfer Capacitance

 $\mathsf{C}_{\mathsf{rss}}$

t _{d(on)}	Turn-On Delay Time		Q1 Q2	13 17	23 31	ns
t _r	Rise Time	V _{DD} = 10V, I _D = 1A,	Q1 Q2	6 11	12 20	ns
t _{d(off)}	Turn-Off Delay Time	$V_{DD} = 10V, I_{D} = 1A,$ $V_{GS} = 10V, R_{GEN} = 6\Omega$	Q1 Q2	42 54	67 86	ns
t _f	Fall Time		Q1 Q2	12 32	22 51	ns
$Q_{g(TOT)}$	Total Gate Charge	Q1 V _{DD} = 15V, V _{GS} = 4.5V, I _D = 12A	Q1 Q2	9 21	13 29	nC
Q _{gs}	Gate to Source Gate Charge	Q2	Q1 Q2	3 8		nC
Q_{gd}	Gate to Drain "Miller" Charge	$V_{DD} = 15V, V_{GS} = 4.5V, I_{D} = 16A$	Q1 Q2	2.7 6.5		nC

f = 1MHz

Q1

Q2

Q1

Q2

80

250

1.0

1.7

120

375

pF

Ω

Electrical Characteristics $T_J = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Test Conditions	Type	Min	Тур	Max	Units		
Drain-Source Diode Characteristics									
I _S	Maximum Continuous Drain-Source Dio	de Forward Current	Q1 Q2			2.1 3.5	Α		
V _{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0V, I_S = 2.1A$ (Note 2) $V_{GS} = 0V, I_S = 3.5A$ (Note 2) $V_{GS} = 0V, I_S = 8.2A$ (Note 2)	Q1 Q2 Q2		0.7 0.4 0.5	1.2 1.0 1.0	V		
t _{rr}	Reverse Recovery Time	Q1 I _F = 12A, di/dt = 100A/μs	Q1 Q2		33 27		ns		
Q _{rr}	Reverse Recovery Charge	Q2 I _F = 16A, di/dt = 300A/μs	Q1 Q2		20 33		nC		

1: R_{0JA} is determined with the device mounted on a 1in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{0JC} is guaranteed by design while R_{0CA} is determined by the user's board design.

a.50°C/W when mounted on a 1 in² pad of 2 oz copper

b. 120°C/W when mounted on a minimum pad of 2 oz copper

2: Pulse Test: Pulse Width < 300μ s, Duty cycle < 2.0%.

Typical Characteristics (Q1 N-Channel)T_J = 25°C unless otherwise noted

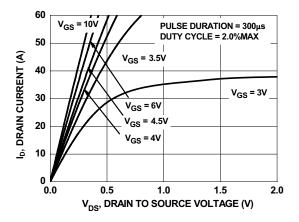


Figure 1. On-Region Characteristics

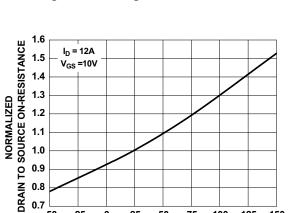


Figure 3. Normalized On-Resistance vs Junction Temperature

25

50

T_J, JUNCTION TEMPERATURE (°C)

75

100

125

150

-50

-25

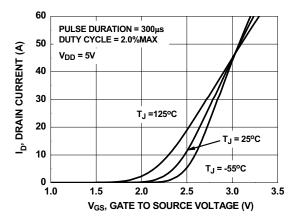


Figure 5. Transfer Characteristics

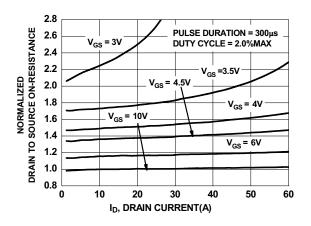


Figure 2. Normalized On-Resistance vs Drain Current and Gate Voltage

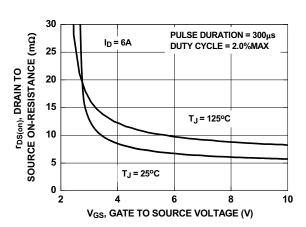


Figure 4. On-Resistance vs Gate to Source Voltage

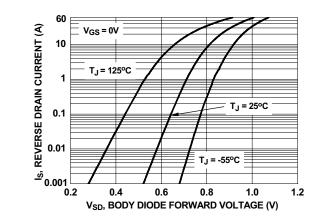


Figure 6. Source to Drain Diode Forward Voltage vs Source Current

Typical Characteristics (Q1 N-Channel)T_J = 25°C unless otherwise noted

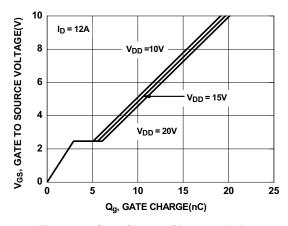


Figure 7. Gate Charge Characteristics

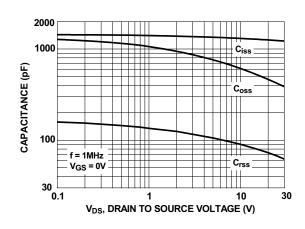


Figure 8. Capacitance vs Drain to Source Voltage

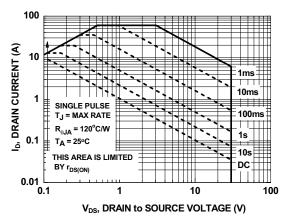


Figure 9. Forward Bias Safe Operating Area

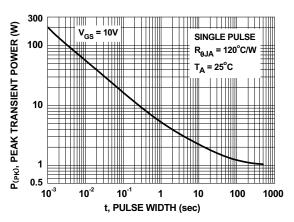


Figure 10. Single Pulse Maximum Power Dissipation

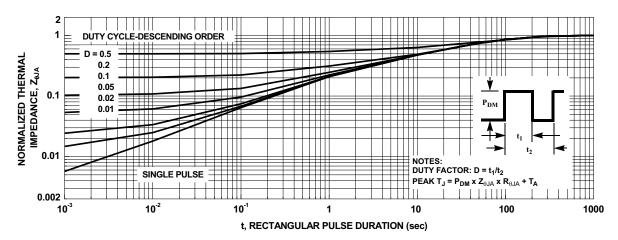


Figure 11. Transient Thermal Response Curve

Typical Characteristics (Q2 SyncFET)

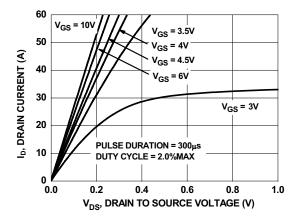


Figure 12. On-Region Characteristics

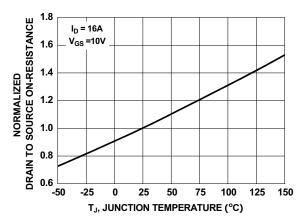


Figure 14. Normalized On-Resistance vs Junction Temperature

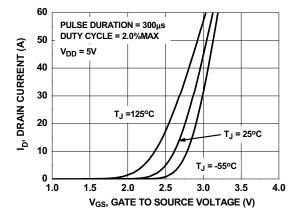


Figure 16. Transfer Characteristics

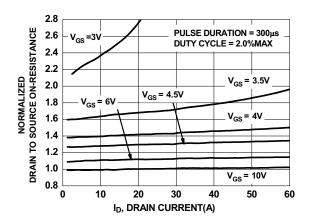


Figure 13. Normalized on-Resistance vS Drain Current and Gate Voltage

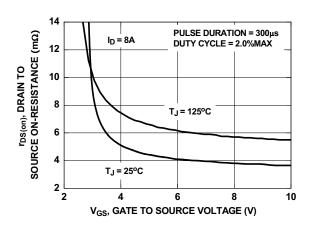


Figure 15. On-Resistance vs Gate to Source Voltage

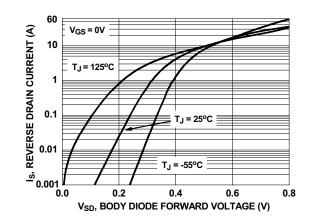


Figure 17. Source to Drain Diode Forward Voltage vs Source Current

Typical Characteristics

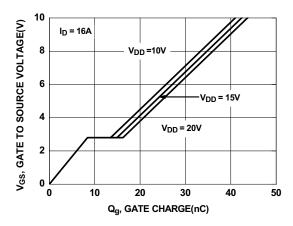


Figure 18. Gate Charge Characteristics

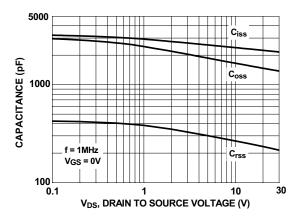
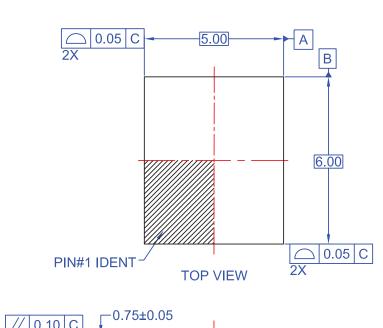
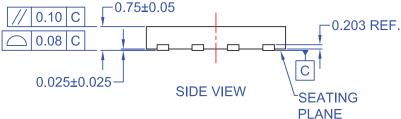
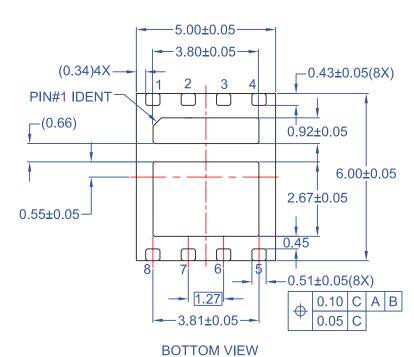
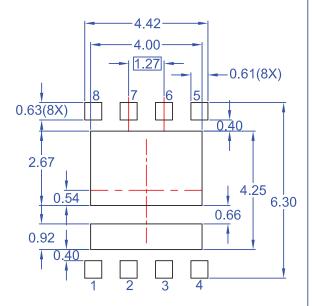






Figure 19. Capacitance vs Drain to Source Voltage

RECOMMENDED LAND PATTERN

NOTE:

- A. PACKAGE DOES NOT FULLY CONFORM TO JEDEC STANDARD.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 2009.
- D. LAND PATTERN RECOMMENDATION IS EXISTING INDUSTRY LAND PATTERN.
- E. DRAWING FILENAME: MKT-MLP08Krev3.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor nessure any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, a

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative