imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

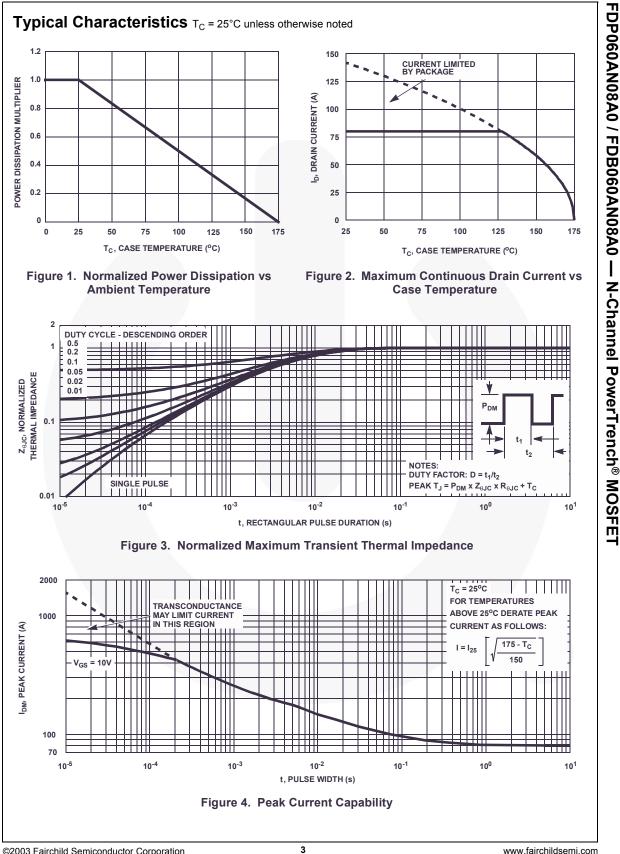
Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

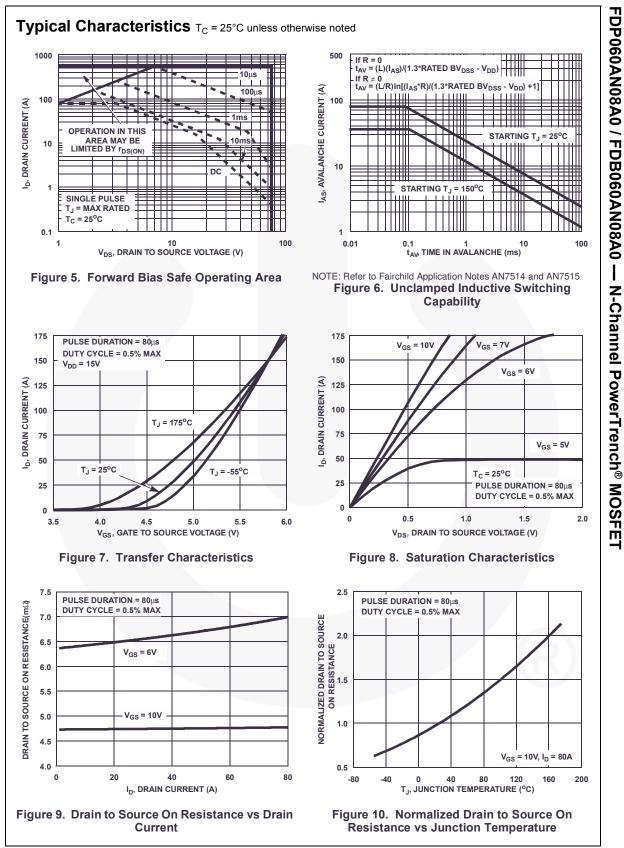
ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized applications, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an equif prese

VDSSDrain to Source Voltage75VVGSGate to Source Voltage ± 20 VDrain CurrentDrain Current80AIDContinuous (T _C < 127°C, V _{GS} = 10V)80AContinuous (T _{amb} = 25°C, V _{GS} = 10V, with R _{0JA} = 43°C/W)16APulsedFigure 4AEASSingle Pulse Avalanche Energy (Note 1)350mJPDDerate above 25°C1.7W/°CTJ, TSTGOperating and Storage Temperature-55 to 175°CThermal CharacteristicsR _{0JC} Thermal Resistance Junction to Case, Max. TO-220, D²-PAK (Note 2)62°C/MR _{0JA} Thermal Resistance Junction to Ambient, Max. TO-220, D²-PAK (Note 2)62°C/M	N-Cha	60AN08A0 / FDB060AN08A0 nnel PowerTrench [®] MOSFET A, 6 m Ω			
 Q_{0(trol} = 73 nC (Typ.) @ V_{0S} = 10 V Low Q_{in} Body Diode UIS Capability (Single Pulse and Repetitive Pulse) Formerly developmental type 82880 Motor drives and Uninterruptible Power Supplies US Capability (Single Pulse and Repetitive Pulse) Formerly developmental type 82880 MOSFET Maximum Ratings T_C = 25°C unless otherwise noted Symbol Parameter FDP060AN08A0 Unit V_{OSS} Drain to Source Voltage 75 V V_{GS} Gate to Source Voltage 75 V V_{GS} Gate to Source Voltage 75 V Continuous (T_G + 127°C, V_{GS} = 10V) Continuous (T_G + 25°C, V_{GS} = 10V) Continuous (T_G + 127°C, V_{GS} = 10V) Continuous (T_G + 25°C, V_{GS} = 10V) Continuous (T_G + 25°C, V_{GS} = 10V) Continuous (T_G + 25°C, V_{GS} = 10V, with R_{0,IA} = 43°C/W) A Fugure 4 A E_{AS} Single Pulse Avalanche Energy (Note 1) Single Pulse Avalanche Energy (Note 1) Conternet - 55 to 175 °C Thermal Resistance Junction to Case, Max. TO-220, D²-PAK (Note 2) Ci Thermal Resistance Junction to Ambient, Max. TO-220, D²-PAK (Note 2) Ci Thermal Resistance Junction to Ambient, Max. TO-220, D²-PAK (Note 2) Ci Conton Conton Ambient, Max. TO-220, D²-PAK (Note 2) 	Features	Applications			
$\label{eq:constraint} \begin{split} & \overbrace{D_{C}}^{O} \overbrace{D_{C}}^{O} \overbrace{D_{C}}^{O} O_{C} O_{C}$	 R_{DS(on)} = 2 Q_{G(tot)} = 7 Low Mille Low Q_{rr} B UIS Capa 	$4.8 \text{ m}\Omega (\text{Typ.}) \textcircled{0} V_{GS} = 10 \text{ V}, I_D = 80 \text{ A}$ • Synchronous Rectifi $3 \text{ nC} (\text{Typ.}) \textcircled{0} V_{GS} = 10 \text{ V}$ • Battery Protection Cit $3 \text{ nC} (\text{Typ.}) \textcircled{0} V_{GS} = 10 \text{ V}$ • Motor drives and Un 10 cdy Diode • Motor Pulse)	rcuit		
SymbolParameterFDB060AN08A0Onto V_{DSS} Drain to Source Voltage75V V_{GS} Gate to Source Voltage ± 20 VDrain Current ± 20 V I_D Continuous ($T_C < 127^{\circ}C, V_{GS} = 10V$)80 I_D Continuous ($T_{amb} = 25^{\circ}C, V_{GS} = 10V$, with $R_{\theta,JA} = 43^{\circ}C/W$)16 I_D PulsedFigure 4 P_D Power dissipation255 P_D Derate above 25^{\circ}C1.7 T_{J}, T_{STG} Operating and Storage Temperature-55 to 175°CThermal Characteristics $R_{\theta,JC}$ Thermal Resistance Junction to Case, Max. TO-220, D ² -PAK (Note 2)62 O_{CM}	MOSFE	T Maximum Ratings $T_C = 25^{\circ}C$ unless otherwise noted	GO-	s)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Symbol	Parameter			Unit
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	V _{DSS}	Drain to Source Voltage		75	V
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	V _{GS}	Gate to Source Voltage		±20	V
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	I _D	Continuous ($T_C < 127^{\circ}C$, $V_{GS} = 10V$)		16	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Fi	-	
P _D Derate above 25°C 1.7 W/°C T _J , T _{STG} Operating and Storage Temperature -55 to 175 °C Thermal Characteristics R _{θJC} Thermal Resistance Junction to Case, Max. TO-220, D ² -PAK 0.58 °C/M R _{θJA} Thermal Resistance Junction to Ambient, Max. TO-220, D ² -PAK (Note 2) 62 °C/M	E _{AS}				
TJ, TSTG Operating and Storage Temperature -55 to 175 °C Thermal Characteristics ReJC Thermal Resistance Junction to Case, Max. TO-220, D²-PAK 0.58 °C/M ReJA Thermal Resistance Junction to Ambient, Max. TO-220, D²-PAK (Note 2) 62 °C/M	PD				
Thermal Characteristics R _{θJC} Thermal Resistance Junction to Case, Max. TO-220, D ² -PAK 0.58 °C/M R _{θJA} Thermal Resistance Junction to Ambient, Max. TO-220, D ² -PAK (Note 2) 62 °C/M	T. Toro		-55		
$R_{\theta JA}$ Thermal Resistance Junction to Ambient, Max. TO-220, D ² -PAK (Note 2) 62 °C/M					
$R_{\theta JA}$ Thermal Resistance Junction to Ambient, Max. TO-220, D ² -PAK (Note 2) 62 °C/M	Raic	Thermal Resistance Junction to Case, Max. TO-220, D ² -PAK		0.58	°C/W
			ote 2)		°C/W
Rein I I hermal Resistance Junction to Ambient, Max. D ² -PAK. 1in ² copper bad area I 43 I °CM	R _{0JA}	Thermal Resistance Junction to Ambient, Max. D ² -PAK, 1in ² copper		43	°C/W

Symbol	Parameter	FDP060AN08A0 FDB060AN08A0	Unit V	
V _{DSS}	Drain to Source Voltage	75		
V _{GS}	Gate to Source Voltage	±20	V	
	Drain Current			
	Continuous ($T_C < 127^{\circ}C$, $V_{GS} = 10V$)	80	Α	
ID	Continuous (T_{amb} = 25°C, V_{GS} = 10V, with $R_{\theta JA}$ = 43°C/W)	16	Α	
	Pulsed	Figure 4	Α	
E _{AS}	Single Pulse Avalanche Energy (Note 1)	350	mJ	
P _D	Power dissipation	255	W	
	Derate above 25°C	1.7	W/°C	
T _J , T _{STG}	Operating and Storage Temperature	-55 to 175	°C	

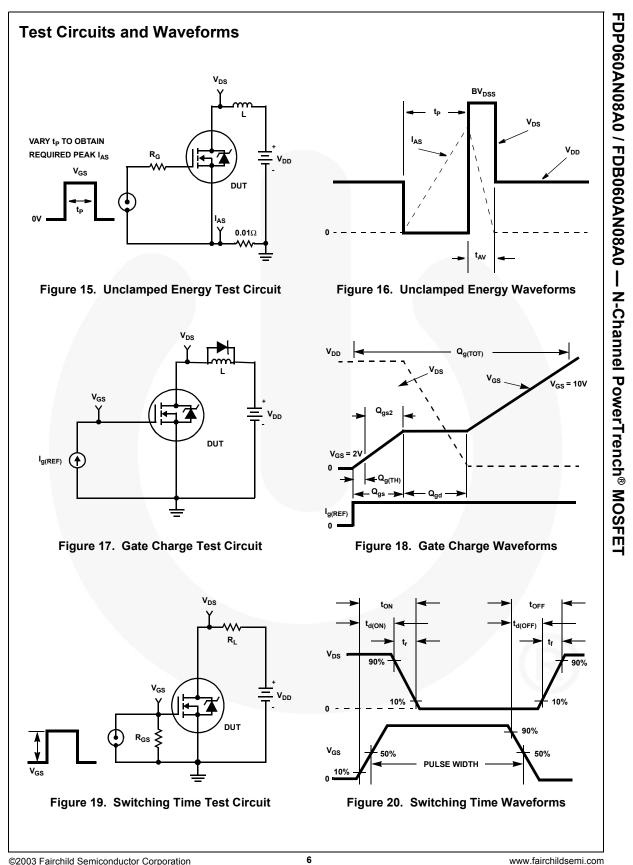
1


©2003 Fairchild Semiconductor Corporation FDP060AN08A0 / FDB060AN08A0 Rev. C4


October 2013

Device Marking FDB060AN08A0		Device	Package		Tape \	Vidth	Quantity	
		FDB060AN08A0	D ² -PAK		24 mm		800 units	
	DAN08A0	FDP060AN08A0	TO-220	Tube	N/	A	50 u	nits
Electric Symbol		Acteristics T _C = 25°C Parameter		e noted	Min	Тур	Мах	Unit
	!		1031 0	Jonations	WIIII	Typ	Max	Unit
Off Char	acteristic	S						
B _{VDSS}	Drain to S	ource Breakdown Voltage	I _D = 250μA, V	_{GS} = 0V	75	-	-	V
I _{DSS}	Zero Gate	e Voltage Drain Current	urrent $V_{DS} = 60V$ $V_{GS} = 0V$ $T_C = 150^{\circ}C$		-	-	1 250	μA
I _{GSS}	Gate to Source Leakage Current		V _{GS} = ±20V	0	-	-	±100	nA
					1	1	L	
	acteristic					1		
V _{GS(TH)}	Gate to S	ource Threshold Voltage	$V_{GS} = V_{DS}, I_{DS}$		2	-	4	V
			I _D = 80A, V _{GS}	; = 10V	-	0.0048	0.006	
r _{DS(ON)}	Drain to S	ource On Resistance	$I_D = 40A, V_{GS}$		-	0.0066	0.010	Ω
20(011)			I _D = 80A, V _{GS} T _J = 175°C	I _D = 80A, V _{GS} = 10V, T _J = 175°C		0.010	0.013	
Dynamic	: Characte	eristics						
C _{ISS}	Input Cap	acitance			-	5150	-	pF
C _{OSS}	Output Ca	apacitance	— V _{DS} = 25V, V — f = 1MHz	_{GS} = 0V,	-	800	-	pF
C _{RSS}	Reverse 1	ransfer Capacitance			-	230	-	pF
Q _{g(TOT)}	Total Gate	e Charge at 10V	V _{GS} = 0V to 1	0V		73	95	nC
Q _{g(TH)}	Threshold	Gate Charge		V V _{DD} = 40V	-	10	13	nC
Q _{gs}	Gate to S	ource Gate Charge		I _D = 80A	-	29	-	nC
Q _{gs2}	Gate Cha			I _g = 1.0mA	-	19	-	nC
Q _{gd}	Gate to D	rain "Miller" Charge			-	16	-	nC
Switchin	g Charac	teristics (V _{GS} = 10V)						
t _{ON}	Turn-On Time				-	-	147	ns
t _{d(ON)}	Turn-On E	Turn-On Delay Time			-	19	-	ns
t _r	Rise Time	9	V _{DD} = 40V, I _D	= 80A	-	79	-	ns
t _{d(OFF)}	Turn-Off E	Delay Time		$V_{GS} = 10V, R_{GS} = 3.9\Omega$		37	-	ns
t _f	Fall Time				-	38	-	ns
t _{OFF}	Turn-Off T	īme			-		113	ns
	ource Diod	de Characteristics					6	1
\/	Course to	Droin Diodo Maltara	I _{SD} = 80A		- /	-	1.25	V
V _{SD}	Source to Drain Diode Voltage		I _{SD} = 40A		-	-	1.0	V
1	Reverse F	Recovery Time		_{SD} /dt = 100A/µs	-	-	37	ns
t _{rr}	Deveneer	Recovered Charge	I _{SD} = 75A, dI _{SD} /dt = 100A/μs		-	-	38	nC

2



©2003 Fairchild Semiconductor Corporation FDP060AN08A0 / FDB060AN08A0 Rev. C4 www.fairchildsemi.com

www.fairchildsemi.com

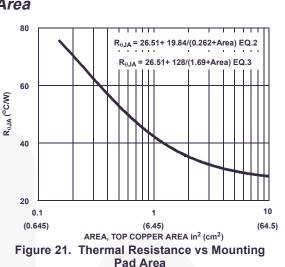
Thermal Resistance vs. Mounting Pad Area

The maximum rated junction temperature, T_{JM} , and the thermal resistance of the heat dissipating path determines the maximum allowable device power dissipation, P_{DM} , in an application. Therefore the application's ambient temperature, T_A (°C), and thermal resistance $R_{\theta JA}$ (°C/W) must be reviewed to ensure that T_{JM} is never exceeded. Equation 1 mathematically represents the relationship and serves as the basis for establishing the rating of the part.

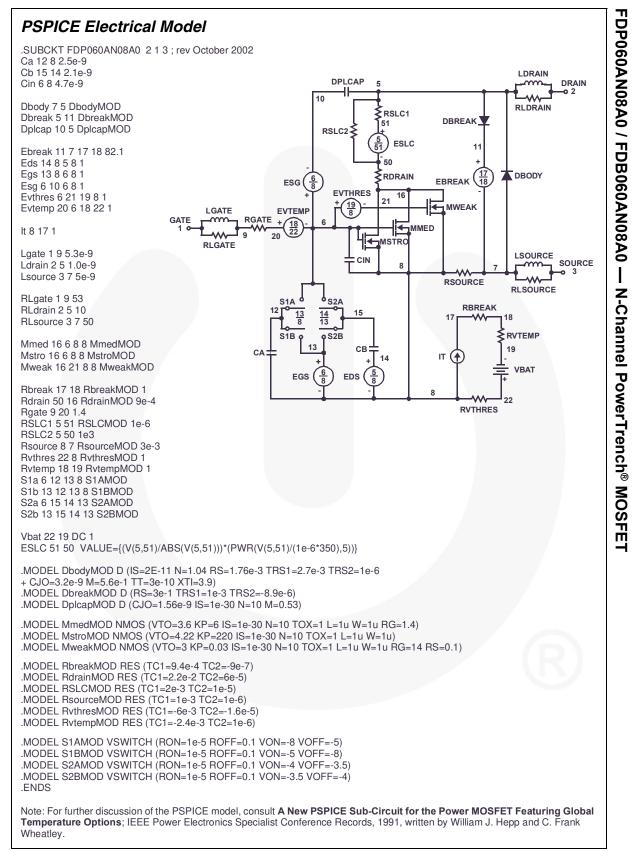
$$P_{DM} = \frac{(T_{JM} - T_A)}{R_{\theta JA}}$$
(EQ. 1)

In using surface mount devices such as the TO-263 package, the environment in which it is applied will have a significant influence on the part's current and maximum power dissipation ratings. Precise determination of P_{DM} is complex and influenced by many factors:

- Mounting pad area onto which the device is attached and whether there is copper on one side or both sides of the board.
- 2. The number of copper layers and the thickness of the board.
- 3. The use of external heat sinks.
- 4. The use of thermal vias.
- 5. Air flow and board orientation.
- 6. For non steady state applications, the pulse width, the duty cycle and the transient thermal response of the part, the board and the environment they are in.

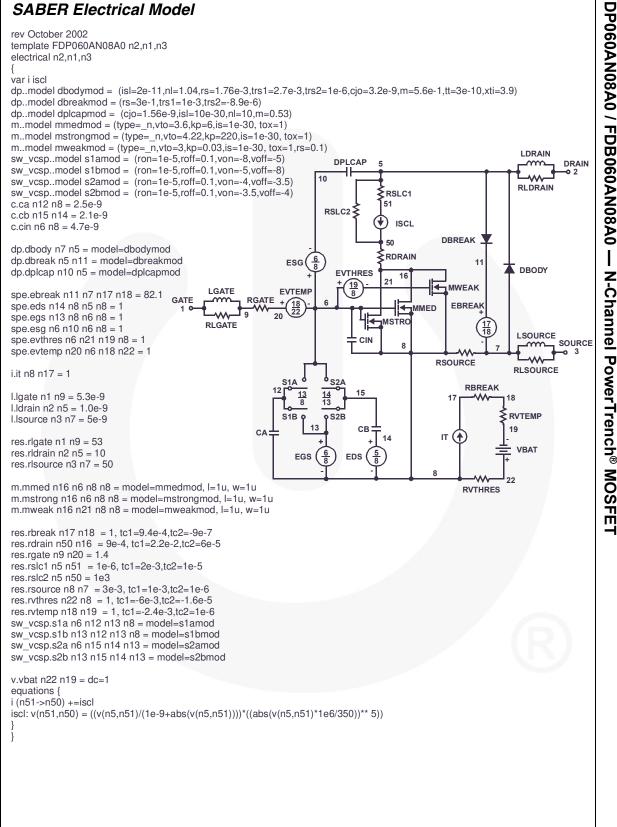

Fairchild provides thermal information to assist the designer's preliminary application evaluation. Figure 21 defines the $R_{\theta,JA}$ for the device as a function of the top copper (component side) area. This is for a horizontally positioned FR-4 board with 1oz copper after 1000 seconds of steady state power with no air flow. This graph provides the necessary information for calculation of the steady state junction temperature or power dissipation. Pulse applications can be evaluated using the Fairchild device Spice thermal model or manually utilizing the normalized maximum transient thermal impedance curve.

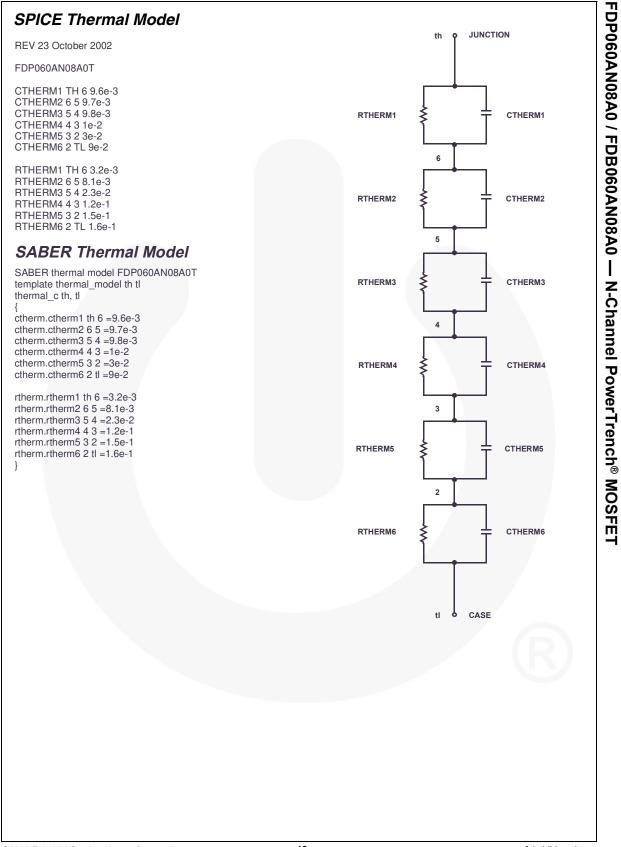
Thermal resistances corresponding to other copper areas can be obtained from Figure 21 or by calculation using Equation 2 or 3. Equation 2 is used for copper area defined in inches square and equation 3 is for area in centimeters square. The area, in square inches or square centimeters is the top copper area including the gate and source pads.

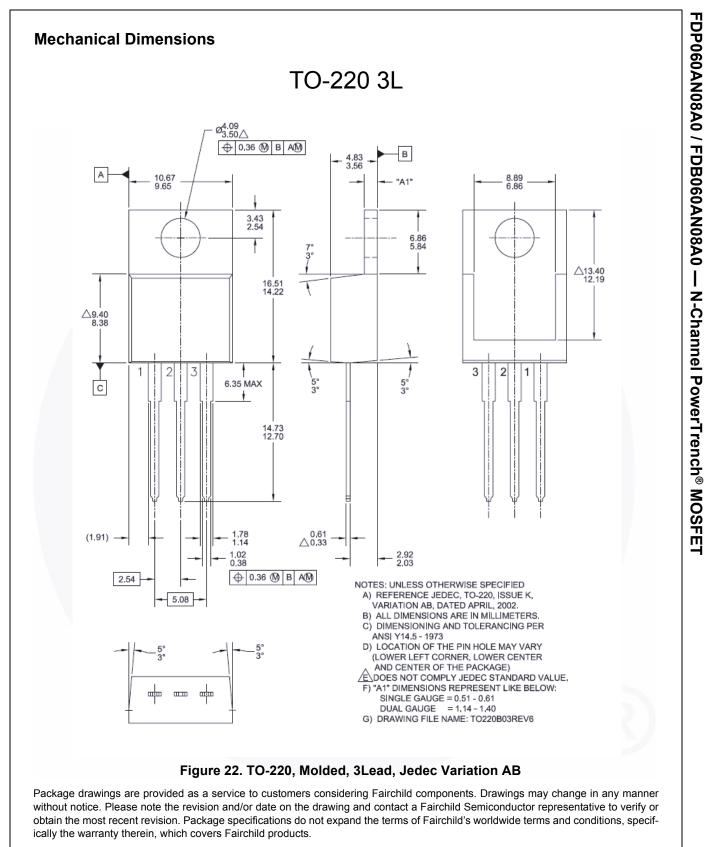

$$R_{\Theta JA} = 26.51 + \frac{19.84}{(0.262 + Area)}$$
(EQ. 2)

Area in Inches Squared

$$R_{\Theta JA} = 26.51 + \frac{128}{(1.69 + Area)}$$
(EQ. 3)
Area in Centimeters Squared

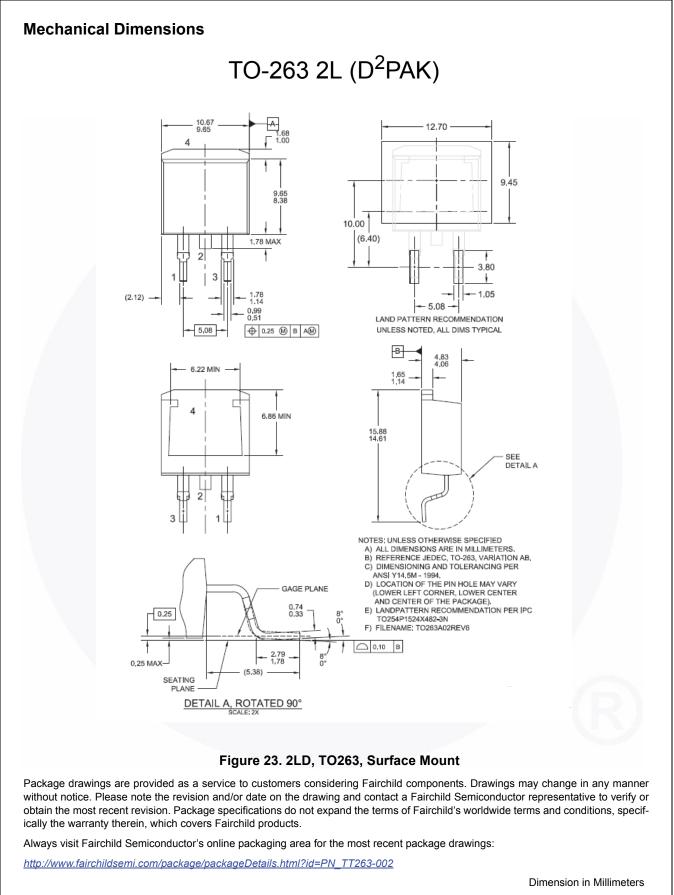

www.fairchildsemi.com




©2003 Fairchild Semiconductor Corporation FDP060AN08A0 / FDB060AN08A0 Rev. C4

www.fairchildsemi.com

SABER Electrical Model



Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/package/packageDetails.html?id=PN_TT220-003

Dimension in Millimeters

No Identification Needed

Obsolete

Full Production

Not In Production

Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.

Datasheet contains specifications on a product that is discontinued by Fairchild

Semiconductor. The datasheet is for reference information only.

Rev. 166

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC