

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

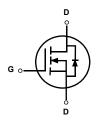
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

FDP8878

N-Channel Logic Level PowerTrench[®] MOSFET 30V, 40A, 15m Ω

General Descriptions

This N-Channel MOSFET has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers. It has been optimized for low gate charge, low $r_{\text{DS}(\text{ON})}$ and fast switching speed.


Features

- $r_{DS(ON)} = 15mΩ$, $V_{GS} = 10V$, $I_D = 40A$
- $r_{DS(ON)} = 19m\Omega$, $V_{GS} = 4.5V$, $I_D = 36A$
- High performance trench technology for extremely low r_{DS(ON)}
- Low gate charge
- High power and current handling capability
- RoHS Compliant

TO-220AB FDP SERIES

MOSFET Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter	Ratings	Units			
V_{DSS}	Drain to Source Voltage	30	V			
V_{GS}	Gate to Source Voltage		Gate to Source Voltage		±20	V
I _D	Drain Current					
	Continuous ($T_C = 25^{\circ}C$, $V_{GS} = 10V$)	40	Α			
	Continuous ($T_C = 25^{\circ}C$, $V_{GS} = 4.5V$)	36	Α			
	Pulsed	(Note 4)	141	Α		
E _{AS}	Single Pulse Avalanche Energy (Note 1)	L = 1mH, I _{AS} = 11A	60	mJ		
		$L = 43\mu H, I_{AS} = 32A$	22	1113		
P _D	Power dissipation		40.5	W		
T _J , T _{STG}	Operating and Storage Temperature		-55 to 175	°C		

Thermal Characteristics

$R_{\theta JC}$	Thermal Resistance, Junction to Case (Note 2)	3.7	°C/W
$R_{\theta,JA}$	Thermal Resistance, Junction to Ambient at 1000 seconds (Note 3)	43	°C/W

Package Marking and Ordering Information

Device Marking Device		Package	Reel Size	Tape Width	Quantity	
FDP8878	FDP8878	TO-220	Tube	n/a	45 units	

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Chara	cteristics					
B _{VDSS}	Drain to Source Breakdown Voltage	I _D = 250μA, V _{GS} = 0V	30	-	-	V
$\frac{\Delta BV_{DSS}}{\Delta T_J}$	Breakdown Voltage Temp. Coefficient	I _D = 250μA, Referenced to 25°C		21		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 24V$ $V_{GS} = 0V$ $T_A = 150^{\circ}C$	-	-	1 250	μА
I _{GSS}	Gate to Source Leakage Current	V _{GS} = ±20V	-	-	±100	nA
On Chara	cteristics			•		
V _{GS(TH)}	Gate to Source Threshold Voltage	V _{GS} = V _{DS} , I _D = 250μA	1.2	1.7	2.5	V
$\frac{\Delta V_{GS(TH)}}{\Delta T_{J}}$	Gate to Source Threshold Voltage Temperature Coefficient	I _D = 250μA, Referenced to 25°C		-5		mV/°C
		I _D = 40A, V _{GS} = 10V	-	12	15	
r	Drain to Source On Resistance	I _D = 36A, V _{GS} = 4.5V	-	16	19	mΩ
r _{DS(ON)}	Drain to course on reconstance	I _D = 40, V _{GS} = 10V, T _A = 175°C	-	20	25	
Dynamic	Characteristics					
C _{ISS}	Input Capacitance	V 45)() (0) (-	927	1235	pF
C _{OSS}	Output Capacitance	$V_{DS} = 15V, V_{GS} = 0V,$ f = 1MHz	-	188	250	pF
C _{RSS}	Reverse Transfer Capacitance	- 11VII 12	-	1130	175	pF
R _G	Gate Resistance	f = 1MHz		3.0		Ω
$Q_{g(TOT)}$	Total Gate Charge at 10V	V_{GS} = 0V to 10V V_{DD} = 15V	-	17.1	23	nC
Q _{g(5)}	Total Gate Charge at 5V	$V_{GS} = 0V \text{ to } 5V I_D = 40A$	-	9.2	12	nC
Q _{gs}	Gate to Source Gate Charge	$I_g = 1.0 \text{mA}$	-	2.6	-	nC
Q _{gs2}	Gate Charge Threshold to Plateau	7	-	1.7	-	nC
Q_{gd}	Gate to Drain "Miller" Charge		-	3.7	-	nC
Switching	Characteristics (V _{GS} = 10V)					
t _{ON}	Turn-On Time		-	255	383	ns
t _{d(ON)}	Turn-On Delay Time	7	-	11.1		ns
t _r	Rise Time	V _{DD} = 15V, I _D = 40A	-	244		ns
t _{d(OFF)}	Turn-Off Delay Time	$V_{GS} = 10V, R_{GS} = 16\Omega$	-	14.8		ns
t _f	Fall Time	7	-	35.3		ns
t _{OFF}	Turn-Off Time		-	50	75	ns
Drain-Soເ	urce Diode Characteristics					
V _{SD}	Source to Drain Diode Voltage	I _{SD} = 40A	-	1.1	1.25	V
* SD	Sociot to Brain Blode Voltage	I _{SD} = 3.2A	-	0.85	1.2	V
t _{rr}	Reverse Recovery Time	$I_{SD} = 40A, dI_{SD}/dt=100A/\mu s$	-	14.4	18.8	ns
Q_{RR}	Reverse Recovered Charge	$I_{SD} = 40A, dI_{SD}/dt = 100A/\mu s$	-	5.1	6.7	nC

Notes:
Starting T_J = 25°C, V_{DD} = 30V, V_{GS} = 10V
R_{θJA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{θJA} is guaranteed by design while R_{θJA} is determined by the user's board design.
R_{θJA} is measured with 1.0 in² copper on FR-4 board
Pulse Test: Pulse Width < 300µs, Duty Cycle < 2.0%

Figure 1. On Region Characteristics

V_{DS}, GATE TO SOURCE VOLTAGE (V)

1.2

1.6

10

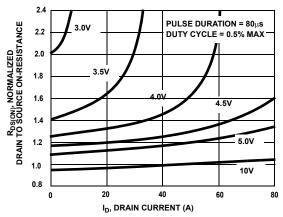


Figure 2. On-Resistance Variation with Drain Current and Gate Voltage

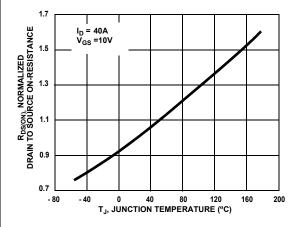


Figure 3. On Resistance Variation with Temperature

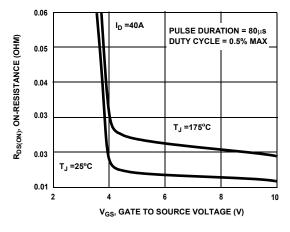


Figure 4. On-Resistance Variation with Gate-to-Source Votlage

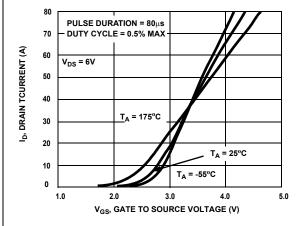


Figure 5. Transfer Characteristics

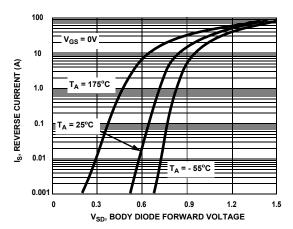


Figure 6. Body Diode Forward Voltage Variation With Source Current and Temperature

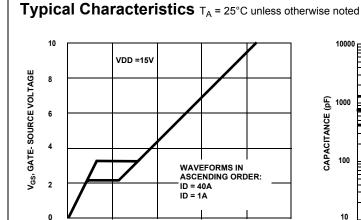


Figure 7. Gate Charge Characteristics

12

Q_q, GATE CHARGE (nC)

16

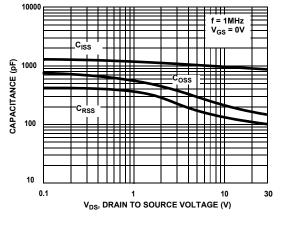


Figure 8. Capacitance Characteristics

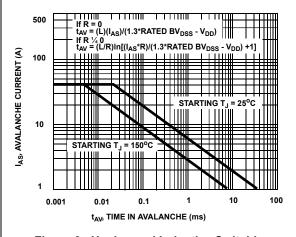


Figure 9. Unclamped Inductive Switching Capability

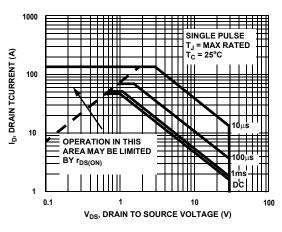


Figure 10. Safe Operating Area

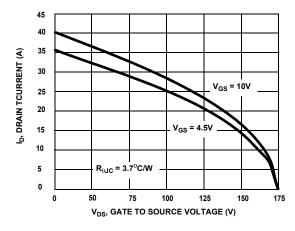


Figure 11. Maximum Continuous Drain Current vs Case Temperature

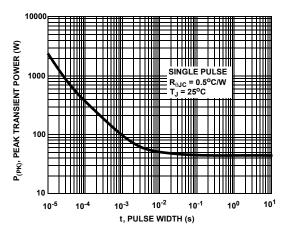


Figure 12. Single Pulse Maximum Power Dissipation

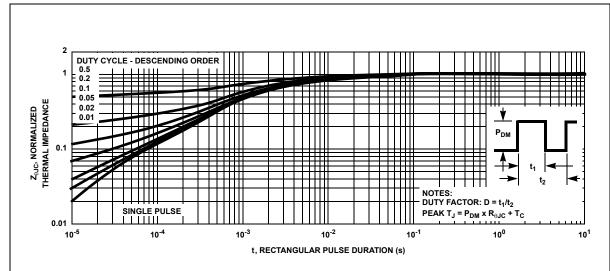


Figure 13. Transient Thermal Response Curve

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

 $ACEx^{TM}$ PowerSaver™ **FAST®** ISOPLANAR™ SuperSOT™-6 ActiveArray™ $\mathsf{PowerTrench}^{\circledR}$ SuperSOT™-8 FASTr™ LittleFET™ Bottomless™ $\mathsf{FPS^{\mathsf{TM}}}$ MICROCOUPLER™ QFET[®] SyncFET™ Build it Now™ MicroFET™ QSTM TinyLogic[®] FRFET™ TINYOPTO™ CoolFET™ MicroPak™ QT Optoelectronics™ GlobalOptoisolator™ $CROSSVOLT^{TM}$ MICROWIRE™ Quiet Series™ TruTranslation™ GTO™ UНС™ $\mathsf{DOME}^{\mathsf{TM}}$ RapidConfigure™ MSX^{TM} HiSeC™ UltraFET[®] $\mathsf{EcoSPARK^{TM}}$ RapidConnect™ $MSXPro^{TM}$ I²CTM UniFET™ E²CMOSTM OCX^{TM} uSerDes™ i-LoTM ScalarPump™ EnSigna™ VCX^{TM} OCXPro™ ImpliedDisconnect™ $\mathsf{OPTOLOGIC}^{\circledR}$ SILENT SWITCHER® FACT™ Wire™ IntelliMAXTM OPTOPLANAR™ SMART START™ FACT Quiet Series™ PACMANTM SPMTM Across the board. Around the world.™ РОРТМ Stealth™ The Power Franchise® Power247™ SuperFET™ Programmable Active Droop™ SuperSOT™-3 PowerEdge™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS. NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Rev. I17